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Abstract

Background—Factor XI (FXI) deficiency is a rare autosomal recessive disorder. Many patients

with even very low FXI levels (<20 IU/dL) are asymptomatic or exhibit only mild bleeding,

whereas others experience severe bleeding usually following trauma. Neither FXI antigen nor

activity predicts bleeding risk in FXI-deficient patients.

Objectives—1) Characterize the formation, structure and stability of plasma clots from patients

with severe FXI deficiency, and 2) Determine whether these assays can distinguish asymptomatic

patients (“non-bleeders”) from those with a history of bleeding (“bleeders”).

Methods—Platelet-poor plasmas were prepared from 16 severe FXI-deficient patients who were

divided into bleeders or non-bleeders, based on bleeding associated with at least two tooth

extractions without prophylaxis. Clot formation was triggered by recalcification and addition of

tissue factor and phospholipids in the absence or presence of tissue plasminogen activator and/or

thrombomodulin. Clot formation and fibrinolysis were measured by turbidity, and fibrin network

structure by laser scanning confocal microscopy.

Results—Non-bleeders and bleeders had similarly low FXI levels, normal prothrombin times,

normal levels of fibrinogen, factor VIII, von Willebrand factor, factor XIII, and normal platelet

number and function. Compared to non-bleeders, bleeders exhibited lower fibrin network density

and lower clot stability in the presence of tissue plasminogen activator. In the presence of

thrombomodulin, 7 of 8 bleeders failed to form a clot, whereas only 3 of 8 non-bleeders did not

clot.
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Conclusions—Plasma clot structure and stability assays distinguished non-bleeders from

bleeders. These assays may reveal hemostatic mechanisms in FXI-deficient patients and have

clinical utility for assessing bleeding risk.
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INTRODUCTION

Factor XI (FXI) deficiency is a rare, autosomal recessive disorder present in 1:1,000,000

individuals. Homozygous or compound heterozygous patients have low FXI levels (<20 IU/

dL), whereas heterozygotes have moderately-reduced FXI levels (25–70 IU/dL) [1, 2].

Spontaneous bleeding is rare; however, patients with severe FXI deficiency can present with

tissue-specific bleeding following surgery or injury, predominantly at sites with high

fibrinolytic activity (mouth, nose, genitourinary tract), or menorrhagia [1, 2].

Previous studies have shown that when clotting is initiated with low tissue factor (TF)

concentrations, the FXI level mediates thrombin generation, fibrin formation and inhibition

of fibrinolysis. Reduced FXI levels lead to diminished thrombin generation and reduced rate

of fibrin formation [3–6]. Subsequent studies extended these observations and showed that

reduced thrombin generation results in reduced activation of the thrombin-activatable

fibrinolysis inhibitor (TAFI) [7, 8] and consequently, reduced resistance of clots to

fibrinolysis. These findings suggest an essential role for FXI in normal blood coagulation

and clot stability, and provide a rationale for increased bleeding risk in FXI-deficient

patients.

Interestingly, however, patients with similarly reduced FXI antigen and activity levels

exhibit variable bleeding tendencies [9–11]. Some patients are asymptomatic even after

trauma, while others display bleeding with trauma, or bleeding that begins several hours or

even days following trauma. Neither FXI antigen nor activity correlate with clinical risk of

bleeding, and activated partial thromboplastin time (APTT) assays do not predict bleeding

risk.

Attempts to differentiate FXI-deficient patients with or without a bleeding tendency have

focused on plasma thrombin generation characteristics. Rugeri et al. [12] isolated contact-

inhibited platelet-rich plasma from healthy controls and patients with FXI deficiency divided

into severe and mild/non-bleeder groups and measured thrombin generation triggered by

addition of low TF. They showed that compared to controls, mild/non-bleeders have normal

thrombin generation, but severe bleeders exhibit prolonged lag times and reduced rates and

peaks of thrombin generation. In contrast, Guéguen et al. [13] did not detect significant

differences in the thrombin generation peaks or endogenous thrombin potentials of either

platelet-rich or platelet-poor plasma isolated from FXI-deficient patients categorized as

bleeders or non-bleeders, although lag times in platelet-rich plasmas from bleeders were

slightly (non-significantly, P=0.07) prolonged compared to those from non-bleeders. Neither

of these studies evaluated plasma clot formation or stability. Consequently, the relationship

between plasma clot quality and bleeding risk in these patients remains unknown.
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Herein, we characterized plasma clot formation and quality in severe FXI-deficient patients

and show that plasma clotting assays can identify patients with increased bleeding risk.

MATERIALS AND METHODS

Materials

Corn trypsin inhibitor and rabbit lung thrombomodulin were from Haematologic

Technologies, Inc. (Essex Junction, VT, USA). Innovin (human TF) was from Siemens

Healthcare Diagnostics (Newark, DE, USA). Tissue plasminogen activator (t-PA) was from

American Diagnostica, Inc (Stamford, CT, USA). AlexaFluor488-conjugated fibrinogen (6

mol dye/mol fibrinogen) was prepared as described [14].

Human subjects

The FXI-deficient cohort consisted of 16 unrelated Israeli patients who were referred to the

Sheba Medical Center for evaluation of a bleeding tendency or prolonged APTT, and whose

FXI level was less than 9 IU/dL. A subgroup of 8 patients (5 males, 3 females) was defined

as “bleeders” because they previously bled excessively following at least two separate

sessions of tooth extractions performed under no prophylactic means. Excessive bleeding

was determined when patients had oozing of blood for one hour or more after extraction,

when bleeding reoccurred within 24 hours, or when the patient returned to the clinic or was

hospitalized to achieve hemostasis. “Non-bleeders” were 8 patients (4 males, 4 females)

who underwent at least two uneventful tooth extractions without prophylaxis (Table 1).

Bleeding histories were obtained by two experienced clinicians and patients were classified

as bleeders or non-bleeders prior to further laboratory testing. A cohort of healthy controls

consisted of 10 unrelated individuals (4 males, 6 females) with normal levels of FXI. The

mean age of patients (bleeders and non-bleeders) was 57±15 years, and of controls was

51±11 years (Table 1).

Plasma preparation

Informed consent was obtained from each donor in accordance with the Declaration of

Helsinki. Blood was collected by venipuncture through a 21-guage, butterfly needle into a

syringe via a protocol approved by the Institutional Review Board of the Sheba Medical

Center. The first 5 mL were discarded. The following 30 mL were drawn into a separate

syringe containing sodium citrate/corn trypsin inhibitor (0.109 M/3.2% sodium citrate, pH

6.5, 18.3 μg/mL corn trypsin inhibitor) to minimize contact activation [15]. Platelet-poor

plasma (PPP) was prepared by sequential centrifugation (150×g for 15 minutes, 1500×g for

15 minutes), aliquoted, and snap-frozen in −20 °C within 2 hours of blood collection. All

analyses of plasma thrombin generation and clot formation, structure, and stability were

performed in a blinded fashion.

Clinical coagulation testing

Prothrombin time, APTT, thrombin time, fibrinogen levels, plasma FXI and factor VIII

activity levels were measured by ACL-TOP-500 (Instrumental Laboratories, Bedford, MA,

USA), using RecombiPlasTin 2G, SynthASil, ThrombinTime, Fibrinogen C reagents, FXI-

and FVIII-deficient plasma, respectively (HemosIL, Beckman Coulter Inc, Nyon,
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Switzerland). Von Willebrand factor (vWF) and protein S antigen levels were measured by

ACL-TOP-500, using von-Willebrand antigen kit and free protein S antigen (HemosiL).

PAI-1 activity levels were measured by Sysmex 1500 using Berichrom PAI kit (Siemens

Healthcare Diagnostics, Marburg, Germany). Factor XIII, antithrombin and protein C

activities were measured by chromogenic assays using Berichrom FXIII reagent, Liquid

antithrombin, and Coamatic protein C chromagenix kit (Siemens). Platelet aggregation was

evaluated by light transmission aggregometry (AggRAM, Helena Laboratories, Beaumont,

TX, USA) using adenosine diphosphate (ADP, 10 μM, Diamed AG, Cressier, Switzerland),

epinephrine (50 μM, Diamed AG) or collagen (9 μM/mL, Helena Laboratories) as platelet

agonists. Changes in light transmission were recorded for 5 minutes and the aggregation

maximal amplitude was measured. TAFI and tissue factor pathway inhibitor (TFPI) antigen

levels were measured by ELISA (IMUCLONE TAFI ELISA kit, American Diagnostica Inc.

CT, USA and Human TFPI ELISA, RayBiotech Inc, Norcross, USA, respectively).

Phospholipid vesicles

Phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine were from Avanti

Polar Lipids (Alabaster, AL). Large unilamellar vesicles (41% phosphatidylcholine/44%

phosphatidylethanolamine/15% phosphatidylserine) were made as described [16]. Briefly,

lipids were combined, dried under nitrogen gas, and resuspended in cyclohexanes.

Resuspended lipids were lyophilized, resuspended in 20 mM N-2-hydroxyethylpiperazine-N

′-2-ethanesulfonic acid (HEPES) pH 7.4, 150 mM NaCl containing 1 mM ethylenediamine

tetraacetic acid, and extruded through a 0.2 μm filter ten times.

Thrombin generation assays

Thrombin generation was measured by calibrated automated thrombography [17]. Briefly,

TF/phospholipids were mixed with plasma in a 96-well round-bottom microtiter plate

(Becton Dickinson, Falcon), inserted into a Fluoroskan Ascent fluorometer

(ThermoLabsystem, Helsinki, Finland), and warmed to 37 °C for 10 minutes. Reactions

were initiated by automatically dispensing fluorogenic substrate and CaCl2 to each well.

Final TF, phospholipid, fluorogenic substrate, and CaCl2 concentrations were 1 pM, 4 μM,

416 μM and 16 mM, respectively. Thrombin parameters (lagtime, time to peak, peak, and

endogenous thrombin potential [ETP]) were calculated using Thrombinoscope software

version 3.0.0.29 (Thrombinoscope BV, Maastricht, Netherlands), as we have described [18].

Characterization of clot formation and lysis

Clotting was initiated by incubating recalcified (10 mM CaCl2, final) PPP with TF and

phospholipids (1:30,000 dilution of Innovin [0.5 pM TF] and 4 μM, final, respectively) in

the absence or presence of t-PA (0.5 μg/mL, final) and thrombomodulin (5 nM, final). Final

reaction volumes were 100 μL (90% and 85% PPP, final, for clotting and fibrinolysis assays,

respectively) in 96-well plates. Clot formation and lysis were monitored by turbidity at 405

nm in a SpectraMax 340Plus plate reader (Molecular Devices, Sunnyvale, CA) for 2 hours

at room temperature. The onset of clot formation was the time to the inflection point prior to

the turbidity increase. The maximum slope was the slope of a line fitted to the maximum

rate of turbidity increase (“Vmax”) using 5–10 points to determine the line. The peak

turbidity change was the maximum turbidity of the clot less the starting turbidity of the
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plasma sample. For lysis experiments, the time to peak turbidity was the time to the

inflection point at peak turbidity, and the area under the curve was the sum of trapezoids

formed by turbidity curves less a baseline established by the lowest measurement recorded

(Softmax Pro 5.4, Molecular Devices, Sunnyvale, CA, USA).

Fibrin structure analysis

Clots were produced by incubating recalcified (10 mM CaCl2, final) PPP with TF and

phospholipids (1:30,000 dilution of Innovin [0.5 pM TF] and 4 μM, final, respectively) in

Labtek II glass chamber slides. Plasmas were spiked with trace AlexaFluor488-congujated

fibrinogen (80 μg/mL, final, 2.6% of total fibrinogen) to visualize fibrin fibers, as described

[14]. Clots were scanned with a Zeiss LSM700 confocal laser scanning microscope (Carl

Zeiss, Inc, Thornwood, NY, USA) linked to a Zeiss inverted microscope equipped with a

Zeiss 63x oil immersion plan apo-chromatic lens, as described [14]. Thirty optical sections

(1024×1024 pixels) were collected at 0.36-μm intervals in the z-axis. Images were processed

using 3D deconvolution algorithms in AutoQuant software X 3.0.1 (Media Cybernetics Inc,

Bethesda, MD, USA) prior to image analysis. Fibrin density was determined using ImageJ

1.41o by summing individual sections to create Z-projections, as described [19]. Briefly,

thresholding was performed on Z-projections using the ImageJ thresholding function to

visualize fibers and minimize noise. Thresholds were set on a per experiment basis, to

compensate for differences in gain settings. The area covered by pixels above the threshold

cut-off was determined using the ImageJ Measure function. Because fiber diameter (~200–

400 nm) is at the lower resolution limit of laser scanning confocal microscopy [20, 21], we

did not quantify fibrin diameter.

Statistical analyses

All thrombin generation and clot formation, structure, and fibrinolysis experiments were

carried out in blinded fashion. Descriptive statistics for clotting, fibrinolysis, and fibrin

structure parameters were summarized using means and standard deviations (SD).

Parameters were compared between groups using analysis of variance (ANOVA) in

Kaleidagraph version 4.1.3 (Synergy Software). Parameters showing significant differences

were then analyzed with Bonferroni post hoc testing. P<0.05 was considered significant.

RESULTS

Coagulation tests and clotting factor levels do not correlate with bleeding risk in severe
FXI-deficient patients

Compared to healthy controls, both non-bleeders and bleeders had similarly reduced levels

of FXI (3.0±1.4 versus 3.3±3.0%, respectively), and prolonged APTTs (56±6 and 68±24

seconds, respectively). Both non-bleeders and bleeders had normal prothrombin and

thrombin times, and normal levels of fibrinogen, FVIII, vWF, factor XIII, antithrombin,

proteins C and S, and TAFI, and normal platelet numbers and function (Table 1). Bleeders

had higher levels of TFPI than controls or non-bleeders, although these differences did not

reach statistical significance (Table 1).
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Thrombin generation parameters do not differ between FXI-deficient patients and controls

We first measured thrombin generation in plasmas from control individuals and FXI-

deficient patients using calibrated automated thrombography. Although both non-bleeders

and bleeders showed slightly prolonged lagtimes and times to peak and decreased peak

thrombin generation compared to controls, these differences did not reach significance

(Table 2). There were no differences in thrombin generation parameters between non-

bleeders and bleeders (Table 2).

Reduced plasma clot formation rate reflects FXI deficiency

We then triggered clotting in plasmas from control individuals and FXI-deficient patients by

recalcification and addition of TF and phospholipids, and monitored clot formation by

turbidity (Fig. 1A). The onset times of fibrin formation for both bleeder and non-bleeder

clots were prolonged compared to that seen in control clots, although these differences did

not reach statistical significance (Table 3). Compared to controls, both bleeders and non-

bleeders had significantly slower rate (Vmax) of clot formation (Fig. 1B, Table 3),

suggesting the FXI level modulates the clot formation rate. Both bleeders and non-bleeders

also had a prolonged time to turbidity plateau (maximal fibrin formation), though only

bleeders were significantly different from controls (P<0.003, Fig. 1C, Table 3). These data

suggest that the FXI level is a major determinant of the clot formation rate.

Fibrin network structure correlates with bleeding risk in severe FXI-deficient patients

Given the differences in the clot formation parameters between control and FXI-deficient

plasmas, we measured the fibrin structure of clots produced from these plasmas. Plasmas

were re-calcified, and clot formation was triggered by addition of TF and phospholipids.

Fluorescently-labeled fibrinogen was included as a tracer in these reactions to visualize

fibrin network structure by confocal microscopy, as described [14]. Whereas fibrin structure

in plasma clots from non-bleeders did not differ from controls, fibrin network density in

plasma clots from bleeders was reduced ~20–25% compared to both controls (P<0.05) and

non-bleeders (P<0.02) (Figs. 2A–B, Table 3). These findings demonstrate a unique feature

of clots formed in bleeders. Specifically, FXI-deficient patients with increased bleeding

produce abnormal fibrin network structure following TF-initiated clotting.

Plasma clot stability correlates with bleeding risk in severe FXI-deficient patients

The fibrin formation rate and fibrin network structure are major determinants of the ability

of clots to withstand fibrinolysis; both reduced clot formation rate and reduced fibrin density

are associated with increased susceptibility to fibrinolysis [19, 22]. To determine the ability

of control and FXI-deficient plasma clots to resist fibrinolysis, clotting reactions were

initiated by recalcification and addition of TF and phospholipids in the presence of t-PA. In

this assay, clot formation competes with clot lysis, which is detected as an increase and

subsequent decrease in turbidity (Fig. 3A) [23–25]. Similar to that seen in the absence of t-

PA, both bleeders and non-bleeders plasmas exhibited a significantly (P<0.0001) slower rate

of clot formation (Fig. 3B, Table 3). Other parameters (lag time, time to peak, peak turbidity

change, lysis time, and area under the curve) were not significantly different between

controls and non-bleeders. In contrast, compared to controls, FXI-deficient bleeder patient
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plasmas exhibited a significantly prolonged time to peak turbidity (Fig. 3C, P<0.05),

shortened lysis time (Fig. 3D, P<0.01), and reduced peak turbidity change and area under

the curve (Figs. 3E–F, P<0.002). Moreover, compared to plasmas from non-bleeders,

plasmas from bleeders exhibited significantly lower peak turbidity change and a trend to

lower area under the curve (Figs. 3E–F). These data suggest FXI-deficient patients who

bleed have reduced resistance of clots to fibrinolysis.

Addition of thrombomodulin to plasma clot formation assays differentiates non-bleeders
and bleeders

Finally, since the protein C/S anticoagulant system decreases procoagulant (fibrin-

generating) activity, we tested the effect of this pathway on clot formation in plasmas from

non-bleeders and bleeders. For these experiments, we triggered clotting by recalcification

and addition of TF and phospholipids in the presence of thrombomodulin (5 nM, final). This

concentration of thrombomodulin decreases thrombin generation in normal plasma by ~90%

[18]. Under these conditions, 5 of 8 non-bleeders were still able to form a clot, whereas only

1 of 8 bleeders was able to form a clot. These data suggest addition of thrombomodulin to

clot formation assays improves the sensitivity and ability to distinguish plasmas from non-

bleeders and bleeders.

Together, these data suggest that bleeding in FXI-deficient patients results from the

formation of abnormally-structured clots that have decreased resistance to fibrinolysis.

DISCUSSION

Coagulation factor deficiencies typically manifest with a high correlation between bleeding

severity and clotting factor levels in the patients’ plasma. For most clotting factors, plasma

levels above 5% of the normal level are usually sufficient to prevent bleeding. However,

FXI deficiency is unique. Patients with FXI levels above 5% can develop significant

bleeding symptoms, while patients having less than 1% FXI can be asymptomatic [26, 27].

Currently there is no explanation for this phenomenon. In this study, we present an assay

that distinguishes bleeders from non-bleeders among patients with severe FXI deficiency.

Our findings show that FXI deficiency (both in bleeders and non-bleeders) correlated with a

lower rate of fibrin formation, suggesting that the plasma FXI level is an important

determinant of thrombin generation and accordingly, the rate of conversion of fibrinogen to

fibrin. Interestingly, these data imply that a reduced fibrin formation rate, alone, does not

predict bleeding in FXI-deficient patients ipso facto. In contrast, compared to both controls

and non-bleeders, bleeders exhibited significantly reduced fibrin network density, a

parameter that has been previously associated with decreased clot stability and bleeding

disorders (reviewed in [22]). Accordingly, as expected, bleeders exhibited reduced clot

stability, with reduced peak turbidity and area under the curve, compared to both controls

and non-bleeders. These data suggest fibrin clot structure and stability are major

determinants of the risk of bleeding in FXI-deficient patients, but are not wholly dependent

on the plasma FXI level. This finding suggests that in the setting of reduced FXI levels,

additional, as yet undetermined, modifiers influence fibrin network structure and stability,

and mediate the risk of bleeding.
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Previously, Guéguen et al. investigated biological determinants of bleeding in a cohort of

patients with FXI deficiency [13] and found that compared to non-bleeders, bleeders had

normal levels of fibrinogen and factors II, V, VIII, IX, X, and XII, and anticoagulant and

profibrinolytic proteins (proteins C and S, antithrombin, plasminogen, α2-plasmin inhibitor,

and TAFI) that were not different than the levels in non-bleeders. Compared to non-

bleeders, bleeders in the Guéguen et al. study had lower levels of thrombomodulin and vWF

antigen; however, the difference in thrombomodulin levels was diminished in subsequent

analysis. In contrast to that study, our cohort of bleeders had normal levels of vWF,

suggesting plasma levels of this protein do not modify bleeding risk in our patient

population. Other studies have shown that thrombin-mediated activation of FXI results in

TAFI-dependent inhibition of fibrinolysis [7], and that reduced plasma procoagulant activity

results in less TAFI activation and increased fibrinolysis. Since plasma clot structure also

influences clot stability (reviewed in [28, 29]), and since we found that in the absence of

fibrinolysis, bleeders and non-bleeders exhibited significant differences in fibrin network

density, our data suggest that decreased clot stability in the bleeder group may also result

from the failure of these plasmas to produce adequate clot structure. We previously showed

that the presence of factor V Leiden or prothrombin G20210A did not affect post partum

bleeding in patients with severe FXI deficiency [30], suggesting the risk of bleeding is also

not modified by co-existence of the common thrombophilias. Although Ruggeri et al. [12]

was able to distinguish bleeding risk in FXI-deficient patients using thrombin generation

analysis of platelet-rich plasma, Guéguen et al. [13] were not able to reproduce these

findings in either platelet-rich or platelet-poor plasma. Like Guéguen et al., we also did not

detect significant differences in thrombin generation parameters in platelet-poor plasma,

suggesting that differences in clot quality do not result from differences in plasma

procoagulant (thrombin-generating) activity. Thus, at the present time, it remains unclear

whether any single activity determines clot structure and stability in FXI-deficient patients,

or whether the phenotype reflects the cumulative activity of the complete coagulation

proteome. These findings support the use of global assays to assess hemostasis.

Bleeding typically occurs in tissues with high fibrinolytic activity, suggesting that in

addition to differences in plasma clot formation, local fibrinolytic activity decreases clot

stability. Consequently, inter-individual differences in the expression of endothelial

procoagulant or fibrinolytic activity may also influence bleeding risk in FXI-deficient

patients. To our knowledge, data on inter-individual differences in tissue-specific

endothelial activity (e.g., t-PA or thrombomodulin expression) have not been reported.

These measurements, though challenging, may reveal additional information on the

mechanism in future studies.

The development of an assay that can identify patients with severe FXI deficiency who are

likely to bleed has important implications. First, the ability to prospectively identify patients

with high bleeding risk is likely to improve the standard of care of FXI-deficient patients

facing surgery. Since antifibrinolytic agents such as tranexamic acid can prevent surgery-

associated bleeding in FXI-deficient patients [31, 32], prophylactic use in at-risk patients

prior to surgical procedures would be expected to reduce bleeding complications in these

patients. Although confocal microscopy is not commonly used by clinical diagnostic
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laboratories, turbidity analysis of clot formation can be performed on widely-available

microplate readers and provides information on clot stability in under 2 hours. Moreover, in

contrast to thrombin generation tests, clot formation and lysis assays do not require a

fluorescent plate reader or fluorescent substrates and are sensitive to fibrinolytic pathways.

Consequently, plasma clot assays may be used in future studies to assess the efficacy of

antifibrinolytic agents ex vivo. Second, recent work has suggested that FXI is a potential

clinical target for anticoagulation and prevention of thrombosis [33]; however, experience

with individuals who are congenitally deficient in FXI suggests this approach may lead to

bleeding in some patients. As efforts to develop FXI antagonists move forward, our assay

may provide a means to prospectively identify patients at risk for bleeding. Information

provided by this assay may provide a method of individualizing anticoagulation therapy

based on clot structure and stability characteristics.

Our study has several limitations. First, the number of individuals analyzed was small.

However, even in this small cohort, several parameters emerged as significantly different

between bleeders and non-bleeders, suggesting profound differences in clot structure and

stability determine bleeding risk in these patients. Second, the characterization of patients

into bleeder and non-bleeder categories is challenging across the clinical spectrum. Most

patients with severe FXI deficiency do not exhibit spontaneous bleeding, but may bleed only

following trauma to tissues with high fibrinolytic activity, e.g., oral mucosa, nasal mucosa,

and urinary tract. We defined the bleeder population according to strict criteria that required

a history of at least two tooth extractions carried out without prophylaxis. This standard

hemostatic challenge is a common clinical procedure in which 49% of FXI-deficient patients

bleed in the absence of prophylactic hemostatic measures [32], and provided an objective

distinction between patient groups. Third, although TAFI contributes to clot stability in in

vitro assays of hemostasis [34], we were not able to explicitly test the role of TAFI activity

in these samples. Findings of similar thrombin generation and similar TAFI antigen levels in

plasmas from bleeders and non-bleeders suggest TAFI activation would not differ

substantially between these two groups. However, the TAFI ELISA has higher affinity for

the Thr325Thr isoform than for the more active Thr325Ile isoform [35]. Thus, over-

representation of the Thr325Thr isoform in bleeders could both inflate measured TAFI

antigen and contribute to the observed decreased fibrinolytic stability. Additional studies are

warranted to delineate any effect of TAFI polymorphism in FXI-deficient patients. Finally,

our clot analysis was performed in the absence of platelets. Since platelets stabilize clots by

several mechanisms, including increased thrombin generation, platelet-mediated clot

retraction, and release of polyphosphates, inter-individual differences in platelet function

may also contribute to the bleeder versus non-bleeder phenotype in FXI-deficient patients.

We did not detect significant differences in standard measures of platelet function among

groups in our study, although this finding does not preclude roles for functions that are not

assessed by these clinical assays. Importantly, our data indicate that differences in fibrin

network formation, structure, and stability between bleeder and non-bleeder patients arise

independently of, though perhaps in addition to, any differences in platelet function.
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In sum, plasma clot formation assays have clinical utility in predicting bleeding risk in FXI-

deficient patients. These assays may reveal pathways that differentiate hemostatic

mechanisms in these patients.
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Figure 1. Plasma clot formation correlates with bleeding risk in FXI-deficient patients
Clotting was triggered in plasmas from healthy individuals and FXI-deficient patients in a

blinded fashion by recalcification and addition of TF and phospholipids. Clot formation was

monitored by turbidity. A) Representative clot formation curves. B) Rate (Vmax) of clot

formation in controls and FXI-deficient patients (non-bleeders and bleeders, as indicated).

C) Time to plateau of turbidity in controls and FXI-deficient patients (non-bleeders and

bleeders, as indicated). The boxes enclose 50% of the data with the median value displayed

as a horizontal line, and lines enclose the interquartile distance (IQD). Open symbols

represent points whose value falls more than 1.5-fold outside the IQD.
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Figure 2. Fibrin network structure correlates with bleeding risk in FXI-deficient patients
Clots were formed in a blinded fashion by recalcification and addition of TF and

phospholipids in the presence of AlexFluor488-conjugated fibrinogen. Laser scanning

confocal microscopy was performed as described in Methods. A) Representative confocal

micrographs (z-projections of 30 individual slices) of clots formed in plasma from control

individuals and FXI-deficient patients (non-bleeder and bleeder, as indicated). B) Fibrin

network density (arbitrary units, A.U.) for controls and FXI-deficient patients (non-bleeders

and bleeders, as indicated). The boxes enclose 50% of the data with the median value

displayed as a horizontal line, and lines enclose the IQD. Open symbols represent points

whose value falls more than 1.5-fold outside the IQD.
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Figure 3. Plasma clot stability correlates with bleeding risk in FXI-deficient patients
Clotting was triggered by recalcification and addition of TF and phospholipids in the

presence of t-PA in a blinded fashion. Clot formation and lysis were monitored by turbidity.

A) Representative clot formation and lysis curves. B–F) Values for: B) rate (Vmax), C) time

to peak turbidity, D) lysis time, E) peak turbidity change, and F) area under the clotting

curve for plasmas from controls and FXI-deficient patients (non-bleeders and bleeders, as

indicated). The boxes enclose 50% of the data with the median value displayed as a

horizontal line, and lines enclose the IQD. Open symbols represent points whose value falls

more than 1.5-fold outside the IQD.
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