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Abstract
We develop a deterministic mathematical model to describe reactivation of latent virus by chemical
inducers. This model is applied to the reactivation of latent KSHV in BCBL-1 cell cultures with
butyrate as the inducing agent. Parameters for the model are first estimated from known properties
of the exponentially growing, uninduced cell cultures. Additional parameters that are necessary to
describe induction are determined from fits to experimental data from the literature. Our initial model
provides good agreement with two independent sets of experimental data, but also points to the need
for a new class of experiments which are required for further understanding of the underlying
mechanisms.
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1 Introduction
Many viral pathogens establish latency and are dormant. The presence of inducers leads these
pathogens to reactivate and replicate, aiding their transmission and contributing to disease
development. In addition, there is increasing evidence in the literature for the importance of
polymicrobial infections in which microorganisms interact in a synergistic fashion, impacting
both pathogenesis and maintenance of health. Among these, virus-bacteria interactions have
been described, including reactivation of latent virus by metabolic end products of anaerobic
bacteria. A shift in the balance of the flora often controlled by the intact immune system may
reflect significant morbidity particularly in the immune suppressed host. The relationships
between viral pathogens and their inducing agents have not previously been described
mathematically. Therefore, to begin to understand quantitative relationships between
pathogens and their inducing agents, particularly in a polymicrobial environment, we have
developed a preliminary mathematical model that describes the reactivation of latent herpes
virus by an inducer that behaves similarly to the metabolic end products of anaerobic bacteria.
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Currently, there are eight known herpes viruses that infect humans. After primary infection,
the virus remains latent in specific types of host cells that may be different from the types of
cells targeted for primary infection. Latent virus persists in the cell nucleus as episomal DNA
until it is reactivated, beginning a program of lytic replication and lysis, and leading to a new
(sometimes asymptomatic) round of infection and latency. The lytic replication program is
characterized by a temporal cascade of gene expression that is typically grouped into three
phases: Immediate Early, Early, and Late. During Immediate Early and Early phases infected
cells produce viral proteins that are necessary for viral DNA synthesis, which occurs at the end
of the Early phase. During the Late phase of the reproductive cycle the host cell is directed to
make the structural proteins necessary for viral packaging.

The exact mechanisms by which latent virus becomes reactivated and begins lytic replication
are not entirely known. However, it has been established that inducing agents such as
Tetradecanoyl Phorbol Acetate (TPA), sodium butyrate, and other short chain fatty acids
(SFAs) can induce lytic replication of Kaposi’s Sarcoma-associated Herpes virus (KSHV) and
Epstein-Barr virus (EBV) [11,36,37]. In addition, recent experiments have shown that the spent
media from gram negative bacteria cultures, such as P. Gingivalis and P. Intermedia, which
contains SFAs (e.g., iso-valeric, n-butyric acid, and propionic acid), can also induce latent
KSHV to begin lytic replication [28].

A mechanism for bacterial reactivation of latently infected cells has strong health implications
for the oral environment as well as the gut and GI tract, where there may be large numbers of
gram negative bacteria in the presence of latently-infected cells. Reactivation of latent herpes
viruses are a major health concern for immune-compromised individuals, such as those with
AIDS. Understanding the role of anaerobic bacteria in reactivation of latent herpes viruses may
have important health consequences if there is similar reactivation of latent episomal HIV by
bacterial metabolic end products.

To our knowledge there has been no mathematical modeling treatment of viral reactivation at
the cellular level. Much of the mathematical modeling of herpes viruses has focused,
understandably, on modeling at the epidemiological level (e.g., [7,16]). Recently, Wang et
al., used HHV-6 infection as a stimulus for studying cellular changes in the T cell immune
system under pathological conditions [33]. Their study included data from the literature,
clinical data, and cell culture data. Their model agreed well with data, but focused on the viral
load and T cell response. Clearly there is a need and opportunity to understand viral latency
and reactivation, especially since this is a characteristic feature of herpes virus infection.

In this manuscript we report on a first deterministic mathematical model that we have developed
to describe reactivation of latent virus by chemical inducers. In particular, we develop this
model in the context of the reactivation of latent KSHV in BCBL-1 (body-cavity-based
lymphomas-1) cells with butyrate as the inducing agent. KSHV, also known as Human
Herpesvirus-8 (HHV-8), is a gamma herpes virus that is responsible for Kaposi’s Sarcoma
tumor development and other lymphoproliferative disorders such as Castleman’s disease and
primary effusion lymphoma. KSHV latently infects epithelial and lymphoid cells that are
present in the oral environment and reactivation of latent virus in B cells may play a role in the
pathogenesis of Kaposi’s sarcoma [25]. BCBL-1 cells are an immortalized cell line derived
from body-cavity-based lymphomas that are latently infected with multiple copies of KSHV,
but not Epstein-Barr virus (EBV) [27]. Latently infected B-cell lines (such as BCBL-1) are
considered to be major tools for studying KSHV biology [13], as is reflected by the considerable
amount of experimental literature utilizing these cell lines. We model butyrate as the motivating
inducing agent because it is commonly used in experiments to induce reactivation of latent
viruses in the particular cell system that we are modeling (BCBL-1 cells), and therefore there
is greater availability of published experimental data, and because, as an SFA, butyrate behaves
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in a manner similar to the metabolic end products of gram negative bacteria. In subsequent
stages we intend to use our own experimental data (JW-C) to model KSHV reactivation that
is induced by the metabolic end products of gram negative bacteria.

We briefly outline our contributions in this paper. In Section 2 we discuss compartments we
believe necessary in any first attempt to model reactivation of latent viruses. The three major
compartments, depicted schematically in Fig. 1, are host cells with lytic virus, host cells with
latent virus, and host cells that have become nonviable through death from several causes.
These compartments are a basis for the dynamics of cell populations as modeled in Section 3
under the assumptions that no induction is present, although there is a low level of ongoing
spontaneous reactivation. This first step, based on our approximations to what is currently
understood through experiments to date, is necessary and employs a standard approach using
mass balance in compartmental systems. To our knowledge, this fundamental step has not been
previously carried out. But because we are ultimately interested in amounts of virus (latent and
replicating) available (these are the quantities we expect to be able to measure), we couple
these mass balance laws for host cells (host cell dynamics) with dynamics for the number of
copies of virus (viral dynamics). This results in the coupled system (3) for uninduced dynamics
of host cells and viruses. In Section 4 we modify the coupled model (3) for uninduced cell/
viral dynamics to now include induction of latent virus by a generic inducing agent s, using
the actions of butyrate as a typical agent for modeling purposes.

In Section 5 we estimate parameters for the uninduced model from biological considerations
(based on average behavior and known properties, i.e., “book values” of uninduced in vitro
cell cultures) and under the tacit assumptions that these parameters will be independent of the
presence of inducers. In Section 6 we turn to model simulations. We first use two independent
data sets [36,37] from different laboratory groups along with literature based experimental
considerations to fix certain parameter values. We then carry out simulations for the uninduced
models to compare longitudinal limits (i.e., asymptotic behavior) and equilibria with the data
of [36,37]. These equilibrium states are used as initial values for the numerical simulations
where inducing agents are introduced. Before these simulations can be performed we must
estimate induction rate functions which cannot be found in the literature. For our preliminary
model we chose parameterized affine functions for the induction rates and used an Ordinary
Least Squares (OLS) formulation with the data of [36,37] to estimate the resulting parameters
in the affine functions. The reasonably sophisticated mathematical and statistical methodology
used to estimate the parameters and associated confidence intervals is detailed in the Appendix.
In the Discussion and Conclusion we use the modeling considerations and results to suggest
that new experiments are needed for further validation of our current and future generation
models.

The model presented here establishes a general framework for modeling the effect of other
inducing agents that act through histone-deacetylase (HDAC) inhibition, including other SFA’s
produced by the metabolic processes of gram negative bacteria. As such, it may also be applied
to other latent virus systems that are induced to replicate via HDAC inhibition, such as EBV,
HIV, and HCMV.

But before proceeding with the modeling effort, we first discuss why we are making this effort
and what we believe our contributions are. We first note that wide use of mathematical
modeling to aid in the understanding of scientific hypotheses is found and historically accepted
in the engineering community. More recently, investigators in the biosciences have begun to
recognize the value of mathematical modeling coupled with experimental investigations to
enhance understanding of mechanisms, pathways, anomalies, etc. The modeling process itself
is (or should be) most often an iterative process. As depicted schematically in Fig. 2, one can
distinguish in it a number of rather separate steps which usually must be repeated. One begins
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with the real system under investigation and pursues the following sequence of steps: (i)
empirical observations, experiments, and data collection; (ii) formalization of properties,
relationships and mechanisms which result in a biological or physical model; (iii) abstraction
or mathematization resulting in a mathematical model; (iv) formalization of uncertainty/
variablity in model and data resulting in a statistical model; (v) model analysis, interpretation
and comparison (with the real system) of the conclusions, predictions, and conjectures obtained
from step (iv); (vi) changes in “understanding” of mechanisms, pathways, etc., in the real
system; and (vii) design of new experiments.

Our own efforts reported on in this paper must be considered a first step in the iterative modeling
process and grew out of our desire to develop quantitative models related to the experimental
efforts in the laboratories of one of the authors (JC-W). A major expected outcome of our
collaborations is suggestion of needed experiments. Moreover, we anticipate that these efforts
will guide and inform the design of new in vitro and in vivo experiments.

2 Modeling Compartments
We describe the dynamics of the host cells and viral DNA copies using a set of ordinary
differential equations (ODEs). A schematic diagram of the ODE model compartments is shown
in Fig. 1. Latent L and lytic R copies of viral DNA reside in the nuclei of host cells. We make
the following “all or nothing” simplifying assumption: within a given host cell, nuclear viral
DNA copies are either all latent or all in a lytic replication program. Therefore, there are two
types of host cells, host cells HR with lytic virus only or host cells HL with latent virus only.
Host cells that die are added to a nonviable host cell compartment N.

In future work, we plan to superimpose a probability distribution on the parameters to better
approximate mixed conditions where a host cell may contain both latent and lytic virus in
varying levels. Such a modeling technique was successfully used in cellular level HIV models
to account for variable length (with uncertainty) pathways in [3]. In models of this type the
state variables are the expected values of concentrations (or of numbers of cells) resulting in
delay differential equation models embodying uncertainty. We do not pursue this level of
refinement in the initial model developed here.

During the Early Phase of the lytic program, exponential-like replication of viral DNA R takes
place in replication compartments [34], where the progeny of replicating virus become
replication templates themselves [14]. The intracellular viral DNA compartment VI represents
viral DNA copies that are no longer targets for replication and are available for encapsulation.
After envelopment, the virus is released as free virions VF. We assume that free virions that
are produced are not capable of reinfecting the host cells [5,21].

3 Mathematical Model for the Uninduced Case
Host cell dynamics

Latently infected host cells HL replicate and die (natural death) with rate constants βL and dL,
where βL > dL. As part of the lytic cycle, herpes viruses block the cell cycle in G0/G1 and block
cell-initiated apoptosis [15,18,35]. Therefore, we assume that βR = 0 and dR = 0 for lytic host
cells HR. There is an additional mechanism for cell death due to the production of virus and
the resulting cell lysis [29]. We model this viral-induced death rate as a function of the average
amount of intracellular virus that accumulates dI(V̄I)HR, where V̄I = VI/HR. Nonviable cells are
in a process of disintegration into smaller fragments and leave the N compartment with a rate
μN.

Kepler et al. Page 4

J Theor Biol. Author manuscript; available in PMC 2008 February 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Experimental observations of uninduced cell cultures indicate that some fraction of host cells
will, through spontaneous reactivation, have lytic virus [8,22,26]. Therefore, we include terms
for spontaneous reactivation of latently infected cells with a rate constant α0. We have
previously shown that a corresponding deactivation rate constant ρ must be zero or the number
of latent copies per host cell HL will be drifting with time [21].

With these considerations in mind, we model the host cell dynamics in the uninduced case by

dHL
dt = (γL − α0)HL

dHR
dt = α0HL − dI (V̄ I )HR

dN
dt = dL HL + dI (V̄ I )HR − μN ,

(1)

where γL = βL − dL.

Viral dynamics
Each time a BCBL-1 host cell replicates the latent viral DNA copies are also replicated in the
daughter cell, producing, on average, L ̄ copies of latent virus. In addition, each dying latent
host cell destroys L ̄ copies of latent virus L. Similarly, each dying lytic host cell destroys, on
average, R̄ and V̄IA lytic and intracellular copies of virus. The reactivation of latent and lytic
virus follows in a manner similar to the terms above. Therefore, the uninduced model for the
viral DNA dynamics is given by the set of equations

dL
dt = (γL − α0)HL L̄

dR
dt = α0L̄ HL − dI (V̄ I )HRR̄ + (κ − q)R

dVI
dt = qR − pVI − dI (V̄ I )HRV̄ I

dVF
dt = pVI ,

(2)

where κR is the replication rate for lytic viral DNA, qR is the rate at which lytic virus moves
to the intracellular compartment, and pVI is the rate at which the intracellular DNA is packaged
and excreted as virions VF.

Uninduced cell and viral dynamics
Using L ̄ = L/HL, R̄ = R/HR and V̄I = VI/HR, we can write the full uninduced model a

dHL
dt = (γL − α0)HL

dHR
dt = α0HL − dI (V̄ I )HR

dN
dt = dL HL + dI (V̄ I )HR − μN

dL
dt = (γL − α0)L

dR
dt = α0L − (dI (V̄ I ) − κ + q)R

dVI
dt = qR − (p + dI (V̄ I ))V I .

(3)
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The solution for VF is easily obtained from the above solutions and can be written as

VF(t) = VF0 + ∫t0
t pVI (u)du. (4)

4 Mathematical Model for the Induced Case
We next modify the uninduced model (3) to include the actions of an inducing agent s. The
main affect of the inducing agent is to increase the rate at which latent virus becomes reactivated
(α(s) ≥ α0). In addition, inducing agents such as butyrate and valproate may also cause host
cell death (δL(s) and δR(s)) through activation of host cell genes [6,20,36]. We make a
simplifying assumption that inducing mechanisms that would initiate cell apoptosis would also
lead to viral reactivation and, therefore, assume that δL = 0. With these additional terms the
equations for the induced case become

dHL
dt = (γL − α(s))HL

dHR
dt = α(s)HL − (dI (V̄ I ) + δR(s))HR

dN
dt = dL HL + (dI (V̄ I ) + δR(s))HR − μN

dL
dt = (γL − α(s))L

dR
dt = α(s)L − (dI (V̄ I ) + δR(s) − κ + q)R

dVI
dt = qR − (p + dI (V̄ I ) + δR(s))V I

(5)

and

VF(t) = VF0 + ∫t0
t pVI (u)du. (6)

5 Parameter Estimation
We estimate that the rate at which lytic virus moves from the R compartment to the VI
compartments is inversely proportional to the time that the lytic virus spends in the lytic
program of gene expression and replication q = 1/T, where T is the approximate time it takes
to complete the lytic program (approximately 48 hours). For the sake of simplicity we model
the viral-induced death rate as a simple affine function dI(V̄I) = cV̄I.

We argue that it is reasonable to assume that on average the number of latent copies of viral
DNA per latently infected host cell is constant L/HL = n for the following reasons. Although
it has been shown in vivo that the viral-genome copy number varies over three orders of
magnitude in neurons latently infected with herpes simplex virus [30], we are modeling a cell
culture system, essentially established from a single immortalized cell and not an in vivo
collection of cells. Each time a BCBL-1 host cell replicates the latent viral DNA copies are
also replicated in the daughter cell. In addition, this is a well-established cell line that has been
and continues to be used for many experiments related to KSHV latency and reactivation and
it would be evident if this basic property of the cells was drifting in time.

Experimentalists typically observe the following quantities: fraction of lytic host cells as,
fraction of nonviable host cells Nr, host cell doubling time Dp, and average copies of viral DNA
per cell nT (viral load), in the uninduced cell cultures. For a given batch of cells with sufficient
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nutrient these observed quantities are approximately constant. For modeling purposes, we
define two additional constants, the average number of copies of lytic viral DNA per cell RA
and the average number of intracellular viral DNA copies VIA per lytic host cell. In terms of
the uninduced model, these quantities can be written as

as = ( HR
HL + HR + N )

t→∞
Nr = ( N

HL + HR + N )
t→∞

2 =

(HL + HR + N )
t=Dp

(HL + HR + N )
t=0

nT = ( L + R + VI
HL + HR + N )

t→∞

VIA = ( VI
HR

)
t→∞

RA = ( R
HR

)
t→∞

. (7)

Using the above definitions and the uninduced equations (3), we obtain expressions for the
remaining unknown model parameters in terms of the quantities as, Nr, Dp, nT, VIA, and RA
and the model parameters γL and μ. In particular, we find that

dL =
ln (2) / Dp + μNr

1 − as − Nr
− γL

c = ln (2)
asVIADp

(Nr − 1) +
γL

asVIA
(1 − as − Nr)

α0 = γL − ln (2)
Dp

p =
RA

TVIA
−

(1 − as − Nr)

as
(γL − ln (2)

Dp
)

κ = ( γL − ln (2) / Dp
asRA

)(RA − NrRA − nT + asVIA) + 1
T

n =
nT − as(RA + VIA)

1 − as − Nr
.

(8)

Values for the quantities γL, μ, as, Nr, Dp, and nT can be obtained from the experimental
literature [10,20,22,23,24,26,32,37], leaving RA and VIA as the only unknown parameters from
the uninduced model. However, given the relations (8), RA and VIA are constrained by the other
parameter values if we require positive parameter values. Values for RA and VIA are chosen to
lie within the constrained range of values.

6 Numerical Results
In this section, we compare our reactivation model to two sets of experimental data from the
literature that describe reactivation of latent virus in BCBL-1 cells. In particular, we compare
our model to longitudinal cell viability data following chemical induction.

6.1 Uninduced Case
We first present results of a simulation for the uninduced case modeled by system (3). The
observed fraction of nonviable cells Nr (in the uninduced case) is Nr = 0.077 and 0.16 for the
data of Zoeteweij, et al., and Yu, et al., respectively. For the other constants we choose values
from within the ranges reported in the literature: as = 0.02, Dp = 24 hr. In addition, we choose
nT = 69 and 68 for modeling the data of Zoeteweij, et al., and Yu, et al., respectively. In this
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way we have n = 10 for both sets of data. In Table 1 we tabulate the parameter values used in
simulations.

The initial condition for all compartments is zero, except for compartments HL and L, which
have initial conditions of 1 × 106 and 1 × 107. Figure 3 depicts the percentage of nonviable
cells N/(HL + HR + N) and spontaneously reactivated cells HR/(HL + HR + N) from simulations
using equations (3) and the parameter values in Table 1. In Fig. 3 we can see that, by 1000
hours, the percentage of nonviable cells and spontaneously reactivated cells asymptotically
reach the specified equilibrium values of as = 2% and Nr = 7.7% for the data of Zoeteweij, et
al., and as = 2% and Nr = 16% for the data of Yu, et al. By equilibrium we mean that, although
the cell culture is growing exponentially, certain characteristic properties related to the ratios
of model compartments eventually become the constants in (7).

In Fig. 4 we can see a similar equilibration of the average number of lytic and intracellular
DNA copies per lytically infected host cell, R/HR and VI/HR, respectively. In Fig. 4 we can see
that, by 1000 hours, the quantities R/HR and VI/HR have reached the specified equilibrium
values of RA = 2500 and VIA = 500, respectively. The equilibrated simulations for the uninduced
model approximate the properties of the uninduced cell cultures that are subsequently used in
induction experiments.

6.2 Induced Case
Next we report on simulations for the induced equations (5). In the case of those parameters
that are common to both the uninduced and induced models we use the same values as in the
previous simulation (Table 1). The initial conditions for the induced model are HL(0) = (1 −
Nr − as)C0, HR(0) = asC0, N(0) = NrC0, L(0) = nHL, R(0) = RAHR, VI(0) = VIAHR, and VF (0)
= 0, where C0 is the initial number of cells. The exact functional forms of the rates for induced
lytic cell death δR(s) and induced reactivation of latent cells α(s) are not known. We first choose
simple affine functions α(s) = α0 + αcs and δR(s) = δcs and find values for the function
parameters by fitting longitudinal experimental data on BCBL-1 cell viability from Zoeteweij,
et al., [37] and Yu, et al., [36], separately. The parameter fitting is accomplished by forming
an ordinary least squares inverse problem as described in the Appendix and then estimating
the parameters using a Nelder-Mead algorithm. Standard errors are calculated, the details of
which are also given in the Appendix. Estimated values for the parameters are insensitive to
the initial values that seed the optimization algorithm.

Figure 5 compares cell viability predicted from simulations with data from both experimental
groups, using the estimated parameters for δc and αc obtained by the ordinary least squares
estimation techniques. Cell viability is defined as (HL + HR)/(HL + HR + N). In the uninduced
case, (HL + HR)/(HL + HR + N) = 1 − Nr. Estimated parameter values are reported in Table 1
and 2. Some of the model parameters differ between the two groups because of differences in
uninduced cell viability for the two groups (92% versus 84%, approximately). From Fig. 5 it
can be seen that the simulations for the induced model qualitatively match the behavior of the
experimental data.

In Fig. 6 we plot the normalized number of virions (VF/C0) produced as a function of time for
different butyrate concentrations. Yu, et al., [36] observe in their experiments that high
concentrations of butyrate (1.5 and 3 mM) greatly increase lytic activity, but also significantly
increase cell death. The end result is that, even after 5 days, very few virions are produced
because of massive amounts of cell death before the end of the lytic program. This is contrasted
by observations at smaller concentrations of butyrate (≤ 0.3 mM), where much less cell death
is seen and there is significant secretion of virions. In Fig. 6 it can be seen that there is
approximately a three to four-fold increase in free virion produced at 0.3 mM concentration of
butyrate as compared to the 3 mM concentration.
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The results of Fig. 6 illustrate that there is an optimal dosage threshold that maximizes viral
production. Below the optimal dose there is not enough reactivation of latent virus and above
the optimal dose the inducer kills the lytically replicating cells before virus is produced. In Fig.
7 we plot the optimal butyrate dose that maximizes virion production as a function of the
induction time. These results are obtained numerically from simulations of the induced
equations (5) with the two sets of parameters for the data of Zoetewij et al. (dashed line) and
Yu et al. (solid line).

Table 2 summarizes the estimated parameters, standard errors, and confidence intervals
obtained from fitting the induced equations (5) with the parameter functions α(s) = α0 +αcs and
δR(s) = δcs to both sets of data. Table 2 shows that the estimated parameter values for both
groups are within an order of magnitude of each other. Differences between the parameter
values may reflect differences in the cell growth and maintenance conditions or differences in
experimental measurement techniques. Even in the uninduced case, there is a difference in the
cell viability for both groups, with Nr = 0.077 for the data of Zoeteweij, et al., and Nr = 0.16
for the data of Yu, et al. In addition, Zoeteweij, et al., measure cell viability using Dead Red
staining and flow cytometry, while Yu, et al., measure cell viability with trypan blue staining
and counting on a haemocytometer. In Table 2, it can also be seen that the standard errors for
the reactivation rate constants αc are at least an order of magnitude less than the parameter
values. However, the standard errors for the induced death rate constants δc are the same order
of magnitude as the parameter values, providing us with less confidence in values obtained for
δc.

7 Discussion
In other simulations, we used different functional forms for α(s) and δR(s), including Michaelis-
Menton and sigmoid functions, but we found that the fits of the induced equations to cell
viability data were relatively insensitive to more complicated functional forms (data not shown)
and that reasonable fits to cell viability data were obtained by assuming simple linear functions.
However, with more data, especially with data for viral DNA compartments, we expect to be
able to determine optimal functional forms for α(s) and δR(s), for example, combinations of
linear, Michaelis-Menton, and sigmoid functions. Alternatively, instead of fixing the functional
form of α(s) and δR(s) a priori in parametric form, we could estimate the shape of the functional
form itself using approximation by piece-wise linear splines or other approximations as has
been successfully done in other problems in, for example, [1,2].

Even though this preliminary model yields good qualitative agreement with cell viability data,
additional experimental data is needed to adequately evaluate model predictions for the viral
compartments of the model. Development and evaluation of this model has highlighted the
need for different types of data than is often gathered in typical experiments. For example,
many experiments measure only at a single time point after induction, but evaluation of a
dynamic model such as the one presented here requires data at multiple time points. In addition,
many experiments produce only qualitative data, for example Western blot data, or relative
data, such as the fold-increase of RNA production often measured in real-time PCR, while
evaluation of the model presented here requires quantitative data. Finally, establishing a
workable mathematical model may require additional experiments to determine parameter
values (e.g., RA and VIA) and validate the model that are not necessarily of biological interest
to experimentalists. Quantitative experimental measurements of cell-associated DNA (L + R
+ VI) and virion production (VF) using real-time PCR (with a standard curve calibration) at a
series of time points after induction (or without induction) would provide the type of
quantitative data that is needed to test the viral dynamics of the model.
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Presently, experimental measurements of the viral load nT = (L + R + VI)/(HL + HR + N) are
reported in the literature to be in the range of 50–70. Our model predicts that the number of
latent copies of virus per uninduced host cell (n = L/HL) is much less than this (we estimate
n = 10). The experimental measurements proposed above combined with quantitative
measurements of n could be used to determine the parameters RA and VIA in uninduced BCBL-1
cells.

Once established, it may be possible to extend the model to predict gene expression data, which
is of more interest to experimentalists. Instead of a single viral compartment R to quantify
copies of viral DNA in the lytic program, we could modify the model to describe Immediate
Early, Early, and Late gene expression (RNA) by dividing the R compartment into three
compartments R1, R2, and R3. By having model compartments that quantify RNA production
or promoter activity from genes representative of each stage of the lytic cycle, we might predict
viral reactivation in more detail and compare to gene expression data from experiments. A
model that subdivides the R compartment might also work better if there are underlying
biological delays, due to the ordered cascade of gene expression that makes up the lytic
program, that are not captured with the present model.

8 Conclusion
We have developed a preliminary deterministic mathematical model to describe reactivation
of latent virus by chemical inducers. In particular, we apply this model to the reactivation of
latent KSHV in BCBL-1 cell cultures with butyrate as the inducing agent. We first estimate
parameters for our uninduced model from physiological considerations and known properties
of these exponentially growing, uninduced cell cultures. We then extend the model to describe
chemically induced KSHV reactivation in latently infected BCBL-1 cells. Additional
parameters that describe induction are determined from fits to experimental data available in
the literature. Our model provides good agreement with two independent sets of experimental
data. While this preliminary model yields good qualitative agreement with cell viability data
for KSHV induced by butyrate, it also strongly suggests the need for further experiments
designed explicitly to support model development and validation in providing not only more
but also additional types of longitudinal data.

This model could be applied to other inducers, particularly other HDAC inhibitors (e.g.,
SFA’s). Application of the model to other SFA’s would be the next step towards developing
a polymicrobial model for viral reactivation by the metabolic end products of gram negative
bacteria in an in vivo environment. The model could also be applied to inducers such as TPA,
which is commonly used in KSHV induction experiments but does not induce the same level
of cell death as butyrate. For this reason and because TPA causes viral reactivation through a
cell-signalling mechanism rather than HDAC inhibition, the form of the induction parameters
α(s) and δR(s) might differ from the simple affine functions used for butyrate.

Many other latent viruses are induced to replication via HDAC inhibition and are responsive
to agents like sodium butyrate (e.g., EBV, HCMV, HSV, HIV, Adenovirus, HPV, and HTLV1).
Application of this model with butyrate as an inducer to other cell lines with latent virus
(e.g., EBV in the B95-8 cell line) could provide information about the similarities and
differences among these latent virus systems.
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10 Appendix
In this appendix we discuss the asymptotic theory used to compute the standard errors and
confidence intervals in Table 2 of Section 6. We first give a general summary of the theory.

We assume N* scalar longitudinal/inducer level observations (time/inducer series of numbers
or ratios of numbers of cells as described below) are represented by the statistical model
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Y j ≡ f j(θ0) + ε j, j = 1, 2, … N ∗, (9)

where fj(θ0) is the model for the observations in terms of the state variables and θ0 ∈ ℝm is a
“set” of theoretical “true” parameter values (assumed to exist in a standard statistical approach).
We assume for our statistical model of the observation or measurement process (9) that the
errors εj, j = 1,2, …, N*, are independent identically distributed (i.i.d.) random variables with
mean E[εj] = 0 and constant variance var ε j = σ0

2, where of course σ0
2 is unknown (standard

residual plots with the data used in our simulation suggested this assumption of constant
variance). We then have that the observations Yj are i.i.d. with mean E[Yj] = fj(θ0) and variance
var Y j = σ0

2.

We consider estimation of parameters using an ordinary least squares (OLS) approach. Thus
we seek to use data {yj} for the observation process {Yj} with the model to seek a value θ ̂ that
minimizes

J (θ) = ∑
j=1

N∗

∣ y j − f j(θ)∣2 . (10)

Since Yj is a random variable, we have that the estimator θ ̂OLS is also a random variable with
a distribution called the sampling distribution. Knowledge of this sampling distribution
provides uncertainty information (e.g., standard errors) for the numerical values of θ ̂ obtained
using a specific data set {yj} (i.e., a realization of {Yj}) when minimizing J(θ).

Under reasonable assumptions on smoothness and regularity (the smoothness requirements for
model solutions are readily verified using continuous dependence results for ordinary
differential equations in our example; the regularity requirements involve, among others,
conditions on how the observations are taken as sample size increases, i.e., N* → ∞), the
standard nonlinear regression approximation theory ([12], [17], [19], and Chapter 12 of [31])
for asymptotic (as N* → ∞) distributions can be invoked. This theory yields that the sampling

distribution θ ̂(Y) for the estimate θ ̂, where Y = {Y j} j=1
N ∗

, is approximately a m-multivariate

Gaussian with mean E[θ ̂(Y)] ≈ θ0 and covariance matrix
cov θ̂(Y ) ≈ ∑0 = σ0

2 χ T (θ0)χ(θ0)
−1. Here χ(θ ̂) = Fθ(θ) is the N* × m sensitivity matrix with

elements

χ jk(θ) =
∂ f j(θ)

∂θk
and Fθ(θ) ≡ ( f 1θ(θ), … , f N∗θ(θ))T .

That is, for N* large, the sampling distribution approximately satisfies

θ̂OLS(Y ) ∼ Nm(θ0, σ0
2 χT (θ0)χ(θ0)

−1) : = Nm(θ0, ∑0). (11)

The elements of the matrix = (χjk) can be estimated using the forward difference

χ jk(θ) =
∂ f j(θ)

∂θk
≈

f j(θ + hk) − f j(θ)

∣ hk ∣ ,

where hk is an m-vector with nonzero entry in only the kth component, or using sensitivity
equations (see [4] and the references therein). For our efforts here we chose the sensitivity
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equation approach as explained below. Since θ0, σ0 are not known, we must approximate them
in ∑0 = σ0

2 χ T (θ0)χ(θ0)
−1. For this we follow standard practice and use the approximation

∑0 ≈ ∑(θ̂) = σ̂2 χT (θ̂)χ(θ̂)
−1

where θ ̂ is the parameter estimate obtained, and the approximation σ ̂2 to σ0
2 is given by

σ0
2 ≈ σ̂2 = 1

N ∗ − m
∑
j=1

N∗

∣ y j − f j(θ̂)∣2 .

Standard errors to be used in confidence interval calculations are thus given by
SEk (θ̂) = ∑kk (θ̂), k = 1,2, …, m (see [9]).

In the induced case example of Section 4, we consider the parametric functional forms δR(s)
= dcs and α(s) = αcs + α0. If we let x = (HL, HR, N, L, R, VI, VF)T and denote θ = (δc, αc), then
the differential equations in the induced case can be written in a general form

ẋ = g(t, x, s, θ)

x(0) = x0,
(12)

where g : ℝ+ × ℝn* × ℝ+ × ℝm → ℝn* for n* = 7, m = 2, and x0 = (HL0, HR0, N0, L0, R0, VI0,
VF0)T. Since the experimental data are given in percentage of viable cells, we define the outputs
of the model

f (t, s, θ) =
Vtotal(t, s, θ) − N (t, s, θ)

Vtotal(t, s, θ) , t, s ≥ 0,

where Vtotal = HL + HR + N. In each parameter fit, we use data that is longitudinal (taken at
tk) and across several levels si of inducer. This is indexed by τj = (tk, si) for k = 1, …, K, i = 1,
…, I, and observations yj for the model values fj(θ) = f (tk, si, θ), j = 1, …, N* = KI. Then, we
construct the OLS estimator by minimizing the cost criterion (10) where {yj} denotes the
experimental data (in the data of Section 4 we had N* = 15 or 16 resulting from K = 4 and I =
4 – see Fig. 5). For the optimization in θ we used the Nelder-Mead algorithm.

To compute the covariance matrix Σ we need the sensitivity matrix Fθ. That is,
χ(θ̂) = ∂F

∂θ (θ̂). From the outputs defined in (12), it suffices to have the sensitivities ∂ x
∂θ . To

compute these we used the sensitivity equation method which involves solving the n* × m
matrix variational differential equation

d
dt ( ∂ x

∂θ ) = ∂g
∂x

∂x
∂θ + ∂g

∂θ , (13)

where the matrix coefficient and the forcing function in this equation are evaluated along
solutions of the system equation (12). Note that this variational equation can be solved
simultaneously (see [4] for details) with the system equation (12).

Finally, in order to compute the confidence intervals (at the 100(1 − c)% level) for the estimated
parameters in our example, we define the confidence level parameters associated with the
estimated parameters so that
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P(θ̂k − tc/2SEk(θ̂) < θk < θ̂k + tc/2SEk(θ̂)) = 1 − c, (14)

where c ∈ [0,1], and tc/2 ∈ ℝ+. For a given c value (small, say c = .05 for 95% confidence
intervals), the critical value tc/2 is computed from the Student’s t distribution tN*−m with N* −
m degrees of freedom since for each of the data sets available to us we have N* is less than 30.
The value of tc/2 is determined by P(T ≥ tc/2) = c/2 where T ~ tN*−m.
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Fig 1.
Schematic of the modeling compartments associated with latent virus host cells HL, lytic virus
host cells HR, and nonviable host cells N. Latent virus L reactivates to become lytic virus R,
either spontaneously or in response to an inducing agent s. Lytic virus R undergoes exponential
growth until it passes to the intracellular viral compartment VI where it is available for
packaging and is released as free virions VF. The parameters α(s) and δR(s) describe induced
reactivation and cell death. In the absence of inducer δR(0) = 0 and α(0) = α0, where α0 is the
spontaneous reactivation rate constant. It is sometimes convenient to refer to a single parameter
γL ≡ βL − dL.
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Fig 2.
Schematic of the iterative modeling process.
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Fig 3.
The percentage of cells that are spontaneously reactivated 100 × HR/(HL + HR + N) and the
percentage of nonviable cells 100 × N/(HL + HR + N) are plotted for uninduced simulations
using equations (3) and parameters from Table 1 for the data of a) Zoeteweij, et al., and b) Yu,
et al. The percentage of nonviable cells and spontaneously reactivated cells asymptotically
reach the specified equilibrium values of as = 2% and Nr = 7.7% for the data of Zoeteweij, et
al., and as = 2% and Nr = 16% for the data of Yu, et al.
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Fig 4.
Uninduced simulations using equations (3) and parameters from Table 1 for the data of a)
Zoeteweij, et al., and b) Yu, et al. The plots show the average number of lytic viral DNA copies
R/HR and the average number of intracellular viral DNA copies VI/HR per lytically infected
host cell. The quantities R/HR and VI/HR asymptotically reach the specified equilibrium values
of RA = 2500 and VIA = 500, respectively
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Fig 5.
Comparison of cell viability measurements (symbols) with simulations (solid lines) using
induced equations (5) and fitted parameters for linear functions α(s) and δR(s): a) Zoeteweij,
et al., circles 0 mM, squares 0.03 mM, triangles 0.3 mM, and diamonds 3 mM, αc = 0.551,
δc = 5.13 × 10−3 and b) Yu, et al., circles 0 mM, triangles 0.3 mM, stars 1.5 mM, and diamonds
3 mM, αc = 0.140, δc = 6.76 × 10−3. Cell viability is defined as (HL+HR)/(HL+HR+N). In the
uninduced case, (HL+HR)/(HL+HR+N) = 1 − Nr.

Kepler et al. Page 20

J Theor Biol. Author manuscript; available in PMC 2008 February 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig 6.
The number of free virions produced per initial cell (VF/C0) is plotted as a function of time for
different butyrate doses. The data is obtained from simulations of the induced equations (5)
and (6) using parameters for linear functions α(s) and δR(s) fitted to experimental data from a)
Zoeteweij, et al., and b) Yu, et al. The dashed lines represent the maximum virion production
at 100 hours using the optimal doses of a) 0.0591 and b) 0.177 mM. See Fig. 7 and the discussion
below.
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Fig 7.
The optimal butyrate concentration to maximize the quantity of virions produced is plotted as
a function of the elapsed induction time. Optimal values are obtained numerically from
simulations with the induced equations (5) and (6) and parameters values (Table 1) obtained
from fits to data from Zoeteweij et al. (dashed line) and Yu et al. (solid line).
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Table 1
Parameters from the uninduced model (3) are calculated from (8) with constants as = 0.02, Nr = 0.077 or 0.16,
Dp = 24 hr, n = 10, VIA = 500, and RA = 2500. Parameters from the induced model (5) are obtained from fits to
experimental data.

Parameter Symbol Zoeteweij, et al., data Yu, et al., data Units

Net growth of latent host cells γL 3.00 × 10−2 3.00 × 10−2 hr−1

Nonviable cell degradation μ 1.00 × 10−5 1.00 × 10−5 hr−1

Natural death of latent host cells dL 1.98 × 10−3 5.22 × 10−3 hr−1

Spontaneous reactivation of latent host cells α0 1.12 × 10−3 1.12 × 10−3 hr−1

Cell death due to viral lysis c 4.33 × 10−5 3.40 × 10−5 hr−1

Synthesis of viral DNA κ 7.11 × 10−2 6.65 × 10−2 hr−1

Sequestration of viral DNA for encapsulation q 2.08 × 10−2 2.08 × 10−2 hr−1

Packaging and secretion of virions p 5.36 × 10−2 5.83 × 10−2 hr−1

Viral DNA per lytic host cell nT 69 68 -
Induced reactivation αc 5.51 × 10−1 1.40 × 10−1 hr−1

Induced death δc 5.13 × 10−3 6.76 × 10−3 hr−1
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Table 2
Estimated parameter values, standard errors, and confidence intervals

Data Parameter Estimated Value Standard Error Confidence Interval

Zoeteweij, et al. αc
δc

5.51 × 10−1

5.13 × 10−3
1.03 × 10−2

3.25 × 10−3
[5.29 × 10−1, 5.73 × 10−1]

[−1.83 × 10−3, 1.21 × 10−2]

Yu, et al. αc
δc

1.40 × 10−1

6.76 × 10−3
7.84 × 10−3

2.88 × 10−3
[1.23 × 10−1, 1.57 × 10−1]
[5.30 × 10−4, 1.30 × 10−2]

J Theor Biol. Author manuscript; available in PMC 2008 February 7.


