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Summary
In complex survey sampling, a fraction of a finite population is sampled. Often, the survey is
conducted so that each subject in the population has a different probability of being selected into
the sample. Further, many complex surveys involve stratification and clustering. For
generalizability of the sample to the finite population, these features of the design are usually
incorporated in the analysis. While the Wilcoxon rank sum test is commonly used to compare an
ordinal variable in bivariate analyses, no simple extension of the Wilcoxon rank sum test has been
proposed for complex survey data. With multinomial sampling of independent subjects, the
Wilcoxon rank-sum test statistic equals the score test statistic for the group effect from a
proportional odds cumulative logistic regression model for an ordinal outcome. Using this
regression framework, for complex survey data, we formulate a similar proportional odds
cumulative logistic regression model for the ordinal variable, and use an estimating equations
score statistic for no group effect as an extension of the Wilcoxon test. The proposed method is
applied to a complex survey designed to produce national estimates of the health care use,
expenditures, sources of payment, and insurance coverage.
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1 Introduction
The Wilcoxon rank-sum test is a frequently used statistical test to compare an ordinal
outcome between two groups of subjects. Even in cases where regression analyses are
subsequently performed, initial summaries in terms of bivariate analyses are regularly
reported at the beginning of the results section of published papers. In this paper, we propose
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an extension of the Wilcoxon rank-sum test to complex survey data. In complex survey
sampling, a fraction of a finite population is sampled, while accounting for its size and
characteristics. Based on certain subject characteristics (for example, age, race, gender),
some individuals may be over or under sampled. Thus, individuals in the population may
have different probabilities of being selected into the sample. Further, the sampling design
can have multiple stages of stratification and clustering. Thus, in general, the design for
complex sample surveys often includes stratification, clustering, and different selection
probabilities. Although alternative approaches have been proposed for analyzing complex
survey data (Chambers and Skinner, 2003), for generalizability of the sample to the finite
population (Korn and Graubard, 1999), in this paper we incorporate the design in the
analysis, including sampling weights (derived from the probability of selection into the
survey), strata and/or cluster variables.

Extensions of rank-sum tests have been proposed for clustered data (Jung and Kang, 2001;
Rosner, Glynn, and Lee, 2003; Datta and Satten, 2005), which would arise from a random
sample of independent clusters. In these proposed tests, the variance of the usual Wilcoxon
test is adjusted for clustering. The multi-stage sampling design, with different probabilities
of selection, has been the roadblock in developing a general extension of the Wilcoxon test
procedure to complex surveys.

The ready availability of public-use data from large population-based complex sample
surveys has led to the calculation of population estimates of frequency of disease (incidence
and prevalence) and to associations between risk factors and disease. Many seminal papers
published in journals such as the British Medical Journal, the Lancet, the New England
Journal of Medicine and the Journal of the American Medical Association have been based
on such complex survey data. In the United States, examples of such complex surveys
include the National Health and Nutrition Examination Surveys (NHANES), Behavioral
Risk Factor Surveillance System (BRFSS), National Health Care Surveys (NHCS), the
Nationwide Inpatient Sample (NIS), the Hospital Consumer Assessment of Healthcare
Providers and Systems (HCAHPS) survey, and the Medical Expenditure Panel Survey
(MEPS). In the United Kingdom, examples are the Annual Population Survey (APS), British
Social Attitudes (BSA), Family Resources Survey (FRS), Health Survey for England (HSE),
and the Scottish Health Survey (SHeS). For example, the paper ‘Epidemic of obesity in UK
children’ (Reilly and Dorosty, 1999), using HSE data, was published in The Lancet and the
paper ‘Adolescent Overweight and Future Adult Coronary Heart Disease’ (Bibbins-
Domingo et al., 2007), using NHANES data, was published in the New England Journal of
Medicine. Further, a search of PubMed (National Library of Medicine) abstracts using the
words “NHANES” yielded 7699 articles in the last 5 years; NHANES is just one of at least a
hundred national complex surveys conducted in different countries around the world.
Despite the huge increase in the use of such complex sample surveys, there has not been a
simple proposed extension of the Wilcoxon test for comparing an ordinal outcome between
two groups of subjects in complex survey data.

Our motivating example is the Medical Expenditure Panel Survey (MEPS; Cohen, 2003) for
the year 2002, conducted by the United States National Center for Health Statistics, Centers
for Disease Control and Prevention. The 2002 cross-sectional survey was designed to
produce national and regional estimates of the health care use, expenditures, sources of
payment, and insurance coverage of the United States civilian non-institutionalized
population. MEPS is a stratified, multistage probability cluster sample. We analyze data
from the 25,388 subjects who participated in the Household Component of MEPS. In the
design of the study, the population was first stratified into 203 geographical regions, defined
by census and state regions, metropolitan status, and so-ciodemographic measures. Within
each stratum, the geographical region was subdivided into area segments, which are
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composed of counties or groups of contiguous counties. Two or three clusters (area
segments) were sampled within each stratum. In 161 of the strata, there were 2 clusters; in
the remaining 42 strata, there were 3 clusters. On average, a typical cluster contained 59
subjects, with a range of 2 to 316 subjects. Although the clusters within strata were sampled
without replacement, for purposes of analysis we can assume they were sampled with
replacement, since the fraction of clusters sampled within each stratum is much less than
1%. The study over-sampled Hispanics, African-Americans, adults with functional
impairments, children with limitations in activities, individuals predicted to incur high levels
of medical expenditures, and low income individuals.

For this MEPS study, we explored if patients with and without health insurance differ in the
following ordinal variables: education level, income (defined as percent of poverty line),
perceived health status, and body mass index (BMI). Thus, for these cross-sectional data, the
‘group’ is health insurance (yes, no), and the ordinal variables are education level (no
degree, high school graduate equivalency degree–ged, high school diploma, bachelor’s
degree, master’s degree, doctorate degree), income (poor, near-poor, low income, middle
income, high income), perceived health status (excellent, very good, good, fair, poor), and
BMI (underweight, BMI < 18.5 kg/m2; normal, BMI 18.5 to 24.9 kg/m2; overweight, BMI
25.0 to 29.9 kg/m2; obese, BMI > 30.0 kg/m2). Table 1 show individual-level data from 25
typical subjects, including strata, cluster, and weights (note that these data are typical, not
true data so that subjects cannot be identified).

Motivated by the need to develop an analog for complex sample survey data, we propose an
extension of the Wilcoxon rank-sum test to the MEPS. Since subjects in complex surveys
are not independent, the assumptions needed for applying the Wilcoxon rank-sum test do not
hold. With a multinomial sample of independent subjects, the Wilcoxon rank-sum test
statistic is shown to equal the score test statistic for no effect of a single dichotomous
covariate in a proportional odds cumulative logistic regression model (McCullagh, 1980) for
the ordinal outcome. Using this regression framework, the Wilcoxon test is then extended to
general complex sample surveys. With complex survey data, we propose formulating a
proportional odds cumulative logistic regression model for an ordinal outcome, with the
group as a dichotomous covariate. Weighted estimating equations (WEE; Shah et al., 2001;
Binder, 1983; Pfefferman, 1993) are used to account for the weighting and sampling design.
We propose use of an estimating equations score test (Rao et al.,1998) for no group effect
for the proportional odds model; this score test reduces to the standard Wilcoxon test if the
design is a multinomial sample. The test can be obtained with minimal programming in
common statistical software such as SAS Proc Surveylogistic.

In Section 2, we introduce some notation and discuss the score test for a simple multinomial
sample. In Section 3, we describe weighted estimating equations (WEE) for complex survey
data, and our proposed score test statistic based on WEE. Finally, in Section 4, we present
the results of analyses of the MEPS data to illustrate the proposed method.

2 Proportional Odds Model and the Wilcoxon Rank-Sum Test
In this section, we describe the proportional odds model and the Wilcoxon rank-sum test for
a multinomial sample of n independent subjects, i = 1, 2, …, n. In the next section, we
extend these results to complex survey sampling. We assume the outcome Yi is an ordinal
discrete random variable which can take on positive integer values j = 1, 2, , …, J. Since the
outcome has J levels, we can form J indicator random variables Yij, where Yij = 1 if subject i
has response j and Yij = 0 if otherwise. Our goal is to determine if the distribution of this
ordinal outcome differs across two groups. Thus we form a dichotomous covariate xi, where
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xi = 1 if subject i is in group 1 and xi = 0 if subject i is in group 2. Then, we denote the
probability of response j given xi as

and the multinomial probability mass function for subject i equals

(1)

The proportional odds model can be written as

(2)

where γij is a ‘cumulative probability’ and θ′ = [θ1, …, θJ−1] is the vector of cumulative
intercepts. Since

(3)

with γiJ = 1 and γi0 = 0, the contribution to the likelihood for subject i can be rewritten as

(4)

Our main interest is in testing for no group effect in (2), i.e.,

Under this null hypothesis the distribution of the ordinal variable is identical in the two
groups. As we briefly describe here, the Wilcoxon rank-sum test statistic equals the score
test statistic for testing β = 0. Next, consider the general form of a score test statistic for
testing β = 0. If θ̂0 is the maximum likelihood estimate of θ under the null hypothesis that β
= 0, then the score test statistic for testing the null hypothesis has the general form

(5)

where U(θ, β) is the score (first derivative) vector of the log of the likelihood in (4) with
respect to φ = (θ′, β)′; U(θ̂0, 0) is the score vector evaluated at (θ = θ̂0, β = 0); and
{Var[U(θ, β)]}θ=θ̂0β=0 is the variance of U(θ, β) evaluated at (θ = θ̂0, β = 0). Note, for
regular likelihood problems such as this when subjects are independent,
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Under the null hypothesis, X2 in (5) has an asymptotic chi-square distribution with 1 degree-
of-freedom.

For the proportional odds model (McCullagh and Nelder, 1989), the general form of the
score vector equals

The only non-zero component of U(θ̂0, 0) equals

(6)

where  is the level j proportion (regardless of group). Since γij is a logistic
regression model, using results for ordinary logistic regression,

Thus, the non-zero component of U(θ̂0, 0) can be written as

(7)

where

and  is the cumulative proportion (regardless of group). Straightforward algebra
shows that Sj = 1 − (γ̂j + γ̂j−1), and that (7) is proportional to

(8)

where
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is the ‘ridit’ score (Bross, 1958). We further show in the Appendix that (8) is proportional to

(9)

where

is the average rank or ‘midrank’ for subjects in category j. Subjects with xi = 0 do not
contribute to (9). For subjects in group xi = 1, this statistic multiplies the average ranks in

category j (Rj) by the number of subjects in category , and then sums across all
categories. Further, the sum of the average ranks in group xi = 1 under the null is subtracted
from the observed ranks. Thus, the form of the score statistic in (9) is equivalent to the
Wilcoxon rank-sum test statistic.

By formulating the Wilcoxon test statistic in terms of a score test statistic from the
proportional odds model, one can apply theory developed for estimating equations score
tests to the proportional odds models in the complex sample survey setting, without having
to develop new theory for ranks in complex survey data. As discussed in Agresti (2010), the
Wicoxon rank-sum test statistic can be written either in terms of the ridits as in (8) or the
midranks as in (9). In the next section, we discuss the estimating equations score test for
complex survey data in terms of the ridits.

3 Extension of the Wilcoxon Rank-Sum Test for Complex Survey Data
To develop our extension of the Wilcoxon rank-sum test, we first discuss weighted
estimating equations for estimating (θ, β) in complex sample surveys. For complex sample
surveys, the target population is usually thought to be of finite size N. We assume the
sample is still of size n. To indicate which n subjects are sampled from the population of N
subjects, we define the indicator random variable

for i = 1, …, N, where . Depending on the sampling design, some of the δi could
be correlated (e.g., for two subjects within the same cluster). We let πi denote the
probability of subject i being selected into the survey, which is typically specified in the
design of the study. Depending on the sampling design, πi may depend on the outcome of
interest, the independent variables, or additional variables (screening variables, for example)
not in the model of interest. In particular, πi = pr(δi = 1|yi, xi, si), where si is a vector of
additional variables. We assume that the proportional odds model holds for subjects in the
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population, and the distribution of the ordinal outcome for a subject in the population
follows a multinomial distribution as in (4).

To obtain a consistent estimate of (θ, β), one can use a weighted estimating equation, which
is the solution to Uwee(θ̂, β̂) = 0, where

(10)

and φ = (θ′, β)′. Here, the ‘weights’ are . Note, also, these are
weighted likelihood score equations under a working ‘independence’ assumption for the N
subjects (disregarding any clustering).

Using a first order Taylor series expansion and a suitable central limit theorem for sample
survey data (Binder, 1983), (θ̂, β̂) has an asymptotic multivariate normal distribution with
mean (θ, β) and covariance matrix

(11)

Note, Var[Uwee(θ, β)] depends on the sample design (stratification, clustering, sampling
with or without replacement) as well as the finite population correction factor. Empirically,
(11) is estimated via the ‘sandwich variance estimator’. For multionomial and ordinal
logistic regression, sample survey programs in SAS, Sudaan, R, and Stata can be used to
calculate this variance.

Next, we apply an estimating equations score test statistic (Rao et al., 1998) for the null
hypothesis, H0:β = 0, in the proportional odds model. Simlar to the previous section, we let
θ̂0 denote the WEE estimate of θ under the null hypothesis that β = 0. Then, similar to the
usual score test, the estimating equations score test statistic for H0:β = 0 is

(12)

where the form of Uwee(θ̂0, 0) and {Var[Uwee(θ, β)]}θ= θ̂0,β=0 are both derived under the
alternative, but evaluated at (θ = θ̂0, β = 0). In particular,

(13)

where

(14)

is the negative of the information matrix obtained if one ignores the complex survey design
and assumes all subjects are independent with weights wi. The central limit theorem can be
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used to show that asymptotically X2 has a chi-square distribution with 1 degree-of-freedom
under the null (Rao et al., 1998), although the definition of ‘asymptotic’ is sometimes non-
standard in complex sample surveys. Finite sample approximations for the distribution of
(13) are given in Rao et al. (1998). For example, for a stratified, cluster design, if we let S
=number of strata and C =number of clusters, then Rao et al. (1998) propose approximating
the distribution of (12) with an F-distribution with 1 and f = C − S degrees-of-freedom. For
the MEPS data we analyze, since f = 448 − 203 = 245, the F- and chi-square approximations
are practically identical, so we use the chi-square approximation in the following section.

Similar to the score test for non-complex survey data, the only non-zero component of
Uwee(θ̂0, 0) can be written as

(15)

where

is the weighted proportion of subjects with response level j, regardless of group,

is the cumulative weighted proportion (regardless of group), and

is the weighted ridit. Subjects with xi = 0 do not contribute to (15). Then, the estimating
equations score statistic has the same form, in terms of the ridits, as the usual proportional
odds statistic from an multinomial sample, and can be considered an extension of the usual
Wilcoxon rank-sum test to complex survey data.

Most sample survey programs allow fitting of the proportional odds model for ordinal data
from complex sample surveys. However, the estimating equations score statistic is not
directly available, and requires a two step procedure. First, one fits the proportional odds
model under the null H0:β = 0 to get θ̂0. Then, one fits a proportional odds model under the
alternative H0:β ≠ 0 with starting values (θ̂0, 0), but instead of iterating until convergence,
perform 0 iterations. From this fit, we can get Uwee(θ̂0, 0) as well as {Var[(θ̂, β̂)]}θ=θ̂0,β=0 in
(13). Finally, one ignores the design and assumes all subjects are independent with weights
wi; under these assumptions, we fit a proportional odds model under the alternative H0:β ≠ 0
with starting values (θ̂0, 0), and perform 0 iterations; this gives us (14). The SAS Proc
Surveylogistic code for the example analyzed in Section 4 can be found at http://
www.blackwellpublishing.com/rss/SeriesC1.htm. As an alternative to the score statistic, one
can also use a Wald statistic (estimate of β divided by its estimated standard error) to test
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H0:β = 0. The Wald and score statistics have identical large sample properties under the
null, but have different properties under the alternative, with the score statistic typically
being more powerful (Hauck and Donner, 1977).

4 Application: MEPS Study
In this section, we present results for analyses of data from the MEPS example discussed in
the Introduction. There are 203 strata in this study, and 2 or 3 clusters were sampled without
replacement within each stratum. Although the sampling was performed without
replacement in each stratum, the total (population) number of clusters within each stratum
was so large that the finite population correction factor can be ignored. The weights used in
the analysis are the (Horvitz-Thompson) survey weights provided by MEPS, so that the
weights sum to the population total. These weights account for unit nonresponse. Data on 25
subjects from this dataset are given in Table 1. Our goal is to explore bivariate analyses
between health insurance status (yes, no) and the ordinal variables: education level (no
degree, high school graduate equivalency degree–ged, high school diploma, bachelor’s
degree, master’s degree, doctorate degree), income (poor, near-poor, low income, middle
income, high income), and perceived health status (excellent, very good, good, fair, poor),
and BMI (underweight, normal, overweight, and obese). In this dataset, 5401 (21.2%) of
25388 subjects did not have health insurance, although the weighted percentage of subjects
without health insurance was 17.2%. Table 2 gives the weighted column percentages given
the subject has or does not have health insurance, as well as the usual Wilcoxon test (the
proportional odds score test) ignoring the complex survey design (including stratification,
clustering, and weighting), and our proposed proportional odds score test which takes the
complex survey design into account (and uses a chi-square approximation with 1 degrees-of-
freedom).

We see from Table 2 that, as expected, the usual Wilcoxon test (proportional odds score test)
ignoring the complex survey design and the proportional odds score test taking the design
into account are quite different in value. For education and income, the proportional odds
score test statistics taking the design into account are almost half the size of those that do not
take the design into account, albeit all are very significant. On the other hand, for perceived
health status and BMI, we see that the opposite is true; the test statistics taking the design
into account are much larger than those that do not. In fact, for BMI, the test statistic taking
the design into account is borderline significant (P=0.070), whereas the test statistics not
taking the design into account is far from significant (p=0.472). (The SAS Proc
Surveylogistic code for the example is given in an Appendix posted on the Web). We note
here that if one used the Wald statistic (which is printed out directly in SAS Proc
Surveylogistic) instead of the score statistic, one obtains P-values that are very similar to the
score statistic: education level (P < .0001), income (P < .0001), perceived health status (P =
0.30), and BMI (P = 0.067); however, this very close correspondence between the Wald and
score test cannot be expected in general. The results of analyses of the MEPS data indicate
that failure to incorporate the design in the analysis can potentially yield misleading
inferences about the associations.

From Table 2, we see that patients without health insurance are less educated and poorer,
and have slightly lower BMI. There does not appear to be any difference in perceived health
status between patients with or without health insurance. With the large number of subjects
sampled in complex surveys, we usually have high power to detect small differences. We
see this is the case for BMI, in that patients with health insurance are approximately 2%
more likely (in absolute terms) to be overweight or obese.
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In order to explore which of the design factors (stratification, clustering, weighting) has the
largest impact on the P-values, we re-calculated the proposed test statistic under three
scenarios. In the first scenario, we ignored the strata, and just assumed that the design is a
cluster sampling design in which we randomly sampled 448 clusters from the population; we
also included the weights in this analysis. In the second scenario, we ignored the clusters,
and just assumed that the design is a stratified sampling design; we again also included the
weights in the analysis. Finally, in the third scenario, we kept stratification and clustering as
in the design, but we ignored the weights (set all weights equal to 1). Overall, the average of
the weights is 8903.6, with standard deviation 5446.2, and range 386.9 to 49958.0. Across
the 203 strata, the mean of the weights range from 2441.6 to 15711.4, and the standard
deviations range from 1436.0 to 8750.0. Given this variability in the weights across strata,
we might expect the weights to play an important role in calculating the test statistics. The
results under these three scenarios are given in Table 3.

In general, stratification tends to decrease the variance, and we see that the values of the test
statistics tend to be smaller (due to the larger variance) when stratification is ignored.
Clustering tends to increases the variance, and we see that the values of the test statistics
tend to be larger (due to the smaller variance) when clustering is ignored. Finally, ignoring
the weighting does not yield a clear pattern in that the value of two of the test statistics (for
education and income) are larger, and the value of two of the test statistics (for health and
BMI) are smaller. Based on the pattern of results in Table 3, for this particular example it
appears that the relative importance of stratification, clustering and weighting differs for the
four ordinal variables. For example, for perceived health status and BMI, clustering and
weighting are the most important design factors to take account of in the analysis;
stratification has little impact on the test statistics. However, for income, stratification and
clustering appear to be the most important design factors. This differential relative
importance of the three design factors for the ordinal outcomes explains in part why the test
statistics taking the design into account can be either larger or smaller than those that do not.

5 Conclusion
In summary, we propose an extension of the Wilcoxon rank-sum test to complex survey
data. The approach is not ad hoc, but is based on the connection between the Wilcoxon rank-
sum test and the proportional odds score test for the group effect. Our proposed test statistic
uses an estimating equations score statistic (Rao et al., 1998) for no group effect in a
proportional odds logistic regression model.

By formulating the test statistic in terms of a score test statistic from the proportional odds
model for complex survey data, one can apply theory developed for estimating equations
score tests without having to develop new theory for ranks in complex survey data. The
huge increase in use of population-based complex sample surveys has led to analyses that
have been published in leading medical journals, yet no simple approach has been developed
to test for association between group and an ordinal categorical variable. This paper
provides such an approach that can be used for any complex survey design.

One issue that may arise is the maximum number of outcome categories (J) allowed for our
proposed test to be approximately chi-square with one degree-of-freedom under the null.
Considering the data as arising from a (2 × J) contingency table (Reynolds, 1984), for
multinomial samples there should be at least 5 · 2 · J observations in the dataset, e.g. n ≥ 5 ·
2 · J. If we let DEFF represent the design effect for a complex sample survey (Korn and
Graubard, 1999), where DEFF represents the ratio of the variance of (15) under the given
design to a multinomial sample, then n ≥ DEFF · 10 · J, or, equivalently, J ≤ n/(10 · DEFF).
Typically, design effects for complex surveys are less than 2 (Heeringa and Liu, 2006),
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giving the rule-of-thumb that our proposed method can be applied provided J ≤ n/20. For a
typical large complex survey dataset, with say, 10,000 subjects, this means we could have an
ordered categorical variable with 500 levels.

Based on this paper, in future, researchers analyzing complex samples could use our
approach to formulate a non-parametric test with sample survey data. The same approach
could be used to formulate Wilcoxon-type test statistics in other directions, such as adjusting
for covariates and missing data.
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Appendix–Derivation of Wilcoxon test from proportional odds score test
In (8), we can further rewrite (γ̂j + γ̂j−1) in terms of the ‘average rank’ for category j. First,

note that nγ̂j−1 is the number of subjects with outcome less than j; also, let 
denote the number of subjects with outcome j. Then, the average rank for the nj subjects in

NATARAJAN et al. Page 11

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2013 July 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



category j equals the average of the numbers nγ̂j−1 + 1 to nγ̂j−1 + nj. Then, using the
formula for sums given in Conover (1998), the average rank for the nj subjects in category j
equals

(16)

since nγ̂j−1 + np̂j = nγ̂j. Then, in terms of the average rank Rj, we can rewrite (γ̂j + γ̂j−1) as

(17)

Then, inserting (17) in (8),

Since the factor 1/n does not affect the score statistic in (5), without loss of generality, we
write the numerator of the score statistic as
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Table 3

Wilcoxon test statistics for MEPS data accounting for different features of the survey design.

Variable Scenario X2 P-value

Education Ignoring Design 959.81 < .0001

Ignoring Strata 267.28 < .0001

Ignoring Clusters 686.69 < .0001

Ignoring Weights 467.91 < .0001

Incorporating Design 355.10 < .0001

Income Ignoring Design 1933.38 < .0001

Ignoring Strata 400.79 < .0001

Ignoring Clusters 1347.41 < .0001

Ignoring Weights 632.16 < .0001

Incorporating Design 626.24 < .0001

Perceived Health Status Ignoring Design 0.03 0.864

Ignoring Strata 0.99 0.319

Ignoring Clusters 1.33 0.249

Ignoring Weights 0.03 0.872

Incorporating Design 1.06 0.301

BMI Ignoring Design 0.52 0.472

Ignoring Strata 3.28 0.070

Ignoring Clusters 3.89 0.048

Ignoring Weights 0.40 0.525

Incorporating Design 3.28 0.070
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