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Abstract
Introduction—Sodium loading, and subsequent volume expansion, suppresses aldosterone levels
in individuals with normal renal function. We hypothesised that loss of renal function impairs this
volume-aldosterone relationship.

Materials and methods—With multifrequency bioimpedance spectroscopy, we measured total
body water (TBW), extracellular volume (ECV), and intracellular volume in five haemodialysis
patients at varied states of hydration and in five healthy volunteers during low-, normal-, and high-
salt diets. Serum aldosterone, potassium, and C-reactive protein were measured simultaneously.
Scatterplots and general estimating equations were used to examine the relationship among these
variables.

Results—In healthy volunteers with salt loading, and in haemodialysis subjects with increased
inter-dialytic weight gain, expansion of ECV led to reciprocal declines in serum aldosterone
concentrations. The relationship was more profound in healthy volunteers (p<0.001) than in
haemodialysis subjects (p=0.1). Notably, haemodialysis subjects posted consistently higher levels
of ECV (median 49.6% TBW, IQR 43.9–51.8% compared to 41.1%, 39.9–42.8% in volunteers) and
serum aldosterone (median 26.7 ng/dl, IQR 19.8–29.6 compared to 12.4 ng/dl, 8.8–16.0 in
volunteers). Serum potassium did not appear to influence aldosterone concentration (p=0.9).

Conclusions—The shift of the volume-aldosterone curve in haemodialysis subjects suggests that
end-stage kidney disease is a state of high volume and inappropriately high aldosterone. These data
have important clinical implications, as dialysis patients may benefit from both volume reduction
and mineralocorticoid receptor blockade.
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Introduction
Advances in non-invasive bioimpedance techniques allow accurate measurements of
extracellular volume (ECV) among subjects with and without chronic kidney disease, including
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dialysis-dependent patients.1-3 The ability to objectively assess ECV should provide
opportunities to improve the health of end-stage kidney disease (ESKD) patients by attaining
physiologic dry weight and optimising blood pressure targets.4-6 Bioimpedance measurements
can also serve as important research tools.7

In a seminal study performed more than 30 years ago, Brunner et al. demonstrated that 24-
hour urine aldosterone levels were suppressed in subjects with high 24-hour urine sodium
levels.8 These measurements – and their resultant aldosterone-sodium curves (figure 1A) –
proved crucial for diagnosing hyperaldosterone states in which sodium loading did not result
in appropriately suppressed aldosterone levels. An inherent assumption in these curves, which
has yet to be formally tested, is that sodium excretion, a valid marker of sodium intake during
steady state, also serves as a marker of ECV.

Using whole body bioimpedance, we studied healthy volunteers on low-, normal-, and high-
salt diets, and maintenance haemodialysis subjects pre-ultrafiltration at varying degrees of
inter-dialytic weight gain, to replace the classic sodium-aldosterone curves with ECV-
aldosterone curves. We hypothesised that ECV elevations would lead to reductions in serum
aldosterone for both healthy volunteers and haemodialysis subjects, but that this relationship
would occur at higher volumes and higher aldosterone concentrations for the haemodialysis
subjects. In other words, we hypothesised that the volume-aldosterone curve would ‘shift to
the right’ as renal function declined (figure 1B).9

Methods
Subjects

Five clinically-stable, long-term (i.e. vintage ≥ one year) haemodialysis patients from the
outpatient dialysis units of the University of North Carolina Kidney Center, believed to be at
variable levels of hydration, were enrolled in this study. Exclusion criteria were age < 10 or >
80 years, significant residual renal function (defined as urine output > 250 ml/day),
hospitalisation within the last three months, myocardial infarction or stroke in the preceding
six months, congestive heart failure (defined by ejection fraction < 40%), simultaneous
participation in another clinical study, pregnancy, amputation of a limb, and presence of a
pacemaker, implantable defibrillator, or artificial joint.

Five healthy volunteers were simultaneously enrolled. Inclusion criteria for entering the
volunteer study protocol were age ≥ 18 and ≤ 65 years, no known past medical history, no
chronic prescription medications, and ability to collect three 24-hour urine samples over a 10-
day period. We excluded volunteers with systolic blood pressure > 140 mmHg, diastolic blood
pressure > 90 mmHg, estimated glomerular filtration rate (calculated from serum creatinine)
< 60 ml/min/1.73 m2, and body mass index > 30 kg/m2. All haemodialysis subjects and healthy
volunteers provided informed consent for study procedures approved by the Institutional
Review Board of the University of North Carolina.

Study procedures
We measured total body water (TBW), ECV, and intracellular volume (ICV) on five
haemodialysis patients, every other week for 12 weeks, using a whole body (wrist to ankle)
multifrequency bioimpedance spectroscopy (BIS) system (Xitron 4200). The measurements
were done within the first five minutes of a routine haemodialysis session, before initiating
ultrafiltration, and followed established methods of whole body BIS measurement;
extracellular and intracellular resistance were calculated based on the Cole-Cole model with
the raw data of resistance and reactance from 5 kHz to 1000 kHz as described elsewhere.1,10,
11 Xitron software then converted resistance values to ECV and ICV; TBW was the sum of
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ECV and ICV values. Measurements of ECV and ICV were then converted to a percentage of
TBW; measurements in litres are not considered a valid outcome without an internal, directly
measured referent (TBW), as body habitus between subjects is variable. Blood samples were
drawn concomitantly with half of the BIS analyses (approximately every four weeks). Serum
was frozen for aldosterone assays but immediately sent for potassium and C-reactive protein
measurements. No dietary or inter-dialytic weight gain recommendations were made for the
dialysis subjects. No changes were made to the subjects' dialysis prescriptions, including no
change in ultrafiltration goals or rates (beyond holding ultrafiltration until after completion of
the bioimpedance measurements). Dialysate sodium concentration was standard (rather than
modelled) for all subjects during the study period.

We performed similar BIS measurements for TBW, ECV, and ICV alongside aldosterone
collections on five healthy volunteers during a 10-day period. The first measurements were
done after a 24-hour period of urine collection for sodium excretion to establish baseline dietary
salt intake and presumed euvolaemic measurements. The second measurements were done
after a four-day period of low-salt intake during which subjects were encouraged to consume
< 50 mmol/d (1.2 g/d) sodium. The third measurements were done after a four-day period of
high-salt intake during which subjects were encouraged to consume > 150 mmol/d (3.6 g/d)
sodium. Twenty-four-hour urine collections for sodium excretion were performed during the
fourth day of low- and high-salt diets. The degree of salt loading in our healthy volunteers was
milder than that employed in the experiments by Titze and colleagues that suggested
osmotically inactive sodium storage in the skin or bone.12-14 Therefore, salt loading in the
volunteers should be confined to the extracellular space and reflected in the BIS measurements
of ECV.

All blood collections for aldosterone were done prior to 10 a.m. after subjects had been supine
for a minimum of five minutes. Two serum samples for each study session were prepared and
frozen at −20°C. Serum aldosterone concentrations (ng/dl) were determined by enzyme
immunoassay according to the manufacturer's instructions (Alpco Diagnostics, available at
http://www.alpco.com/pdfs/11/11-ALDHU-E01.pdf).

Data analyses
All analyses and plots were performed separately for healthy volunteers and haemodialysis
subjects using STATA version 9.2 (StataCorp, Texas, USA). Scatterplots were created to
visually compare changes in aldosterone concentrations versus changes in ECV measurements.
To account for repeated measurements, we used generalised estimating equation (GEE) models
with robust standard error and an exchangeable correlation matrix to evaluate the degree of
influence ECV had on aldosterone values. Because the original sodium-aldosterone curves and
our own scatterplots for ECV-volume did not perfectly follow linear relationships, we repeated
our GEE models using power transformations of aldosterone (aldosterone0.5 and
aldosterone2). Scatterplots and GEE modelling were similarly used to examine the effect of
serum potassium on aldosterone levels, and the effect of ECV and aldosterone on C-reactive
protein levels. Two-sided hypotheses tests with a 5% type I error were adopted for all statistical
inferences.

Results
All subjects completed the study protocol without interruption or complications. The healthy
volunteers were all male, with median age 38 years (range 32–62). The mean 24-hour urine
sodium for the healthy volunteers was 28.6±25.2 mmol/d during the low-salt phase and 173.0
±60.3 mmol/d during the high-salt phase. The dialysis subjects consisted of two males and
three females, with median age 50 years (range 11–80). None were diabetic, and all had body
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mass indices below 30 kg/m2. Inter-dialytic weight gain during the study period for these
subjects ranged from 0.7 to 4.1 kg (median 2.7, IQR 2.0–3.3).

ECV (expressed as % of TBW) increased in healthy volunteers with greater amounts of salt in
the diet (range 32.6–46.8% TBW) and in haemodialysis subjects with greater amounts of inter-
dialytic weight gain (range 41.7–54.5% TBW) (Table 1). In healthy volunteers, ECV expansion
clearly led to reductions in serum aldosterone concentrations (figure 2A). We ran three GEE
models of aldosterone, aldosterone0.5, and aldosterone2 versus ECV. These yielded beta-
coefficients (95% CIs, p values) of −130.7 (−167.7731, −93.53762, p<0.001), −18.2 (−26.3,
−10.0, p<0.001), and −4,040.8 (−4,653.5, −3,428.1, p<0.001), respectively. In haemodialysis
subjects, a similar trend towards lower aldosterone levels at higher states of ECV was observed
(figure 2B). GEE models of aldosterone, aldosterone0.5, and aldosterone2 versus ECV yielded
beta-coefficients (95% CIs, p values) of −99.4 (−218.1, 19.4, p=0.1), −10.1 (−22.6, 2.3, p=0.1),
and −4,952.6 (−10,670.6, 765.4, p=0.09), respectively. Overall, compared to the healthy
volunteers, haemodialysis subjects clearly demonstrated both higher ECV (median 49.6%
TBW, IQR 43.9–51.8% TBW versus median 41.1% TBW, IQR 39.9–42.8%) and serum
aldosterone measurements (median 26.7 ng/dl, IQR 19.8–29.6 ng/dl versus median 12.4 ng/
dl, IQR 8.8–16.0 ng/dl) (figures 2C and 2D).

Serum potassium was generally well controlled in the haemodialysis subjects (median 5.0
mmol/L, range 3.8–6.2 mmol/L) and did not, in GEE models, influence aldosterone
concentrations (p=0.9) (figure 3). Approximately 75% of C-reactive protein levels in the
haemodialysis subjects were above 1.0 mg/L, the upper limit of normal for this assay, and were
more influenced by aldosterone concentrations (p<0.001) than ECV measurements (p=0.2)
(figure 4).

Discussion
In this study, we used multifrequency BIS to measure ECV in five healthy volunteers on low-,
normal-, and high-salt diets and in five haemodialysis subjects at various states of inter-dialytic
weight gain. Serum aldosterone concentrations were drawn simultaneously, allowing us to
construct volume-aldosterone curves that updated similar sodium-aldosterone curves created
more than 30 years ago. The curves confirm that in individuals with normal renal function, 24-
hour urinary sodium excretion is a reasonable surrogate marker for ECV status, and ECV
expansion leads to suppression of aldosterone secretion. More importantly, the shift of the
volume-aldosterone curve seen in the haemodialysis subjects suggests that ESKD is a state of
high volume and inappropriately high aldosterone for this degree of volume expansion. These
results have significant clinical implications.

Despite advances in the diagnosis and management of kidney disease, mortality rates for
patients on haemodialysis remains as high as 20–25% at one year and 50–60% at five years.
15 Cardiovascular disease accounts for the majority of these deaths, with sudden cardiac death
being the leading cause.16,17 In the last decade, two landmark clinical trials have demonstrated
that mineralocorticoid receptor blockade with spironolactone or eplerenone significantly
reduces mortality in patients with advanced congestive heart failure.18,19 Notably, the
mineralocorticoid receptor blockade doses used in these trials were relatively low, suggesting
that the benefits of therapy were due not to blood pressure reduction or diuresis, but rather due
to blockade of aldosterone's non-epithelial, pro-inflammatory, pro-fibrotic effects on the heart.
20,21 These non-epithelial effects of aldosterone are exaggerated in conditions, such as
congestive heart failure, of elevated aldosterone levels and expanded ECV.22

We hypothesised that patients with chronic and ESKD similarly manifest relative
hyperaldosteronaemic and hypervolaemic states, which become more pronounced as renal
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function deteriorates.9 The volume-aldosterone curves constructed in this study support this
hypothesis. While volume (and apparently not potassium) influences aldosterone
concentrations to a similar, albeit less rigorous, degree in ESKD as it does in normal renal
function, the suppression is nonetheless inadequate and incomplete. Despite clear and objective
evidence of volume expansion, the haemodialysis subjects posted only five of 30 (16.7%)
serum aldosterone concentrations under 15 ng/dl, generally considered the upper limit of
normal serum aldosterone measurements.23 In other words, haemodialysis subjects may be
seen as chronically failing volume suppression tests (as would be used to diagnose primary
aldosteronism). In ESKD, hyperaldosteronism in the high volume state leads to activation of
non-epithelial mineralocorticoid receptors, promoting vascular inflammation and fibrosis.24,
25

A recent study using bioimpedance to measure ECV found that overhydration was an important
and independent predictor of mortality in maintenance dialysis patients.26 This study comes
almost two decades after hypertension control without medication was shown to be the best
single marker of survival in haemodialysis patients.27 Therefore, nephrologists are keenly
aware that expanded ECV is a major contributor to the high rates of cardiovascular morbidity
and mortality in ESKD. Yet the discussion has heretofore centred primarily on blood pressure.
28,29 In our opinion, this has led to an unfortunate neglect of the inflammatory role of
aldosterone in these high volume states.

This is not the first study to demonstrate that ESKD patients have abnormally high aldosterone
levels.30-35 Our study, however, is the first to objectively measure ECV alongside these
aldosterone levels, and thus the first to demonstrate that expansion of ECV does suppress
aldosterone concentration in ESKD, albeit suboptimally and to still inappropriately high levels.
The resultant high volume-high aldosterone state may be a pro-inflammatory condition that
explains, in part, the large burden of cardiovascular disease in this population.33 In this study,
we used C-reactive protein levels as a crude marker of inflammation. While C-reactive protein
levels tended to increase with ECV expansion, they clearly decreased with higher aldosterone
concentration; we thus propose that volume status plays a larger role than aldosterone
concentration in determining the pro-inflammatory activation of non-epithelial
mineralocorticoid receptors.

Obviously, these results are meant to fuel discussion about potential therapeutic decisions. The
expanded ECV measurements demonstrated here and in other studies of haemodialysis patients
clearly argue for a re-evaluation of current practice patterns regarding dietary sodium
counselling, ultrafiltration goals, and overall estimation of dry weight.6,26,36 Moreover, the
markedly elevated aldosterone levels seen in ESKD suggest that mineralocorticoid receptor
blockade could emerge as a crucial therapeutic intervention.37 Indeed, already a number of
small studies (and at least three more ongoing or recently completed studies) have looked at
whether low doses of mineralocorticoid receptor blockade are safe in ESKD patients, for whom
the intratubular potassium-sparing effects should be scant (in oliguria) to none (in anuria).34,
38-41

Our study, which is limited by its small size and exploratory design, should be interpreted as
a hypothesis-forwarding rather than hypothesis-confirming experiment. Of note, had we
enrolled diabetic and/or obese subjects, we may have seen more extreme levels of aldosterone
(both low and high) given the potential for hyporeninaemia in diabetes and hyperaldosteronism
in obesity and the metabolic syndrome.42-44 Further investigations are needed that incorporate
a larger number of dialysis subjects, with and without known congestive heart failure, and a
more sensitive marker of inflammation and cardiovascular disease risk than C-reactive protein
levels. Nonetheless, we feel that the ECV-aldosterone curves constructed in this study should
have major clinical implications, providing a new route by which nephrologists can approach
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the tremendous burden of cardiovascular disease in the haemodialysis population. This study
begins to lay the groundwork for clinical trials testing whether low-dose mineralocorticoid
receptor blockade, a widely used and effective therapy in congestive heart failure, can reduce
mortality in haemodialysis patients.
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Figure 1.
The relationship between aldosterone and sodium intake predicts similar curves for aldosterone
and extracellular volume (ECV) measurements. The aldosterone-sodium curves (A) are
adapted from the study by Brunner et al.,8 and serve as a model for our proposed aldosterone-
volume curves (B). In healthy volunteers, a salt load should lead to expansion of ECV and
resultant suppression of aldosterone. Poor or absent renal function, manifest in haemodialysis
subjects, results in higher levels of ECV that are exacerbated by high inter-dialytic weight gain.
We hypothesised that haemodialysis subjects would have a defective volume receptor, and
thus not be able to appropriately suppress their aldosterone concentrations to levels befitting
their degree of volume expansion. In other words, the aldosterone-volume curve shifts to the
right in end-stage kidney disease.

Bomback et al. Page 9

J Renin Angiotensin Aldosterone Syst. Author manuscript; available in PMC 2010 March 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Scatterplots of serum aldosterone levels and extracellular volume (ECV) measurements in
healthy volunteers and haemodialysis subjects. Volume expansion during high-salt diets
clearly suppressed aldosterone levels in the healthy volunteers (A), and a similar trend was
seen in the haemodialysis subjects as their ECV increased with inter-dialytic weight gains (B).
However, the haemodialysis subjects consistently demonstrated both higher levels of ECV and
aldosterone (C), supporting our hypothesis that the aldosterone-volume curves in figure 1
would shift to the right in end-stage kidney disease. Unique symbols (×, •, ■, ▲, ◆) identify
data from each healthy volunteer (A) and haemodialysis subject (B). TBW = total body water.
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Figure 3.
In haemodialysis subjects, serum potassium did not appear to influence serum aldosterone
levels.

Bomback et al. Page 11

J Renin Angiotensin Aldosterone Syst. Author manuscript; available in PMC 2010 March 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
In haemodialysis subjects, C-reactive protein tended to increase with volume expansion but
decrease with elevations in aldosterone. In the setting of expanded volume, aldosterone's
actions at non-epithelial mineralocorticoid receptors are pro-inflammatory. However, C-
reactive protein levels clearly decreased with elevations in aldosterone concentration.
Speculatively, these data suggest that aldosterone concentration plays a lesser role than volume
status in end-stage kidney disease in determining the pro-inflammatory activation of non-
epithelial mineralocorticoid receptors. TBW = total body water.
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