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Kaposi’s sarcoma-associated herpesvirus (KSHV) is an oncogenic gammaherpesvirus which establishes latent infection in endo-
thelial and B cells, as well as in primary effusion lymphoma (PEL). During latency, the viral genome exists as a circular DNA
minichromosome (episome) and is packaged into chromatin analogous to human chromosomes. Only a small subset of promot-
ers, those which drive latent RNAs, are active in latent episomes. In general, nucleosome depletion (“open chromatin”) is a hall-
mark of eukaryotic regulatory elements such as promoters and transcriptional enhancers or insulators. We applied formalde-
hyde-assisted isolation of regulatory elements (FAIRE) followed by next-generation sequencing to identify regulatory elements
in the KSHV genome and integrated these data with previously identified locations of histone modifications, RNA polymerase II
occupancy, and CTCF binding sites. We found that (i) regions of open chromatin were not restricted to the transcriptionally de-
fined latent loci; (ii) open chromatin was adjacent to regions harboring activating histone modifications, even at transcription-
ally inactive loci; and (iii) CTCF binding sites fell within regions of open chromatin with few exceptions, including the constitu-
tive LANA promoter and the vIL6 promoter. FAIRE-identified nucleosome depletion was similar among B and endothelial cell
lineages, suggesting a common viral genome architecture in all forms of latency.

Kaposi’s sarcoma-associated herpesvirus (KSHV), or human
herpesvirus 8, is the most recently discovered human herpes-

virus and is a member of the gammaherpesvirus subfamily (1). It
is linked with three human malignancies of either endothelial or B
cell origin: Kaposi’s sarcoma (KS; of endothelial cell origin), pri-
mary effusion lymphoma (PEL; of B cell origin), and a variant of
multicentric Castleman’s disease (MCD; of B cell origin) (1–3).

All herpesviruses display two alternating forms of infection:
latency and productive lytic infection. During KSHV latency, the
�140-kb viral genome exists as a nonintegrated circular nucleo-
some-associated episome (reviewed in references 4, 5, and 6). The
KSHV genome includes over 80 predicted open reading frames
(ORFs), 22 known viral microRNAs (miRNAs), and several long
noncoding RNAs (7–9; also reviewed in references 10 and 11).
During latent infection, only a few viral genes are transcribed,
including those within the KSHV latency locus (12–14). This locus
employs a complex transcriptional circuitry to generate key viral
messages, including the mRNAs coding for the KSHV latency-
associated nuclear antigen (LANA; ORF73) (12, 14–18), the viral
cyclin homolog vCyclin (ORF72), vFLIP (ORF71), and Kaposin,
as well as all 12 viral microRNA genes. Each miRNA gene encodes
one pre-miRNA, which can give rise to two mature miRNAs, al-
beit at widely differing ratios. LANA is necessary and sufficient to
tether the KSHV genome to the human chromosome, thereby
ensuring coordinated genome duplication and segregation during
host cell division (reviewed in reference 19).

Prior studies established histone occupancy on the latent
KSHV episome (20–22), mapping specific activating and repres-
sive histone signatures, as well as DNA methylation status, and
occupancy of RNA polymerase II (PolII), LANA, and CTCF/co-
hesin (23–28). Most of these prior studies were conducted solely
in the prototypical BCBL1 cell line. Many, but not all, achieved
single-nucleotide resolution using chromatin immunoprecipita-

tion-sequencing (ChIP-seq). In comparison to mapping individ-
ual histone modifications, little is known about chromatin orga-
nization, or about how regions of open chromatin in KSHV are
integrated with the “histone code.” Thanks to the authors of all
prior studies making their raw data publicly available, here we
were able to expand on their work and to add our detailed ge-
nome-wide map of KSHV nucleosome depletion in multiple
KSHV-infected cell lines at single-nucleotide resolution.

The detection of nucleosome depletion has classically been ac-
complished by techniques such as DNase I hypersensitivity, which
rely upon the differential in sensitivity to nuclease digestion of
open chromatin relative to regions enriched in nucleosomes (29–
31). An alternative method, called formaldehyde-assisted isola-
tion of regulatory elements (FAIRE), also identifies regions of
open chromatin but, however, without the use of enzymes (32–
35) and has been employed in several different eukaryotes, cell
lines, tissues, and pathogens (34, 36–43). FAIRE is based on dif-
ferences in cross-linking efficiency between DNA bound to
nucleosomes and DNA in nucleosome-depleted regions (32). Re-
gions detected by FAIRE are concordant with DNase I hypersen-
sitivity and anticorrelated with micrococcal nuclease (MNase) di-
gestion. The efficacy of FAIRE is not dependent upon antibodies
or enzymes, making it a more robust approach (35, 37, 39, 43). For
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the purpose of these experiments, we refer to FAIRE peaks as
nucleosome-depleted or open chromatin regions.

In this study, we found that histone modifications associated
with transcriptional activity (H3K9-ac, H3K14-ac, and H3K4-
me3) are enriched near sites of nucleosome depletion as identified
by FAIRE. Additionally, CTCF binding sites coincided with many,
but not all, nucleosome-depleted loci in the KSHV genome. In
fact, we could for the first time discern two types of open chroma-
tin loci on the KSHV episome: those associated with CTCF bind-
ing, which mapped to regions of immediate early and early genes,
known to be transcriptionally silent during latency, and those free
of CTCF, which mapped to transcriptionally active regions, such
as the major latent promoter (LANA promoter [LANApc]) and
the vIL6 promoter. Patterns of nucleosome depletion in KSHV
were largely conserved across different latently infected cell types,
among multiple KSHV isolates, and independently of the epi-
somal copy number in a latently infected cell.

MATERIALS AND METHODS
Cell culture. Latent KSHV-infected lymphoma cell lines (BC1, BCBL1,
and KSHV-BJAB) were cultured in RPMI medium supplemented with
10% fetal bovine serum (FBS) as previously described (44), with the ex-
ception that KSHV-BJAB cells were maintained under 0.2-mg/ml hygro-
mycin selection (45). Latent KSHV-infected endothelial L1-TIVE cells
(46) were grown in Dulbecco modified Eagle medium (DMEM) supple-
mented with 100 �g/ml streptomycin sulfate and 100 U/ml penicillin G
and 5% FBS. Latently infected KSHV-human umbilical vein endothelial
cells (HUVEC) were cultured in endothelial growth medium (EGM-2;
Clonetics) supplemented with 0.5 �g/ml puromycin as previously de-
scribed (47).

FAIRE-seq. Chromatin was isolated from �1.0 � 107 cells and sub-
jected to FAIRE as detailed previously (35). Briefly, cells were cross-linked
with formaldehyde, lysed, and then sonicated to shear DNA to an average
fragment length of 200 to 400 bp. Sheared DNA was then collected by
phenol-chloroform extraction. Two biological replicates of cell lines
(BC1, KSHV-BJAB, KSHV-HUVEC, and L1-TIVE) were harvested and
processed on different days to account for variation. FAIRE-enriched
DNA was then prepared for sequencing using the Illumina Truseq DNA
Sample Preparation Kit V2 (Illumina) per the manufacturer’s instructions
or was prepared by the UNC High-Throughput Sequencing Facility
(BCBL1 and non-cross-linked BCBL1 control). Indexed samples were
sequenced using the Illumina HiSeq 2000 or GAIIx (for BCBL1 samples)
(UNC High-Throughput Sequencing Facility) sequencer with 50-bp sin-
gle-end reads.

Sequence analysis. Reads were filtered using TagDust (48), and indi-
vidual sequencing runs were aligned to the reference KSHV genome
NC_009333 using Bowtie (49). Reads were permitted to align to up to four
locations in the genome, but the single best possible alignment was cho-
sen. Regions with significantly enriched FAIRE signal were differentiated
from background using MACS2 (50), assuming that the average fragment

size was 250 bp. Results from biological replicates were merged, and re-
sulting BAM and BED files were imported into CLC Bio (version 5.5.1)
software for graphical display and further analysis. Previously published
KSHV histone modification data (20) were analyzed, and regions with
signal 3 standard deviations above a baseline of no signal (from data set
S1) were considered significant enrichment and imported into CLC Bio.
CTCF and KSHV LANA ChIP-seq data (23) were aligned with
NC_009333 in CLC Bio using Gene Expression Omnibus (GEO) data sets
GSM941710 and GSM941712, respectively. Further statistical analysis was
conducted in R version 2.15.2.

Microarray data accession number. The data sets generated in asso-
ciation with this publication have been deposited in NCBI’s Gene Expres-
sion Omnibus and are accessible through GEO Series accession number
GSE50581.

RESULTS
Open chromatin map of the KSHV episome. To determine the
regions of latent open chromatin in KSHV, we performed FAIRE-
seq on representative, latently infected cell lines. Table 1 summa-
rizes the sequencing data. Because each latently infected PEL cell
contains 20 to 50 viral genomes (51), we achieved sufficiently deep
coverage and thus are confident in the detailed position of each
FAIRE peak. Because KSHV-HUVEC and L1-TIVE contain lower
numbers of copies of the viral genome (52), a smaller percentage
of reads from those samples aligned with KSHV. Nevertheless,
even in these cases the mean coverage was comparable to the mean
coverage used for FAIRE-based analyses of the human genome
(37). Confirming earlier data, most of the viral episome was cov-
ered in nucleosomes and not enriched for open chromatin by
FAIRE.

First, we performed FAIRE-seq on the KSHV-infected PEL cell
line BCBL1 and aligned the resulting sequence reads to the KSHV
reference genome (NC_009333). We used the NCBI designated
reference genome as the basis for comparison, rather than indi-
vidual viral strain genomes, to attain common map positions
across multiple samples. We showed earlier that with the excep-
tion of the repetitive regions, few large indels exist among KSHV
strains (53). Of the �2.6 � 107 total reads, 0.10% mapped to the
KSHV genome in BCBL1 cells (Table 1). We used MACS2 to de-
rive statistically significant nucleosome depletion (FAIRE peaks)
at single-nucleotide resolution. Figure 1A shows a linear represen-
tation of the KSHV genome, and Fig. 1B shows the FAIRE-seq
coverage (raw read counts) in BCBL1. Sites of significant FAIRE
peak enrichment were not detected in samples processed without
cross-linking (Fig. 1C). Note the difference in scale, with the high-
est FAIRE signal at 289-fold coverage and the highest non-cross-
linked signal at 18-fold coverage. In addition, comparison of the
normalized per-nucleotide coverage from DNA isolated from

TABLE 1 Summary of sequencing dataa

Sample No. of raw reads
No. aligned with
KSHVb Fraction (%)

Mean coverage
(fold)

No. of FAIRE
peaksc

BC1 9,023,981 31,987 0.35 11.59 24
BCBL1 26,983,911 26,786 0.10 9.71 27
KSHV-BJAB 9,961,339 25,470 0.26 9.22 28
KSHV-HUVEC 72,447,917 17,288 0.02 6.26 23
L1-TIVE 79,435,320 5,653 0.01 2.05 15
a All raw reads have been submitted to the NIH archive under accession number XYZ.
b KSHV reference genome NC_009333.
c Using MACS2, assuming an average fragment size of 250 bp.
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BCBL1 cells after formaldehyde cross-linking or mock treatment
(Fig. 1D) demonstrated that the efficacy of the FAIRE-seq proce-
dure was not biased by sample processing or high-throughput
sequencing. The coverage obtained was unrelated to viral GC con-
tent (Fig. 1E). Except for the two lytic origins of replication and
the terminal repeat (TR) latent replication origin, GC content was
largely uniform across the genome.

As expected, FAIRE enrichment was identified upstream of the
constitutively expressed LANA ORF, i.e., at the constitutively ac-
tive LANA promoter (Fig. 1B). This held true for a second PEL cell
line (BC1). To independently confirm the result from BCBL1
cells, we profiled the BC1 cell line in a similar fashion (Fig. 2). The

same regions gave rise to prominent sites of FAIRE-seq enrich-
ment. Importantly for FAIRE-seq, as for ChIP-seq data, the peak
height is deceiving and cannot be used to infer a linear relationship
of abundance (54). We therefore chose to show FAIRE peak re-
gion boundaries as boxes beneath the raw data. Open chromatin
was observed near the promoter regions of 14 ORFs in BC1, many
of which are strongly induced during lytic reactivation, as well as
within lytic origins of replication (OriLyt-L or -R) (Fig. 2; Table
2). We were also able to map FAIRE reads to the latent origin of
replication, which is located within the terminal repeats (reviewed
in reference 19), and this enrichment correlated with previously
mapped CTCF and LANA ChIP-seq data (23, 55), as well as in

FIG 1 FAIRE-seq analysis of PEL (BCBL1). (A) Schematic of the KSHV genome (depicted linearly). Boxes indicate open reading frames (ORFs). ORFs on the
upper strand are transcribed in rightward directions (with corresponding, predicted, or known regulatory regions on the left), and the lower strand corresponds
to ORFs transcribed in the leftward direction (with corresponding, predicted, or known regulator regions on the right). (B) Read coverage data for FAIRE across
the KSHV genome (BCBL1). Genome position is indicated on top. The maximal peak height was 289 reads covering a single nucleotide. (C) Read coverage of viral
DNA from BCBL1 cells processed and sequenced as in panel B but not subjected to formaldehyde cross-linking. (D) Overlay of read coverage from formaldehyde
cross-linked (black) and mock (gray)-treated BCBL1 cells. For comparison, raw count data were cube root transformed, median centered, and divided by their
interquartile range/1.349. The normalized counts were then averaged using a 40-nucleotide sliding window. This procedure allows for a direct comparison of
peak location, even though only approximately 1/10 of signal intensity was generated in the absence of cross-linking. (E) Predicted GC content across the KSHV
reference genome NC_009333.
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vitro-characterized LANA binding sites (56) (Table 2; Fig. 2C).
Every FAIRE site identified corresponded to a previously recognized
or predicted regulatory element in the KSHV genome (Table 2).

KSHV exhibits tropism for endothelial and B cell lineages. To
expand our observations and to determine if differences in chro-

matin organization existed among different cell lines and/or
among distinct viral isolates, we performed FAIRE-seq on multi-
ple latently infected KSHV cell lines (Fig. 3). The majority of
FAIRE-enriched regions were consistently identified across most
of the cell lines (see Table S1 in the supplemental material). In

FIG 2 Regions of latent open chromatin across the KSHV genome (BC1). (A) FAIRE-seq reads from BC1 cells mapped to the KSHV reference genome
NC_009333 are shown as in Fig. 1. Regions of increased coverage density correspond to regions of KSHV open chromatin. (B) FAIRE peaks in BC1 are identified
as blocks and correspond to nucleotide-level resolution latent open chromatin as determined by MACS2. Regions of open chromatin occur in KSHV lytic
replication origins (Lyt) and promoter regions and at intronic/intragenic sites during latency. (C) FAIRE-seq coverage of the viral terminal repeat (TR) region
of KSHV. CTCF and LANA ChIP-seq enrichments (from GEO data sets GSM941710 and GSM941712, respectively; indicated by asterisks) are included for
comparison. LANA binding sites (LBS; indicated by #) in the TR, as determined by Garber et al. (56), are also indicated. Numbers on the right indicate the scale
of maximum coverage at the TR region. Nucleotide coordinates are based on NC_009333.

TABLE 2 Correlation between FAIRE peaks in BC1 and other notable chromatin marks

Peak Regiona Size (bp) “Active”b CTCFc LANAd RTAe Promoter Description Reference(s)

1 10083–10467 384 X X Intragenic —h

2 10885–11147 262 X X ORF8/ORF9 87
3 11567–12002 435 X Intragenic —h

4i 17847–18466 619 X Xf X vIL6 61
5 22965–23605 640 X O X X K4.2 OriLyt-L 88, 89
6i 23758–24220 462 X X OriLyt-L 88, 89
7 28103–28550 447 X O X X K6/K7/PAN 28, 90
8i 29112–29408 296 X X Intragenic 9
9 51707–52185 478 X X ORF32/ORF29 intron —h

10 60130–60531 401 X X ORF39/ORF40-41 —h

11 61554–61892 338 X ORF40-41 intron —h

12 68538–69231 693 X X X X ORF45 91
13 72133–72463 330 X ORF50 intron 92
14 74384–74835 451 X X X X K8 92
15 84695–84973 278 X X Intragenic —h

16 85687–86245 558 X X X vIRF1 93
17 91732–92071 339 X X X vIRF3 72
18i 119144–119418 274 X X X Kaposin/OriLyt-R 88, 94, 95
19 119546–120371 825 X O X X OriLyt-R/ALTp 7, 88
20 121573–121961 388 X X miR-K12-5. . .miR-K12-2 94, 96
21 127436–127830 394 X X X X X LANApi/K14 16, 97, 98
22i 127900–128276 376 X X LANApc 12
23i 134456–134736 280 X X 5= ORF75/K15 3= 59, 99
24 137041–137806 765 X Xg Xg X X K15/TR 100, 101
a KSHV reference genome NC_009333.
b Distance to histone mark H3K9/K14-ac/H3K4-me3, �250 bp, data set S1; see reference 20.
c GEO data set GSM941710 (23); X indicates occupation of CTCF and cohesin; O indicates CTCF without cohesin.
d GEO data set GSM941712 (23).
e See reference 64.
f See reference 61.
g 35 TR (nt 137169 to 137969 from NC_009333) added to KSHV reference genome HQ404500.1 in GEO data sets GSM941710/GSM941712.
h —, data from the work of Russo et al. (102).
i Regions of accessible latent chromatin based on FAIRE.
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addition, the FAIRE-enriched regions spanning nucleotides (nt)
60180 to 60488 (the presumed bidirectional ORF39/ORF40 pro-
moter), nt 68656 to 69159 (the presumed ORF45 promoter), and
nt 121605 to 121917 (within the KSHV miRNA locus in
NC_009333) were present only in cell lines of the B cell lineage cell
lines, i.e., the PEL lines and the artificially KSHV-infected Burkitt
lymphoma cell line KSHV-BJAB, and not in the endothelial cell
lines.

Overall, this result supports the notion that during latency in
PEL the majority of viral promoters and viral genes are populated
by closed chromatin and thus inaccessible to transcription factors
and PolII in latent PELs. Twenty-four viral regulatory regions (in-
cluding some intragenic regions) were identified as open via
FAIRE-seq in latent BC1 cells. These included the KSHV latency
region, OriLyt-L, and the OriLyt-R, as expected; however, other
regions not associated with high levels of latent transcription, but
which direct viral early and immediate early lytic transcripts, were
also nucleosome depleted. Open chromatin is necessary but not
sufficient for transcriptional initiation, and this result suggests
that other modulators/marks add transcriptional specificity.

Latent episomal open chromatin is adjacent to activating his-
tone markings. Histones incorporated into the latent KSHV epi-
some display modifications associated with either transcription-
ally active or repressed chromatin, except within the viral latency
locus (20, 22). To further characterize the KSHV regulatory ele-
ments that we identified, we integrated the FAIRE data with ChIP-
chip (chromatin immunoprecipitation with microarray technol-
ogy) data for H3K9-ac, H3K14-ac, and H3K4-me3 (20) (Fig. 4).
Specifically, H3K9/K14-ac and/or H3K4-me3 is interpreted to
represent an activating histone mark and to demarcate areas asso-
ciated with active transcription. We used a very stringent cutoff
requiring enrichment to be �3 standard deviations above a no-
signal baseline in data set S1 (20) to determine a significant thresh-
old for these histone modifications, and we then overlaid this en-
richment with significant regions of FAIRE-seq-identified viral
open chromatin as determined by MACS2. Regions of nucleo-
some depletion were flanked by these activating histone marks
across almost all FAIRE peak regions (data not shown). Eighteen
of 24 (�75%) regulatory elements identified by FAIRE-seq in BC1
were within 250 bp (one overlapping tiling window length from
reference 20) of regions enriched with H3K9/K14-ac and/or

H3K4-me3 histone enrichment (Table 2). For instance, in the Ori-
Lyt-L region, open chromatin was found adjacent to H3K4-me3
and H3K9/K14-ac marked nucleosome enrichment (Fig. 4A).

FAIRE-identified nucleosome depletion and H3K4-me3 and
H3K9/K14-ac were also in close proximity in the lytic control
region (Fig. 4B). Importantly, neither open chromatin nor acti-
vating histone marks were found near the RTA/ORF50 promoter.
Repressive H3K27-me3 was observed within ORF48 and ORF52.
Open chromatin was also detected within the RTA/ORF50 intron.
FAIRE enrichment and activating histone modifications were also
both detected at the K8 promoter. Lastly, the KSHV latency locus,
which as a whole is actively transcribed and subjected to alterna-
tive splicing, also showed an expected pattern of open chromatin.
We observed increased chromatin accessibility at the LANA pro-
moter, at the OriLyt-R, and across the KSHV miRNA locus (Fig.
4C), which overlapped previously reported H3K4-me3 and/or
H3K9/K14-ac-marked nucleosomes. This suggests that these re-
gions are accessible for active transcriptional regulators and/or
poised to initiate transcription in response to specific regulators
while the virus is in a latent state.

Six FAIRE peaks were not adjacent to activating histone mod-
ifications in BC1 (Table 2). Three mapped to introns within
ORF29, ORF40/41, and ORF50 (RTA), and three were observed at
viral tegument and replication genes, i.e., within the gene body of
ORF8 and near the promoter regions of ORF9 and ORF39/40. As
expected, no FAIRE enrichment was observed near regions of
H3K9-me3, which denotes closed, transcriptionally inactive con-
stitutive heterochromatin. Thus, our experiments using a novel,
independent technique verify prior work (20, 22) and the classifi-
cation of H3K9-me3 as a valuable marker for transcriptionally
inactive regions of the latent KSHV genome.

Open chromatin regions overlap CTCF binding sites at inac-
tive promoters. Work by Lieberman and colleagues has shown
that interactions between gammaherpesvirus genomes and cellu-
lar CTCF/associated cohesins are key regulators of viral gene ex-
pression and genome conformation (23, 25, 57, 58). We therefore
compared the overlap between regions of nucleosome depletion
and that with previously identified CTCF binding sites (23) during
KSHV latency using published CTCF ChIP-seq data (data set
GSM941710 from reference 23). Eighteen of the 24 (75%) regions

FIG 3 Regions of open chromatin are conserved in latent KSHV-infected endothelial and B cells. A heat map of normalized coverage counts across five cell lines
(BC1, BCBL1, BJAB carrying latent KSHV, KSHV-HUVEC carrying latent KSHV, and L1-TIVE cells) is shown. Darker hues indicate nucleosome depletion, i.e.,
higher FAIRE coverage (averaged over a 40-bp sliding window). On top, the average coverage across all cell lines is shown.
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identified by FAIRE-seq overlapped with CTCF binding sites in
latently infected BC1 cells (Table 2).

Six regions identified by FAIRE-seq did not demonstrate coin-
cident CTCF binding, suggesting that these regions represent ac-
tive regulatory scaffolds during latent infection which function
independently of CTCF. Two of these regions (one intragenic to
the noncoding PAN RNA [9] and one in the 3= untranscribed
region [UTR] of the K15 gene [59]) contained sites which are
bound by LANA based on ChIP-seq data (GSM941712 from ref-
erence 23) (Table 2). At this point, the functional relevance of
LANA binding to these regions is unknown. Given LANA’s ability
to function as a transactivator if bound to single binding sites
outside the terminal repeat (TR) region (which contains multi-
meric LANA binding sites [60]), one could speculate that these
regions may contain yet-to-be-discovered latent promoters.

FAIRE sites lacking CTCF binding occurred within the pro-
moter regions of vIL6 (vIL6p [61]), within the constitutive LANA
promoter (LANApc [12]), and upstream of the lytically induced
Kaposin promoter (K12p [62]) (Fig. 5). The vIL6 gene is tran-
scribed in otherwise latently infected MCD cells, and K12p expres-

sion has been observed during latency (15, 61–65). The vIL6p is
strongly activated by RTA but also independently of RTA by the
interferon (IFN) signaling pathway and by intracellular Notch
(66, 67). These phenotypes are consistent with the presence of the
identified open chromatin region in Fig. 5A, which may be regu-
lated by cellular factors independently of the complete replication
cycle, and in certain instances independently of RTA.

Another FAIRE site lacking CTCF binding overlapped Ori-
Lyt-R, K12p, and the predicted transcription start site (nt
�120544 in NC_009333) of a novel antisense to latent transcripts
(ALT) noncoding RNA (7) (Fig. 5B). Hence, it is possible that this
region is involved in regulation of three elements: the proximal
Kaposin promoter, which is an RTA-responsive early promoter;
OriLyt-R accessibility; and the novel ALT promoter. We observed
that CTCF binds within open chromatin in the miRK3/K4 locus, a
region of abundant latent transcription, but with no known cis-
regulatory elements (Fig. 5B). Nucleosome depletion devoid of
CTCF binding also covered the intergenic region between the
LANA ORF and K14 ORF. This region contains known CTCF
binding sites downstream of the inducible LANApi; however, the

FIG 4 Regions of open chromatin occur near activated histone modifications. Significant regions of overlapping tiled probe enrichment for histone modifica-
tions on the latent KSHV genome were annotated from previous work (20). Regions of H3K9/K14-ac and H3K4-me3 activating marks are shown in green and
pink, respectively. FAIRE peaks are shown in light blue. H3K27-me3 and H3K9-me3 (not observed at these loci) modifications are shown in gray and red,
respectively. The KSHV OriLyt-L region (A), the lytic control region (RTA promoter) (B), and the KSHV latency locus (C) are shown. Nucleotide boundaries in
NC_009333 for significant tiled window enrichment from histone ChIP-chip and significant FAIRE-seq enrichment are indicated.
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constitutive LANApc transcription initiation site was nucleosome
depleted (as expected) and was not bound by CTCF (Fig. 5C).

Together, these data suggest that regions of open chromatin in
the latent KSHV genome can be divided into two subsets: those
which are bound by CTCF and map to transcriptionally inactive
loci and are likely regulated by CTCF and those which are not
bound by CTCF. The latter include constitutively active or poised
promoters, such as LANApc and the Kaposin/OriLyt/ALTp re-
gion, and promoters which may be regulated by host factors inde-
pendently of RTA and KSHV lytic reactivation, such as the vIL6
promoter.

Open chromatin regions overlap RNA polymerase II deposi-
tion at active and poised promoters. Toth et al. (28) recently
determined latent RNA polymerase II (PolII) occupancy on the
KSHV genome. Chen et al. (23) determined the LANA binding
sites, which in latent KSHV infection represent another layer of
regulation. We thus integrated previously identified PolII binding

sites with our set of open chromatin regions. PolII was enriched at
the vIL6, vIRF3, LANApc, K4/5/7, K15, and OriLyt regions (Fig.
6A), and these coincided with regions of nucleosome depletion as
identified by FAIRE (Fig. 6B). As mentioned above, FAIRE iden-
tified many more regions of open chromatin, and the majority of
these were bound by CTCF (Fig. 6C), which excluded PolII en-
richment to a high degree. LANA bound in the vicinity of CTCF at
the OriLyt regions, at the TRs, at the presumed vIRF promoter,
and at the inducible LANA promoter but not the constitutively
active LANA promoter (Fig. 6D; Table 2).

It is important to recognize the limitations of this type of com-
parative analysis, which tries to match data from separate experi-
ments, obtained with reagents of differing performance and on
different experimental platforms. Array data are normally distrib-
uted and have a rather narrow signal-to-noise ratio. ChIP-seq data
follow a Poisson distribution. This type of distribution is highly
nonlinear and tends to overemphasize peaks (54). To compare

FIG 5 Regions of KSHV open chromatin coincide with CTCF binding sites. The published CTCF ChIP-seq enrichment (GSM941710) (23) is shown in relation
to FAIRE-seq coverage. (A) The KSHV genomic region spanning the vIL6p region is shown (nt 11000 to 19000) along with two mapped transcription start sites
depicted by black arrows. (B) The approximately mapped transcription start sites for the K12p and the antisense to latent transcripts (ALT) RNA (7) are indicated
with gray arrows, and the OriLyt-R is shown (nt 117000 to 123000). (C) The bidirectional transcription start sites for the lytic LANApi and K14p promoters are
indicated by gray arrows, and the constitutive LANApc is denoted with a black arrow (nt 123000 to 128000). Note changes in scale between panels. All nucleotide
coordinates are based on NC_009333.
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FIG 6 RNA PolII designates KSHV latent promoters. (A to D) Comparison of PolII (A), FAIRE (B), CTCF (C), and LANA (D) enrichment across the KSHV
genome. The horizontal axis represents the genome location; the vertical axis represents the relative enrichment score over a 100-bp sliding window. Dots indicate
significant peaks. (E) Normalization process. Shown on the horizontal axis is the unit and on the vertical axis is the cumulative density. Data are shown as deep
sequence-derived coverage counts (raw), normalized counts {[n1/3 � median (n1/3)]/(interquartile range n1/3/1.349)}, and log10 of normalized counts, which are
approximately normally distributed.
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these different data sets, we applied successive transformation
steps to facilitate the comparison between array and ChIP-seq
data sets (Fig. 6E). This is necessary to take into account the dif-
ferent data structures of each experiment. Specifically, the ChIP-
chip data (Fig. 6A) follow an approximately normal distribution,
whereas raw ChIP-seq and FAIRE data follow a Poisson or nega-
tive binomial distribution. Each of these transformations incurs
some loss of resolution, but they are necessary in order to make a
justified comparison. Figure 6E plots the cumulative signal inten-
sity per base pair. As can be seen after normalizing and logarithmic
transformation, the ChIP-seq data are normally distributed, mak-
ing formal comparisons possible. Collectively, these data support
the general conclusion of a layered model, in which each of the
layers (nucleosome position, histone marks, methylation, CTCF,
and LANA) contributes to the final signal, which is PolII recruit-
ment and productive transcription.

DISCUSSION

The goal of this study was to investigate chromatin organization of
KSHV during latency. It follows our prior work mapping KSHV
mRNA and miRNA transcription (68, 69). Only two regions of the
genome were previously known to be consistently transcribed in
latently infected cells: the KSHV latency locus (encoding LANA,
vCYC, vFLIP, Kaposin/K12, and all viral miRNAs) and vIRF3/
LANA-2 (12, 70). More recently, evidence for more widespread
viral transcription has emerged. The vIL6 gene is expressed at high
levels in MCD and can respond to alpha interferon (IFN-�) inde-
pendently of other viral genes (67, 71). For vIRF1, both a latent
and a lytic transcription start site have been described (72), and we
previously detected vIRF1 mRNA in KS lesions (73). Similarly, K1
was widely expressed in at least a subset of KS tumors (74). No
significant FAIRE enrichment was observed near the K1 locus in
our experiments. We speculate that this may be due to differences
in the microenvironment or the inherent propensity of FAIRE to
record the majority occupancy state. FAIRE (and for that matter
all epigenetic profiling approaches with the exception of MAPit
[52]) requires 106 or more cells of similar epigenetic status to
record a signal. In contrast, we estimate that we can detect one K1
mRNA-expressing cell in a background of 10,000 non-K1-ex-
pressing cells. Lastly, genomic surveys found extensive transcrip-
tion, including the expression of noncoding RNAs, across the en-
tire genome (7, 8, 75). We hypothesized that mapping open
chromatin, which is a prerequisite for transcription, may yield
further insights and would allow us to classify KSHV cis elements
into different groups, based on their epigenetic status during la-
tency.

We are not the first to investigate the viral epigenome (re-
viewed in reference 4). Extensive studies by many groups deter-
mined the KSHV CpG methylation status and modified histone
deposition across the genome (20, 22, 76). We were able to inte-
grate this information using FAIRE (32, 35) as a novel method to
further characterize the chromatin status in KSHV. The open
chromatin regions identified by FAIRE can be thought of as a
minimal requirement for epigenetic and/or transcriptional regu-
lation (reviewed in reference 77). Modified histone marks and
transcription factor occupancy binding represent the next layer,
and subsequent PolII recruitment and successful elongation each
contribute to the final level of transcriptional regulation. One way
to think about the extensive epigenetic information that has been
generated for KSHV is as tiered arrangements of safety locks; each

lock has to be opened before a transcript is produced. The first
layer of access is at the nucleosome level. Only sites that are
nucleosome depleted can engage transcription factors. These are
identifiable by FAIRE. The next layer of access is at the histone-
code level. Only regions enriched in activating histone marks are
likely to engage transcription factors. An additional regulatory
safeguard here is CTCF, which marks open chromatin regions at
viral loci, which are conventionally transcriptionally inactive dur-
ing latency. The final layer is recruitment of RNA PolII and its
activation via C-terminal domain (CTD) modification.

We found that regions of open chromatin decorated �8% of
the latent BC1 genome, meaning that most of the KSHV genome
was occupied by nucleosomes during latency. This is consistent
with prior work by Günther and Grundhoff which also demon-
strated genome-wide CpG DNA methylation (20). Closed chro-
matin, as ascertained by lack of a significant FAIRE peak, also
correlated (within the limit of ChIP-chip) well with repressive
histone marks H3K9-me3 and H3K27-me3, as well as with bind-
ing sites for EZH2, the enzymatic component of the complex re-
sponsible for H3K27-me3, as reported by Toth et al. (22) and also
by Grundhoff and others (20, 21, 23). A few open chromatin re-
gions mapped to KSHV intronic and intragenic loci. At this point,
we do not know the significance of this observation, which has
been noted in other studies using FAIRE and attributed, for in-
stance, to altered nucleosome organization around splice sites
and/or introns (38, 43, 78). These are unlikely to be novel latent
promoters, since they were notably devoid of proximal H3K9/
K14-ac or H3K4-me3 enrichment.

We found 24 sites of open chromatin in the latent KSHV ge-
nome in BC1 (Table 2). These lacked repressive histone marks and
were in close proximity to previously reported (20) histone mod-
ifications associated with transcriptional activity (H3K4-me3 and
H3K9/K14-ac). These 24 regions of open chromatin could be fur-
ther subdivided on the basis of CTCF co-occupancy as determined
by Chen et al. and others (21, 23–27).

The constitutive LANA promoter (LANApc), the vIL6 pro-
moter, and the proximal Kaposin/presumed promoter for the
ALT transcript represent open chromatin regions not co-occu-
pied by CTCF. Nearly all other regions of nucleosome depletion
contained previously reported CTCF binding sites; which we pre-
sume modulate the transcriptional utility of these regions (23).
CTCF has a predominantly insulating, albeit dynamic and vari-
able, role at cellular loci (reviewed in references 79, 80, and 81).
CTCF modulates latent gene regulation and episomal configura-
tion in both human gammaherpesviruses (23, 25, 26, 82–86);
thus, CTCF-mediated regulation represents a mechanism that
may control the transcriptional usage of KSHV episomal regula-
tory scaffolds during latent infection. Eleven of 24 (46%) latent
regions of open chromatin also localized to known binding sites
for the KSHV lytic switch protein RTA (61, 64) (Table 2), suggest-
ing that latent regions of nucleosome depletion may also require
RTA expression for regulatory function.

The nucleosome depletion pattern was highly conserved
among multiple cells with stably and latently maintained KSHV
episomes. PEL cell lines and artificially KSHV-infected BJAB cells
yielded largely superimposable FAIRE profiles. Two endothelial
lineage models of latent KSHV infection (L1-TIVE [46] and
KSHV-HUVEC [47]) also shared many of the same regions of
open chromatin with B cells. However, we also identified B-cell-
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specific regions of open chromatin, which are the subject of fur-
ther study.

Lastly, we integrated our FAIRE data with LANA binding sites
from the work of Chen et al. (23) (GSM941712) and RNA PolIII
data from the work of Toth et al. (28). This indicated that the
regions with a high level of association with RNA PolII were in-
deed the extended KSHV latency locus, the vIRF3 locus, and re-
gions on either side of each OriLyt and that these were bordered by
regions of open chromatin. There were fewer PolII peaks than
FAIRE peaks, as expected. Additional suppressive mechanisms
during latency may arise from negative elongation factor (NELF)-
mediated PolII stalling, which has been characterized in KSHV,
such as within the region spanning OriLyt-L to K7 (28).

In sum, FAIRE-seq represents a robust method, perhaps more
so than antibody-dependent ChIP-seq, to identify regions of open
chromatin with single-nucleotide resolution. We applied this
method for the first time to identify regions of open chromatin in
the latent KSHV genome and identified several regions of open
chromatin in latent viral episomes. Nucleosome depletion alone is
not sufficient to predict regions of active latent transcription;
however, by integrating prior data on histone modifications, as
well as binding sites for LANA, PolII, and CTCF, we generated a
genome-wide map of the latent KSHV chromatin landscape. This
effort is in concordance with transcriptional profiling and sug-
gests the presence of additional latent regulatory regions in the
viral genome.
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