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Overview (Steven Zeisel)
The American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) Research
Workshop, “Using Nutrigenomics and Metabolomics in Clinical Nutrition Research” was
held on January 21, 2012 in Orlando, Florida. The conference brought together experts in
human nutrition who use nutrigenomic and metabolomic methods to better understand
metabolic individuality and nutrition effects on health. We are beginning to understand how
genetic variation and epigenetic events alter requirements for, and responses to foods in our
diet (the field of nutrigenetics/nutrigenomics and epigenetics). At the same time, methods
for profiling almost all of the products of metabolism in plasma, urine and tissues
(metabolomics) are being refined. The relationships between diet and nutrigenomic-
metabolomic profiles, and between these profiles and health, are being elucidated, and this
will dramatically alter clinical practice in nutrition 1.

Nutrigenetics and metabolomics can help define responders and non-
responders in clinical nutrition studies (Steven Zeisel)

One of the characteristics of nutrition research often is that there are significant variations in
response to a nutrition intervention, and these result in large standard errors. This variance
makes it harder to prove that the nutrition intervention had biological significant effects.
One of the assumptions made by nutrition scientists is that people are metabolically similar;
however it is becoming apparent that this may not be the case and there is significant
metabolic individuality. This, in part, underlies the recent interest in individualized nutrition.
For the clinical nutrition researcher it is important to realize that combining metabolic
responders with non-responders to an intervention is an important source of variance in the
study data, and may explain why studies sometimes result in divergent conclusions. If we
could find biomarkers that identify the responders from the non-responders, we could
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appropriately group study subjects, not combine them, and greatly reduce variance in data,
thereby enhancing identification of biologically significant effects using smaller numbers of
study subjects. It would be best to separate responders from non-responders before a study is
initiated; however, if the appropriate samples are collected during the study, it is possible to
retrospectively analyze the data using appropriate grouping of subjects and thereby
resuscitate an apparently failed clinical study.

Sources of metabolic variation
Metabolism can be modified by many factors including diet, other environmental exposures
and drugs and body composition. Possibly the most important modifiers of metabolism are
genetic and epigenetic 2, 3. Whatever the source of variation in metabolism, this variation
should be detected by metabolomic profiling which identifies a footprint of metabolism that
is composed of the many small molecules generated by metabolic pathways. Thus, a clinical
nutrition researcher should collect data on diet, exposures and body composition, as well as
collect samples of DNA for genetic analyses and of biological fluids for metabolomic
profiling (usually plasma and/or urine are used, but any fluid can be analyzed as appropriate
to the study problem). With the help of a bioinformatician one can usually differentiate
responders from non-responders in a clinical study.

Metabolomic profiling
In the old days, nutrition scientists measured a small set of targeted metabolites and
extrapolated from these data to predict what was changing in metabolism. We often looked
at what we knew best to find only what we expected to find; akin to looking under the
streetlamp for lost keys. Modern technology makes it possible to measure hundreds of small
molecules in a single sample (less than half a mL) of plasma or urine 4. This untargeted
metabolite profiling permits scientists to use many more data points in developing their
estimate of changes in metabolism, and it permits them to look at pathways they never
suspected would be changed by an intervention. There are two main platforms available for
performing metabolic profiling, and most laboratories use one or the other. Nuclear
Magnetic Resonance methods have the advantage that little sample processing is required,
but sensitivity can be a problem. Molecules present in low concentrations are often not seen.
Mass spectrometry methods require some form of separation of the metabolites using
chromatography before entry into the mass spectrometer, and are quite sensitive. Usually a
metabolomic profiling platform will split the sample and pass it through a gas
chromatography-mass spectrometer and a liquid chromatography mass spectrometer because
these two separation methods complement each other for isolating the widest variety of
small molecules. Once the data is generated, rather complicated analyses need to be
performed to interpret the data, and this is best done by a team that consists of a
bioinformatics expert and a metabolism expert.

Nutrigenetic profiling
The field of nutrigenetics/nutrigenomics is growing rapidly. For now, it is sensible to focus
on two aspects that can be practically applied today in clinical nutrition research. Single
nucleotide polymorphisms (SNPs; stated simply these are spelling errors in the genetic code)
are very common, with more than 1 million identified 5. It is estimated that every person has
about 50,000 SNPs. Some portion of these alters the expression or function of genes at
critical steps in metabolism, and these changes result in metabolic inefficiencies that
underlie metabolic variation between people. Current commercial technology allows us to
measure a million or more of these SNPs in a study subject, but this may not be wise unless
you are studying tens of thousands of subjects 1. This is because of biostatistical corrections
that must be made when you make multiple comparisons. For clinically sized studies (tens to
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hundreds of subjects) it is better to preselect a small number of SNPs to be studied based on
suspected underlying mechanisms.

It is now possible to measure epigenetic marks on genes 6. These marks influence whether
genes are expressed. When DNA cytosines are methylated, they attract capping proteins that
block of the binding site for transcription factors, and this blocks gene expression. This
inhibitory signal can be reinforced by epigenetic marks on the proteins around which DNA
is coiled (histones) as well as by microRNAs that bind to the gene and prevent it from being
transcribed. Soon we will understand enough about epigenetics to study how these marks
contribute to metabolic variation in human clinical nutrition studies. The major problem
impeding progress is that these marks differ tissue by tissue. While SNPs are the same in all
DNA, epigenetic marks on genes in peripheral white cells may not reflect the marks present
in liver or brain or heart. It is a rare study that can obtain samples from such target tissues,
and most have to extrapolate from blood sample data. A second problem for epigenetics is
that these marks may change during development, so a single measure in time may not fully
explain metabolic variation.

An example of the utility of nutrigenomics and metabolomics in clinical nutrition research
When the dietary requirement for choline in humans was studied, it was found that most
men and postmenopausal women had to eat a diet containing choline or they developed liver
and/or muscle damage that resolved when they were fed again with a choline-containing
diet 7. However, less than half of premenopausal women developed liver or muscle damage
when deprived of choline 7. This finding led to studies that determined that the pathway in
liver for endogenous synthesis of phosphatidylcholine (a source of choline) is induced by
estrogen; premenopausal women have extra capacity to make their own phosphatidylcholine
and thus need to eat less choline in the diet 8. Why then did almost half of premenopausal
women still need to eat choline? They had SNPs in genes of choline and folate metabolism
that made theses metabolic pathways inefficient9, 10. The most common SNP that made
women require choline in the diet was a SNP in the gene responsible for endogenous
synthesis of phosphatidylcholine (PEMT); women with this SNP could not turn this gene on
with estrogen 11. Thus, like men who have little estrogen, these women had to eat choline to
prevent liver damage. More that 70% of women in North Carolina had one minor allele for
this SNP, and approximately 20% had two minor alleles; the increase in relative risk for
choline deficiency imparted by two copies of the minor allele was 24 fold 9.

Thinking about the above experiment, it would have been quite a puzzle if the data from
young women were combined and analyzed because there were really two groups of
women, responders and non-responders to the diet restriction. When combined there would
be large standard deviations of the means, and many subjects would need to be studied to
determine if there was a statistical difference between pre- and postmenopausal women and
men in dietary requirements for choline. However, the ability to separate responders (those
with the SNPs that increased the requirement for dietary choline) from non-responders
(those women who did not need to eat choline) markedly reduced data variance, and made it
easy to detect significant differences in a study of 80 subjects.

As noted above, these SNPs in genes of 1-carbon metabolism created metabolic
inefficiencies that should be present even when a person is not challenged by being fed a
low choline diet. These inefficiencies should be detected by metabolomic profiling. In the
above study on human choline requirements, plasma samples at baseline (before any diet
manipulation) were subjected to metabolomic profiling, and it was possible to predict with
high confidence which subjects would develop liver damage when deprived of choline 12.
Even when on a diet adequate in choline, these individuals had a group of metabolite
changes caused by the SNPs in genes. In addition, metabolic profiling can be useful when
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studying response to an intervention because it provides a picture of metabolism with a
greater scope than is usually obtained by measuring a few targeted metabolites. In the
choline study, after subjects were fed a low choline diet there were expected changes in
choline metabolites in plasma (they dropped), but there were unexpected changes in other
metabolites – for example, changes in acylcarnitines suggested that mitochondrial function
was disturbed during choline deficiency.

Summary
In summary, nutrigenetic and metabolomic methodology have great utility for scientists
studying human nutrition. Every clinical study should plan to collect appropriate samples so
that these methods can be employed to refine data analysis. This approach may reduce the
“fuzziness” associated with human nutrition studies and may identify new mechanistic
pathways because we are looking beyond the light shed by the streetlamp we were trained
under.

Epigenetics – The role of early diet in shaping our gene expression
potential (Robert A. Waterland)

Epigenetics is the study of mitotically heritable alterations in gene expression potential that
are not caused by DNA sequence alterations 13. By stably regulating gene expression
potential in differentiated tissues, epigenetic mechanisms such as DNA methylation play a
critical role in mammalian development. In the last decade it has increasingly been
recognized that dysregulation of epigenetic mechanisms may play an important role in
human disease 14, 15. Indeed, nearly any disease with a genetic basis could also have an
epigenetic basis. The inherent tissue-specificity of epigenetic gene regulation, however,
presents a major obstacle to an improved understanding of the epigenetic basis of human
disease 16. To determine if genetic variation is associated with a specific disease, any easily
obtainable DNA sample – such as from peripheral blood – is sufficient, since essentially all
cells in the body contain the same DNA. If, on the other hand, one wishes to determine if
epigenetic variation is associated with, say, Alzheimer's disease or type-2 diabetes,
epigenetic marks in peripheral blood DNA may be completely irrelevant.

Mouse studies of ‘metastable epialleles’ (MEs) suggest the potential to bypass in some cases
this obstacle of tissue specificity. At murine MEs DNA methylation is established
stochastically (i.e., randomly), even among genetically identical individuals 17, and
interindividual epigenetic variation is influenced by maternal nutrition before and during
pregnancy 18-21. Moreover, interindividual epigenetic variation at MEs occurs systemically,
affecting all tissues 19, 20. The best characterized murine ME is the agouti viable yellow
(Avy) locus, which affects coat color and body weight regulation. Whereas two genetically
identical Avy heterozygous mice appear indistinguishable at birth, differences in DNA
methylation at Avy can subsequently cause one to become yellow, hyperphagic, and obese
while the other grows up with a normal brown coat and lean body type. One could take a
few drops of blood from each of several newborn Avy heterozygous mice, however, and by
measuring DNA methylation at Avy predict with absolute certainty which will become obese
and which will be lean as adults. Hence, although the obesity of yellow Avy mice is caused
by dysregulated agouti expression in the hypothalamus 22, the epigenetic lesion causing this
misexpression is detectable in peripheral blood! The implications for human epigenetic
epidemiology are obvious. Interindividual epigenetic variation at human MEs, detectable in
peripheral blood DNA, may enable inferences about epigenetic dysregulation in internal
organs and cell types of relevance to disease.
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We performed a two-tissue epigenomic screen to identify MEs in humans 23. Using a DNA
methylation microarray approach, we performed 4 interindividual comparisons, in each case
comparing the same two healthy Caucasian adults using both peripheral blood and hair
follicle DNA (representing the mesodermal and ectodermal lineages of the early embryo,
respectively). Gene regions that exhibited concordant interindividual variation in both
tissues were candidate MEs. Candidates were validated by testing for interindividual
variation in DNA methylation in three tissues representing all three germ layers of the early
embryo (liver, kidney, and brain) in post-mortem samples from Vietnamese accident
victims. Moreover, several of the loci demonstrated substantial interindividual epigenetic
variation among monozygotic twins, providing further evidence that this epigenetic variation
occurs stochastically.

Seasonal variation in maternal dietary intake and nutritional status in rural Gambia, West
Africa 24, provided a “natural experiment” by which to test whether the establishment of
epigenotype at these loci is affected by maternal nutrition. In collaboration with Andrew
Prentice and colleagues at the London School of Hygiene and Tropical Medicine, we
obtained peripheral blood DNA samples from children (average age 9 years) who were
conceived during either the rainy or the dry season in West Kiang, The Gambia (n=25 per
season). Based on the mouse studies, we anticipated that individuals conceived during the
nutritionally challenged rainy season – when villagers are running low on staple foods from
the previous crop – would have lower DNA methylation at the MEs. We found just the
opposite. At all five putative MEs tested, DNA methylation was significantly higher in
children conceived during the rainy season 23. (This seemingly contradictory result may be
due to the high availability of folate-rich leafy vegetables during the rainy season 25.)

In summary, our results show that epigenetic metastability does occur in humans. At select
human genomic loci, establishment of systemic interindividual epigenetic variation occurs
stochastically and is influenced by maternal nutrition before and during pregnancy. We
anticipate that the identification of more such loci will highlight excellent candidate genes at
which to study associations among early nutrition, epigenetic regulation, and human disease.

Nutritional Genomics: the case for heart disease (Jose Ordovas)
The progress of genomics, fostered by the Human Genome Project, has been spectacular. In
just one decade, we have gone from having a rough draft of the Human Genome to being
close to achieving the “$1,000 Genome.” The ability to conduct genome wide association
studies (GWAS) using denser gene arrays has made feasible to conduct comprehensive
genomic analysis in hundreds of thousands of individuals and the identification of hundreds
of new loci associated with most common genetic disorders. Nevertheless, the translation of
these findings into practical applications is still lacking. Moreover, most of the genetic
variability attributed to Cardiovascular Disease (CVD)-related risk factors remains
unaccounted, suggesting that additional genetic variants and genetic mechanisms need to be
identified. Some have proposed that the “missing heritability” will be found buried into the
epigenome or by conducting whole genome sequencing and identifying a myriad of new rare
mutations associated with the phenotypes of interest 26. Another plausible explanation for
this apparent “missing heritability” may be the presence of gene by environment
interactions27. Among then the most relevant to health may be those resulting from gene-
diet interactions that, has highlighted earlier (overview, Steve Zeisel), once properly
identified and characterized could dramatically alter the translation of nutrition research into
clinical practice.

One of the traditional contributions of nutrition research to public health has consisted on
the definition of optimal dietary recommendations aimed to preventing disease and to
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promoting optimal health. For this purpose, and based on the best scientific evidence
available at each time in history, several dietary guidelines have been implemented to
improve the health of the general population and of those at high risk for specific diseases.
However, past and current dietary guidelines have been based for the most part in
observational epidemiological evidence and have not considered the dramatic differences in
the individual's response to changes in nutrient intake [see above, Nutrigenetics and
metabolomics can help define responders and non-responders in clinical nutrition studies
(Steven Zeisel)]. These differences in response may greatly affect the efficacy of these
recommendations at the individual level.

The mechanisms responsible for the interindividual differences in response to intervention,
and particularly dietary response, are far from being fully understood28. Nevertheless,
although the presence of a genetic component has been proposed for several decades, only
recently researchers began examining these nutrient-gene interactions at the molecular level.

The Application of Nutrigenomics: Understanding Inter-individual Differences in CVD Risk
Factors in Response to Diet

The different response of traditional CVD risk factors to diet depending on the particular
characteristics of an individual is not a new observation but has already been widely
observed and documented for decades. Having admitted that each individual may respond
differently to the same diet, it becomes crucial to identify the factors defining such
differential response.

The traditional approach to the identification of genetic factors implicated in differential
dietary response has been based on the candidate gene approach. More recently with the
ability to agnostically interrogate the entire genome, we can begin to identify unsuspected
genes and biological pathways. However, a major barrier to the progress of Nutrigenomics
towards the personalization of recommendations for CVD prevention has been the lack of
consistency of the reported interactions across populations and studies29. Nevertheless, there
are some cases that can be used as proof of concept for this approach. The one summarized
below demonstrates a significant interaction between a functional polymorphism in the
apolipoprotein A2 locus (APOA2), dietary saturated fat (SFA) and obesity risk.

Apolipoprotein A-II (APOA2) plays an ambiguous role in lipid metabolism, obesity, and
atherosclerosis. Initially, we studied the association between a functional APOA2 promoter
polymorphism (-265T>C) and plasma lipids (fasting and postprandial), anthropometric
variables, and food intake in 514 men and 564 women who participated in the Genetics of
Lipid Lowering Drugs and Diet Network (GOLDN) study30. We obtained fasting and
postprandial (after consuming a high-fat meal) measures, including lipoprotein particle
concentrations by proton nuclear magnetic resonance (NMR) spectroscopy and estimated
dietary intake by use of a validated questionnaire.

We found recessive effects for this SNP that were homogeneous by sex. Thus, -265C/C
subjects had statistically higher body mass index (BMI) than did carriers of the T allele and
their odds ratio for obesity was 1.70 (P = 0.039). This could be explained in part by the fact
that C/C individuals had a total energy intake that was statistically higher [mean (SE) 9371
(497) vs 8456 (413) kJ/d, P = 0.005] than in T allele carriers. This association remained
statistically significant even after adjustment for BMI. Moreover, we found no associations
with fasting lipids and only some associations with HDL subfraction distribution in the
postprandial state. Therefore, this initial analysis demonstrated that the -265T>C SNP was
consistently associated with food consumption and obesity, suggesting a new role for
APOA2 in regulating dietary intake.
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Next, we investigated the potential interaction among the APOA2 -265T>C SNP, food
intake, and BMI. For this purpose, we carried out cross-sectional, follow-up (20 years), and
case-control analyses in 3 independent populations 31. We analyzed gene-diet interactions
between the APOA2 -265T>C SNP and SFA intake on BMI and obesity in 3462 individuals
from 3 populations in the United States: the Framingham Offspring Study (1454 whites), the
GOLDN Study (1078 whites), and Boston-Puerto Rican Centers on Population Health and
Health Disparities Study (930 Hispanics of Caribbean origin).

The prevalence of the C/C genotype in study participants ranged from 10.5% to 16.2%.
Most interesting, we identified statistically significant interactions between the APOA2
-265T>C SNP and SFA regarding BMI in all 3 populations. Thus, the magnitude of the
difference in BMI between the individuals with the C/C and T/T+T/C genotypes differed by
SFA. A mean increase in BMI of 6.2% (P = 0.01) was observed between genotypes with
high- (> or =22 g/d) but not with low-SFA intake in all studies. Likewise, the C/C genotype
was significantly associated with higher obesity prevalence in all populations only in the
high-SFA stratum. Meta-analysis estimations of obesity for individuals with the C/C
genotype compared with the T/T+T/C genotype were an odds ratio of 1.84 (P < 0.001) in the
high-SFA stratum, but no association was detected in the low-SFA stratum (odds ratio, 0.81;
P = 0.18). Therefore, we identified a gene-diet interaction influencing BMI and obesity that
was strongly replicated in 3 independent populations.

In order to increase the level of evidence, we extended our findings to European and Asian
populations 32. For this purpose, we did a cross-sectional study in 4602 subjects from two
independent populations: a high-CVD risk Mediterranean population (n = 907 men and
women; aged 67 ± 6 years) and a multiethnic Asian population (n = 2506 Chinese, n = 605
Malays and n = 494 Asian Indians; aged 39 ± 12 years) participating in a Singapore National
Health Survey. In this case, the frequency of C/C subjects differed among populations
(1-15%). Most important, we confirmed the recessive effect of the APOA2 SNP and
replicated the APOA2-SFA interaction on body weight. In Mediterranean individuals, the C/
C genotype was associated with a 6.8% greater BMI in those consuming a high (P = 0.018),
but not a low (P = 0.316) SFA diet. Likewise, the C/C genotype was significantly associated
with higher obesity prevalence in Chinese and Asian Indians only, with a high-SFA intake
(P = 0.036). We also found a significant APOA2-SFA interaction in determining insulin
resistance in Chinese and Asian Indians (P = 0.026). Therefore, the influence of the APOA2
-265T>C SNP on body-weight-related measures was also modulated by SFA in these
Mediterranean and Asian populations.

Furthermore, we investigated some of the behavioral and hormonal mechanisms underlying
our previous findings33. For this purpose, we evaluated relationships between APOA2 and
obesity risk with particular focus on patterns of eating and ghrelin. The design was cross-
sectional and we investigated overweight and obese subjects (n=1225) in five weight loss
clinics in southeastern Spain. Our data show that C/C subjects were more likely to exhibit
behaviors that impede weight loss and less likely to exhibit protective behaviors. Plasma
ghrelin for C/C subjects consuming low SFA was lower compared with (1) C/C subjects
consuming high SFA, (2) T/T+T/C carriers consuming low SFA and (3) T/T+T/C carriers
consuming high SFA (all P<0.05). In summary, the APOA2 -265 T/C SNP was associated
with eating behaviors and dietary modulation of plasma ghrelin, providing some mechanistic
basis for our previous findings.

An example of the use of the more agnostic knowledge generated by GWAS in combination
with the large sample size available from consortia is presented next. The focus of this work
was the interaction between genetic variants associated with glucose homeostasis and type 2
diabetes and zinc intake. Zinc is an essential micronutrient that is important for β-cell
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function and glucose homeostasis. Therefore, we tested the hypothesis that zinc intake could
influence the glucose-raising effect of specific variants 34. For this purpose, we conducted a
14-cohort meta-analysis to assess the interaction of 20 genetic variants known to be related
to glycemic traits and zinc metabolism with dietary zinc intake (food sources) and a 5-cohort
meta-analysis to assess the interaction with total zinc intake (food sources and supplements)
on fasting glucose levels among individuals of European ancestry without diabetes.

Our analyses revealed a significant association of total zinc intake with lower fasting
glucose levels (β-coefficient ± SE per 1 mg/day of zinc intake: -0.0012 ±0.0003 mmol/L,
summary P value = 0.0003), while the association of dietary zinc intake was not significant.
Moreover, we identified a nominally significant interaction between total zinc intake and the
SLC30A8 rs11558471 variant on fasting glucose levels (β-coefficient ± SE per A allele for
1 mg/day of greater total zinc intake: -0.0017 ± 0.0006 mmol/L, summary interaction P
value = 0.005). This suggests a stronger inverse association between total zinc intake and
fasting glucose in individuals carrying the glucose-raising A allele compared with
individuals who do not carry it. Therefore, our results suggest that higher total zinc intake
may attenuate the glucose-raising effect of the rs11558471 SLC30A8 (zinc transporter)
variant. Our findings also support evidence for the association of higher total zinc intake
with lower fasting glucose levels.

These examples provide some proof of concept about the potential use of gene-diet
interactions to identify individuals with differential response to dietary factors. However, in
practice, we need to provide a more complete and clinically relevant picture. Most
important, we still need to demonstrate whether personal risk information will trigger
changes towards a healthier diet considering that most people tend to connect healthy eating
with eating less and with less pleasurable food35. Therefore, we need evidence-based data to
ensure that the knowledge generated by nutrigenetic science is properly implemented and
scrutinized. Furthermore, as nutrition becomes increasingly integrated with preventive
medicine, it is essential that dieticians and medical practitioners as well as geneticists are
properly educated in the field of nutrigenetics/nutrigenomics. Therefore, it is essential to
prove the initial hypothesis that individual approaches can improve public health better than
global recommendations, and this benefit is available to the entire population and not only
restricted to those with higher socioeconomic status and education 36.

Comprehensive Metabolic Profiling Links Muscle Insulin Resistance to
Carnitine Imbalance (Deborah M. Muoio)

In metabolic diseases such obesity and diabetes skeletal muscle fails to respond
appropriately to the master counter-regulatory hormone, insulin, resulting in impaired
glucose disposal after a meal. The onset of this “insulin resistant” condition is intimately
associated with generalized increases in adiposity as well as ectopic lipid deposition within
the muscle and other non-adipose tissues 37. A major quest in this field has been to identify
specific lipid molecules that universally discriminate insulin responsive versus resistant
states. To this end, our laboratory has employed a targeted metabolomics approach to survey
several two-state models of insulin sensitivity. The methods used focused on quantifying
approximately 150 intermediary metabolites measured in serum, urine and tissue extracts38.
Results of these analyses identified a subclass of lipid-derived metabolites, known as the
acylcarnitines, that correlated negatively with glucose tolerance 39, 40. Most of the even
chain acylcarnitines are formed as metabolic byproducts of incomplete fatty acid β-
oxidation and are derived from their respective acyl-CoA intermediates by a family of
carnitine acyltransferases that reside principally in mitochondria. Our interpretation of the
muscle acylcarnitine profiles was informed by experiments in which substrate flux,
mitochondrial function and metabolic capacity were assessed by several complementary
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methods. In aggregate, the findings established a strong connection between mitochondrial
bioenergetics and insulin action while raising new questions regarding the roles of
incomplete β-oxidation and acylcarnitines as potential biomarkers and/or mediators of
metabolic disease.

The observation that tissue acylcarnitines accumulate in several instances of insulin
resistance tempts speculate that these metabolites might act as “lipotoxic” culprits. However,
this suggestion is at odds with evidence that production of carnitine conjugates helps to avert
mitochondrial dysfunction, owing at least in part to regeneration of free CoA 41, 42.
Presuming that acylcarnitine production and efflux actually benefit mitochondrial function,
we considered the possibility that prolonged exposure to lipid stress disrupts this defense
mechanism by compromising carnitine availability. Consistent with this prediction, we
uncovered a recurrent signature of carnitine diminution in multiple rodent models of
overnutrition, metabolic disease and aging 42, 43. The decline in free carnitine in obese and/
or aged rodents was associated with increased whole body fat oxidation, muscle
accumulation of long chain acylcarnitines, a corresponding fall in short chain acylcarnitine
species, and impaired substrate switching from fatty acid to pyruvate when assessed in
isolated mitochondria. Subsequent studies showed that obesity-related derangements in
mitochondrial fuel selection were reversed by dietary supplementation with L-carnitine, in
parallel with improved glucose tolerance and insulin responsiveness 42-44. Interestingly, the
antidiabetic effects of L-carnitine were accompanied by a shift in whole body fuel
preference towards glucose oxidation (8); a surprising result given the prominent role of this
nutrient in permitting mitochondrial import and beta-oxidation of long chain acyl-CoAs.

The initial step in fat oxidation is executed by carnitine palmitoyltransferase 1 (CPT1),
which catalyzes the reversible transesterification of long chain acyl-CoA with carnitine. The
long chain acylcarnitine product of CPT1 traverses the inner mitochondrial membrane via
carnitine/acylcarnitine translocase (CACT) and is then delivered to CPT2, which regenerates
acyl-CoA on the matrix side of the membrane where β-oxidation occurs. Importantly
however, in addition to its requisite role in fatty acid oxidation, carnitine also facilitates
mitochondrial efflux of excess carbon fuels. Thus, in the event that rates of substrate
catabolism exceed energy demand, accumulating acyl-CoA intermediates are converted
back to their membrane permeant acylcarnitine counterparts, which readily exit the
organelle and tissue. Fitting with the latter function, carnitine supplemented rodents had
robust increases in tissue efflux and urinary excretion of acetylcarnitine 42, 43. This specific
metabolite derives from acetyl-CoA via the action of carnitine acetyltransferase (CrAT), a
mitochondrial matrix enzyme that converts short chain CoA species to their corresponding
acylcarnitine esters. Acetyl-CoA holds a prominent position in intermediary metabolism as
the universal end product of fatty acid, glucose and amino acid oxidation. As its major
metabolic fate, acetyl-CoA typically enters the tricarboxylic acid (TCA) cycle where it
drives production of reducing equivalents that in turn fuel ATP synthesis by the electron
transport chain. During conditions of lipid surplus, a rise in the mitochondrial pool of acetyl-
CoA results in feedback inhibition of pyruvate dehydrogenase (PDH), the enzyme complex
that connects glycolysis to glucose oxidation 45. We therefore surmised that increased flux
through the CrAT reaction might serve to mitigate lipid-induced suppression of PDH. Direct
experimental evidence that CrAT activity can indeed impact glucose homeostasis came from
studies wherein the metabolic consequences of overexpressing the enzyme were examined
in primary human skeletal myocytes. As predicted, the resulting enhancement of
acetylcarnitine production and efflux increased cellular PDH activity, glucose oxidation and
glucose uptake 43, thus mimicking the therapeutic actions of L-carnitine supplementation.
Our current working model suggests that carnitine buffers intramitochondrial imbalances
between acyl-CoA load and TCA cycle flux, thereby affording protection against nutrient-
induced mitochondrial stress.
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In summary, targeted metabolomics analyses pointed to a heretofore unappreciated role for
carnitine and CrAT in regulating skeletal muscle glucose disposal; and this interpretation
was subsequently corroborated by direct experimental evidence from animal and cell-based
models. Ongoing investigations are now testing the anti-diabetic potential of L-carnitine
therapy in human subjects with impaired glucose tolerance. Taken together, this work
provides an example of how metabolomics approaches can be used to identify potential sites
of metabolic dysfunction while also serving as a guide for more traditional, hypothesis-
driven nutrition research.

Metabolomic Profiling in Patients with Diabetes (Wei Jia)
Metabolomics measures metabolic phenotypes that are the net result of genomic,
transcriptomic, and proteomic variability, therefore providing the most integrated profile of
biological status. The pathological development and the drug intervention of diabetes
mellitus (DM) involve altered expression of downstream low molecular weight metabolites
including lipids and amino acids, and carbohydrates such as glucose. Currently a small
number of markers used for clinical assessment of type 1 and 2 DM treatment may be
insufficient to reflect global variations in pathophysiology.

Metabolomic biomarker discovery is a young research area that carries great hopes for both
medicine and the nutritional sciences, particularly for the early detection of well-
characterized metabolic disorders such as DM. The principal concept of metabolomic
biomarker research is to identify key metabolites (other than glucose) differing in a control
and a diabetic group, with diagnostic or prognostic abilities.

In this workshop, we would like to discuss the clinical application of metabolomics by
means of two metabolomic studies of diabetes conducted by our group. Recently we
performed a metabolomics study on a new phenotype of DM, fulminant type 1 diabetes
mellitus. Fulminant T1DM is newly discovered as a subtype of T1DM (first reported in
2000), and is defined as the acute destruction of pancreatic beta cells as well as alpha cells,
leading to extremely rapid progression of hyperglycemia and ketoacidosis 46. The
prevalence of FT1DM was estimated to be 8.9% in all T1DM patients and 0.2% in newly-
diagnosed all diabetic patients 47. Although there is no report on the prevalence of fulminant
T1DM in China, the number may be comparable given a similar genetic background and
lifestyles between the two East Asian populations.

The rapid progression of hyperglycemia and ketoacidosis of fulminant T1DM leads to
almost total destruction of beta cells within a few days (typically less than one week) and
thus, a high death rate if appropriate therapies are not in place. To date, the pathogenesis of
this disease has not been established. Additionally, there is no early detection method for
such a rapidly progressing disorder.

Subjects
Four groups of age-matched human subjects, healthy controls (n=20), T1DM (n=6 + 20,
with and without ketoacidosis), T2DM (n=20), and Fulminant T1DM patients (n=6) were
recruited by the Shanghai 6th People's Hospital affiliated to Shanghai Jiao Tong University.
Only male subjects were selected in the current study. The diagnostic criteria for Fulminant
T1DM were based on published literature 48, and included all of the following: (1)
occurrence of diabetic ketosis or ketoacidosis within 7 days after the onset of hyperglycemic
symptoms (elevation of urinary and/or serum ketone bodies at first visit); (2) plasma glucose
≥16.0 mM and glycated hemoglobin level (HbA1c) < 8.5% at first visit; and (3) fasting
serum C-peptide level <0.3 ng/ml (<0.10 nmol/l) and <0.5 ng/ml (<0.17 nmol/l) after
intravenous glucagon (or after meal) load at onset. Venous blood samples were taken from
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individuals after overnight fasting for at least 10 h and the serum samples were obtained in
the normal manner. Aliquots of serum samples were stored at -80 °C until metabolic
analysis was performed.

Metabolomics profiling and Data Analysis
Serum samples were prepared, chemically derivatized, and measured with a LECO's gas
chromatography time of flight mass spectrometry (GC-TOFMS), following our published
protocols 49. GC/MS data files were pretreated as previously described 50. The mean-
centered and autoscaled data were then introduced into the SIMCA-P 11.5 Software
(Umetrics, Umeå, Sweden) for multivariate statistical analysis. Principal component analysis
(PCA) was used to obtain an overview of metabolic variations among the different groups.
Orthogonal projections to latent structures discriminant analysis (OPLS-DA), a supervised
pattern recognition approach, was utilized to construct a predictive model to identify key
metabolites differentially expressed the each disease phenotype.

Results
Fulminant T1DM subjects exhibited distinct metabolic profile in the scores plots compared
to healthy controls, T1DM, and T2DM, indicating a robust identification through serum
metabolite expression levels. A panel of serum metabolites that are differentially expressed
in fulminant T1DM was identified as potential diagnostic markers for fulminant T1DM. The
differential metabolites between fulminant T1DM and classic T1DM (with and without
ketoacidosis) mostly overlapped with those derived from comparison between fulminant
T1DM and healthy controls, which include significantly altered ketone bodies and free fatty
acids. These metabolites reflect the perturbed metabolism of ketone bodies and fatty acids
under the condition of insulin deficiency. Only those differential metabolites that are distinct
in fulminant T1DM were chosen as potential biomarkers.

Conclusion
The study demonstrated that metabolomics profiling can contribute to the development of a
panel of biomarkers for more sophisticated classification of the diabetic diseases, which may
ultimately serve as an early diagnostic approach for the fulminant T1DM.

In the second example, a metabolomic study was performed to determine metabolic
variations associated with type 2 diabetes (T2DM) and the drug treatments on 74 patients
who were newly diagnosed with T2DM and received a 48 week treatment of a single drug –
repaglinide, metformin or rosiglitazone49. Fasting overnight and 2h postprandial blood
serum of patients were collected at 24 and 48 weeks to monitor the biochemical indices
(FPG, 2hPG, HbA1c, etc.). Gas chromatography/mass spectrometer coupled with
multivariate statistical analysis was used to identify the alteration of global serum
metabolites associated with T2DM as compared to healthy controls and responses to drug
treatment. Significantly altered serum metabolites in diabetic subjects include increased
valine, maltose, glutamate, urate, butanoate and long-chain fatty acid (C16:0, C18:1, C18:0,
octadecanoate and arachidonate), and decreased glucuronolactone, lysine and lactate. All of
the three treatments were able to down-regulate the high level of glutamate to a lower level
in serum of T2DM patients, but rosiglitazone treatment was able to reverse more abnormal
levels of metabolites, such as valine, lysine, glucuronolactone, C16:0, C18:1, urate, and
octadecanoate, suggesting that it is more efficient to alter the metabolism of T2DM patients
than the other two drugs.
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Linking the gut microbial community to disease states in humans (Anthony
Fodor)

There are on the order of 10 times more microbial cells in the human the body than human
cells51. Within the genomes of those microbial cells, there are on the order of 100 times
more genes than genes encoded by the human genome. The metabolomic capacity of the
microbial community is thought to substantially exceed that of the liver 52. Determining how
the microbial community impacts human phenotypes will require the execution of
metagenome-association studies in which next generation sequencing is used to link the
state of the microbial community to human health and disease phenotypes. In order to
understand the extent of normal variation in the microbial community, the Human
Microbiome Project (HMP) is performing a survey of 18 tissue types in over 200 healthy
individuals 53. An initial analysis of this healthy cohort is encouraging in suggesting the
complexity of the microbial community is not infinite and therefore that metagenome-
association studies may be tractable. For ~5,000 samples within the HMP cohort, 454
sequencing technology targeting the V3-V5 region of the 16S rRNA gene was used to
generate over 30,000,000 sequences 54, 55. If we cluster these sequences into operational
taxonomic units (or OTUs, defined as groups of sequences with an average percent identity
of 97%) with a clustering strategy 56 that requires that an OTU consist of sequences that are
seen often enough that they can form consensus sequences, we find that a very modest
number of V3-V5 OTUs (695) can account for nearly all (~98%) of the V3-V5 sequences in
the HMP cohort 57. Moreover, when we compare the consensus sequences that represent
these 695 OTUs to an existing database of full-length sequences, nearly all of them have a
very high quality match (>97% identity) 57. Taken together these data suggest that, at least
viewing the microbial community through the lens of taxa defined by 97% average sequence
identity, the complexity of the human associated microbiome is not infinite but rather
consists of a small number of taxa that have been seen in multiple cohorts. In a metagenome
association study, each taxa will be considered in a null hypothesis that the taxa is not
associated with phenotpyes of interest. If there were vast numbers of taxa, we would need
vast sample sizes in order to evaluate large numbers of null hypotheses. The relatively
modest numbers of taxa discovered within the more than 5,000 V3-V5 samples within the
human microbiome project suggests that, by contrast, modest sample sizes will be required
to see significant effects. Moreover, since nearly all of the V3-V5 OTUs have been
previously observed in other studies, we can have some confidence that the results of a
metagenome association study performed on one cohort may be informative for other
cohorts.

While there appear to be only a modest number of taxa in the non-rare biosphere, there is
still tremendous individual variation within these taxa 54. Nearly all V3-V5 OTUs within the
HMP cohort show two to three orders of magnitude in variation in different people 58. That
is, in samples from some people a particular OTU may represent nearly all of the sequences
in the sample, while in other people that OTU may represent less than 0.01% of the
sequences or be completely absent58. This variation is seen in all tissue types with both V1-
V3 and V3-V5 primers 58. These data tell us that while the number of “parts” that make up
the microbiome is limited, these “parts” exist at very different levels of abundance in
different people. This is consistent with the observation that each person has a distinct
microbiome that is stable over time59, 60. This individual variation provides a great
challenge to metagenomic association studies: it is an open question as to whether the high
degree of individual variation will confound attempts to link individual or sets of taxa to
health and disease phenotypes across multiple subjects.

One intriguing idea that has recently been introduced in an attempt to reduce the complexity
of individual variation in the gut microbial community is the concept of enterotypes 61.
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Arumugam et al. 61 argue that despite individual variation, people can be clustered into two
or three distinct types based on their gut community. The enterotype concept is attractive
because it offers a substantially simplification of metagenome associations studies; if
subjects can be easily classified into enterotypes, hypothesis testing can proceeed based on
which enterotype classification subjects were assigned rather than on other more complex
and more variable characteristics of the microbial community. In the HMP cohort, there was
some support for the enterotypes concept when classifying gut taxa at the genus level but not
at the more detailed OTU level 58 suggesting that individual variation at the sub-genus levels
could potentially confound enterotypes. The appropriate level of taxonomic resolution for
metagenome association studies remains an open question62 and it will be interesting to see
if future metagenomic association studies have more success when working at more or less
refined levels of the taxonomic tree.

While the technologies that enable metagenomic association studies are still undergoing
rapid change, metagenomic association studies with modest samples sizes are finding some
success in establishing statistically significant associations. For example, a recent study
showed several taxa that were associated with the tendency of subjects to develop fatty liver
on a low choline diet59. When this taxanomic information was combined with host SNP
information for a gene involved in choline synthesis, a simple model could be established
that was nearly perfectly correlated with the degree of fatty liver observed in response to a
low choline diet 59. While this sort of successful metagenomic associated study is
encouraging, it remains to be seen how reproducible such observations will be across
multiple cohorts. Next-generation sequencing technology is continuing to rapidly evolve and
this will make obtaining metagenomic profiles both faster and less expensive, reducing the
barriers to achieving substantial sample sizes on multiple future cohorts. In particular, the
increasing read-length of the Illumina platform is making it possible to achieve great
sequencing depth on 16S-rRNA gene based community profiling for only a few dollars a
sample63. As sequencing costs continue to decline and bioinformatics pipelines become
more refined, we are moving towards a future where a personalized view of each
individual's microbiome may become part of the individual genetic background that drives
personalized medicine.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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