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Summary
The outcome dependent sampling scheme has been gaining attention in both the statistical
literature and applied fields. Epidemiological and environmental researchers have been using it to
select the observations for more powerful and cost-effective studies. Motivated by a study of the
effect of in utero exposure to polychlorinated biphenyls on children’s IQ at age 7, in which the
effect of an important confounding variable is nonlinear, we consider a semi-parametric regression
model for data from an outcome-dependent sampling scheme where the relationship between the
response and covariates is only partially parameterized. We propose a penalized spline maximum
likelihood estimation (PSMLE) for inference on both the parametric and the nonparametric
components and develop their asymptotic properties. Through simulation studies and an analysis
of the IQ study, we compare the proposed estimator with several competing estimators. Practical
considerations of implementing those estimators are discussed.
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1 Introduction
An outcome dependent sampling (ODS) design is an attempt to enhance study efficiency in
a cost-effective way. Under an ODS design, the primary covariate, the exposure variable, is
observed only on some subsets of the study subjects, conditional on the values of the
response variable and possibly some other auxiliary covariates for the exposure. The
principle motivation for ODS designs is to concentrate resources where there is the greatest
amount of information. By allowing the selection probability of each individual in the ODS
sample to be dependent on outcome, the investigators can enhance the efficiency and reduce
the cost of the study.
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In a recent example that employed the ODS design(Gray et al. 2005), investigators were
interested in how children’s IQ at 7 years of age is related to polychlorinated biphenyls
(PCBs). The study subjects are children who were born into the Collaborative Perinatal
Project (CPP) which is a prospective cohort designed to provide precise data for studies of a
wide variety of neuropsychological outcomes and birth defects (Niswander and Gordon,
1972). Since it was too expensive to assay the PCB exposure for the entire study population
of 44,075 subjects, the investigators decided to obtain exposure measurements for a sample
that was sampled in an ODS way from the population based on the observed IQ scores
(Gray et al., 2005). In the following, for simplicity, we refer to the data set including the
PCB measurements (Gray et al., 2005) as the CPP data set.

Several authors have studied statistical inference for data from an ODS design. For example,
Breslow and Holubkov (1997) developed maximum likelihood estimation of logistic
regression coefficients for a hybrid two-phase design. Lawless, Kabfleisch and Wild (1999)
considered a full semiparametric likelihood method. For a continuous outcome variable,
Zhou et al. (2002) considered a general two-component ODS scheme where an overall
simple random sample and additional supplementary samples are observed. Chatterjee, Chen
and Breslow (2003) proposed a pseudoscore estimation method for regression problems with
two-phase ODS. Breslow, McNeney and Wellner (2003) derived a large sample theory for
semiparametric regression models. Weaver and Zhou (2005) proposed an estimated
maximum likelihood method using the estimated likelihood technique (e.g., Carroll and
Wand 1991, Pepe and Fleming 1991, Zhou and Pepe 1995) for incorporating additional
information in the non-ODS sample. Wang and Zhou (2006) considered the case of an
ordinal outcome variable with an auxiliary covariate. Zhou et al. (2007) further
demonstrated the improved efficiency obtained by using the ODS design, and its
applicability in a wide range of settings.

These existing methods are based on the assumption that the effect on the outcome of the
covariates is linear. This assumption is chosen mainly for mathematical convenience. In
practice, the true parametric relationship between the outcome and covariates is rarely
known. For example, in the above mentioned epidemiological study (Gray et al. 2005),
investigators were interested in identifying the relationship of the children’s IQ at age 7 to in
utero exposure to PCBs, after adjusting for potential confounders, including the highest
education level attained by the mother. Maternal education is often the strongest
confounding factor in studies of environmental determinants of child IQ (Walkowiak et al.
1998; Angelsen et al. 2001; Bohm et al. 2002). The relation of maternal education to child
IQ is not linear, with mother’s years in college having a much greater effect on child IQ than
do years of education in primary and secondary school (e.g., Breslau et al. 2005; Oddy et al.
2003). Given the strength of this confounding factor, the manner in which education is
modeled could affect the amount of bias in the coefficient for the exposure of interest. Thus,
we were motivated to develop a partial linear method of modeling a covariate in the ODS
setting.

Handling the nonparametric component in semiparametric models is generally challenging.
One approach is to use nonparametric tools, e.g. the kernel estimator (Speckman 1988). This
method is computationally intensive. Another method is to parametrize the nonparametric
component using some flexible functions and then use some parametric tools, such as
Fourier series approximation, Demmler-Reinsch series approximation, or wavelets.
However, selecting the truncation parameter and allocating the knots in these methods can
be challenging. An alternative approach is the penalized spline method, using a roughness
penalty for the nonparametric regression function (e.g, Eilers and Marx 1996). The idea of a
roughness penalty on splines is not new (e.g, O’Sullivan 1986), though the technique has
become popular recently due to its effectiveness with penalized splines. With penalized
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splines, the number and location of knots are no longer crucial as long as the minimum
number of knots is reached and the smoothing parameter is used to balance the goodness-of-
fit and smoothness (Ruppert and Carroll 2000, Yu and Ruppert 2002, Wu and Yu 2004).

To model nonlinear covariate effects under the ODS sampling scheme, we consider a
penalized spline maximum likelihood estimator (PSMLE) for the parametric and
nonparametric components in a partially linear regression model. Using a simulation study
and an analysis of the Collaborative Perinatal Project (CPP) data set, we present a case-study
for comparing the PSMLE with several competing methods.

2 Penalized Spline Maximum Likelihood Estimation for ODS Design
2.1 Partial Linear Model and ODS Data Structure

To fix notation, let Y denote an outcome variable, and X and Z denote covariates. Let fY|X,Z
(y|x, z) be the conditional density of Y given X = x and Z = z. We specify fY|X,Z (y|x, z)
through the following regression model

(1)

where m(·) is a known link function, β is an unknown parameter vector corresponding to X
and α(·) is an unknown function to be estimated. For simplicity, we write the conditional
model as f(y|x, z; β, α(·)). Model (1) can be viewed as a semiparametric model if α(·) is
unspecified. It is also referred to as a partial linear model since part of the covariate vector
(Z) is modeled as a nonlinear function.

We assume that the observed data are from an ODS sampling scheme (Zhou et al. 2002;
Weaver and Zhou 2005). Specifically, assume that the domain of Y is union of K
nonoverlapping intervals Ck = (ak−1, ak], with ak being known constants satisfying a0 ≡ −∞
< a1 < a2 < … < aK ≡ ∞. The choice of the number of the intervals generally depends on
the regions in the domain of the outcome variable which may contain great amount of
information. A three Interval ODS scheme (K=3) can be selected for simplicity in practice
(e.g., Gray et al. 2005). This will also be an over-representation of the tails of the
distribution of the outcome that would be otherwise missing in a standard SRS scheme.

We assume there exists a base population (of sample size N) that is a simple random sample
of the underlying study population, on which we observe {Y,Z}. The exposure variable X is
only observed for a subset of this base population that is selected in an ODS way. In
particular, observation of X comes from two components: First, we observe X on a simple
random sample (SRS) of size n0. Secondly, for each stratum defined by {Y ∈ Ck}, k = 1,
…,K, we observe X on a supplementary random sample of size nk. The first component is
sometimes omitted, so that n0 = 0. Hence the data set where X is observed is

Let  denote the size of the ODS subsample for which we observe (Y,X,Z),
and let nV̅ = N −nV be the number of individuals for whom only (Y,Z) is observed. To
borrow some terms from the measurement error literature, we will refer to the nV complete
observations as the validation sample, and nV̅ incomplete observations as the nonvalidation
sample. Let V represent the index set of all validation observations, and let V̅ represent the
index set of all nonvalidation observations. Further, let Vk and V̅k represent the index sets for
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observations in the kth stratum (Y ∈ Ck) in validation and nonvalidation samples,
respectively.

Of the 44,075 children from the previously mentioned CPP data set, 38,709 have complete
data (no missing data other than PCB), which will represent our study population.
Furthermore, a sample of size 1038 with measured PCB levels is obtained from the study
population through the above ODS design. In particular, the domain of the outcome IQ was
divided into 3 intervals, i.e., C1 = (−∞, 82], C2 = (82, 110] and C3 = (110,∞), where 82 and
110 equal to the mean of IQ (96) minus or plus one standard deviation of IQ (14). It was
anticipated that a sampling design in which children with extreme IQ scores were
oversampled would enhance the efficiency of the study relative to an SRS design of the
same size. Therefore, in addition to a SRS sample of size 849, 81 children with IQ < 82 and
108 children with IQ > 110 are randomly selected from intervals C1 and C3. Thus, in the
sampling notation, we have that nV = 1038, nV̄ = 37671, a1 = 82, a2 = 110, n0 = 849, n1 =
81, n2 = 0 and n3 = 108. Table 1 gives summary of the specific data structure.

When data are collected through the ODS scheme described above, several levels of
information could be used for inference about β and α(·). The simplest possibility is to use
only those observations that make up the SRS portion (if this exists) of the ODS design.
Alternatively, one could try to use the complete data portion (V). Clearly, a more efficient
estimate can be achieved if one uses all available data.

Using Bayes formula and the multinomial distribution for finite population sampling,
Weaver and Zhou (2005) show that the full-information likelihood based on all available
data is proportional to

where

and GX|Z(x|Z) is the conditional distribution of X given Z.

Since the sampling mechanism used to obtain X in the validation sample is not a simple
random sample, we cannot use a simple global empirical distribution function to estimate
GX|Z. Proper accommodation for the ODS nature of the validation sample is needed. By the
Law of Total Probability, the distribution function of X|Z can be written as

Hence, we can estimate GX|Z(x|z) by the kernel smoother (e.g., Nadaraya 1964, Watson
1964):
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with Ĝk(x|z) = Σi∈Vk I(Xi ≤ x)Lℎ(Zi − z)/Σi∈Vk Lℎ(Zi − z), where Lℎ(·) = L(·/ℎ)/ℎ and ℎ > 0
is the bandwidth. L(·) is called the kernel function and is a piecewise smooth function
satisfying ∫ L(u)du = 1. We use a standard normal density function in our computations. For
further details on the kernel smoother see Eubank (1988).

Then we can obtain an estimator of f(Yj|Zj, β, α(·)) as

2.2 Penalized Spline for Modeling α(·)
For convenience of presentation, we assume Zi is an univariate variable. The unknown
function α(·) can be estimated by a penalized spline (Ruppert and Carroll 2000 and Ruppert
2002). Assume that

(2)

where  are spline knots. Model (2) uses the so-called truncated power function basis,
though other bases (e.g., B-splines) could also be used. Define the spline coefficient vector δ
= (δ, δ1,…,δm+κ)τ and spline basis

Our spline model is α(z) = δτB(z). Denote ζ = (βτ, δτ)τ. The PSMLE of ζ̂ = (β̂τ, δ ̂τ)τ is
defined as ζ that maximizes

(3)

where
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λ ≥ 0 is a smoothing parameter, and D is an appropriate positive semi-definite symmetric

matrix such that , which yields the usual quadratic integral penalty
(Ruppert 2002).

We now describe some asymptotic results that are summarized in three theorems with
outline proofs, in the Appendix.

First, under some regularity conditions, the proposed estimator is consistent and
asymptotically normally distributed. Furthermore, suppose we are interested in testing a
constraint on the parameters as in the hypothesis

We define a likelihood ratio statistic R(ζ) that is based on the Qλ,N (β, δ) as

where ψ(·) is a q × 1 vector function (q < p + m + κ + 1). The likelihood ratio statistic is

asymptotically distributed as  under H0. Our likelihood ratio test (LRT) differs from that
in Hastie and Tibshirani (1990) in the computation of the degrees of freedom. Specifically,
the degrees of freedom for our proposed LRT is computed by the difference between the
number of the parameters in the null model and the unrestricted model rather than the
effective degrees of freedom in Hastie and Tibshirani (1990).

For the partial linear model, it is of particular interest to test whether the nonparametric
function is linear. We can use the previously described likelihood ratio test to do this by re-

expressing the m + κ + 1-dimensional vector δ as , where δ1 = (δ11, δ12)T is a two-
dimensional vector and δ2 is a m + κ −1 dimensional vector. We are then interested in
testing the null hypothesis . Under H0, xτβ +
α(z) = xτβ + δ11 + δ12z, i.e. the variable Z is related to response Y linearly.

2.3 Selection of smoothing Parameter, Knots and Penalty
To implement the proposed method in practice, it is desirable to have an automatic data-
driven method for estimating the smoothing parameter λ. Generalized cross-validation
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(GCV) is an attractive way to choose λ since it is computationally expedient and does not
need a prior estimate of error variance. Following the conventional technique of penalized
least squares (e.g., Ruppert 2002), we define

where  is the smoothing or hat matrix. In nonparametric regression, the
trace of the smoothing matrix is often called the degrees of freedom of the fit. It has the
rough interpretation as the equivalent number of parameters (Yu and Ruppert 2002). The
GCV statistic is defined by

where RSS = 2ℓF (ζ ̂) is the residual sum of squares corresponding to ζ ̂, given λ. We select λ̂
= argminλ{GCV(λ)}.

Since the complicated knot selection problem is reduced to the choice of a single smoothing
parameter λ the selection of the number of knots and knot locations is no longer crucial for
the penalized spline. Ruppert (2002), Wu and Yu (2004) and Yu (2008) have observed that
the choice of the number of knots κ is not too important, provided it is large enough.
Ruppert (2002) and Wu and Yu (2004) suggested choosing approximately min(n/4, 35) or
min(n/4, 40) knots, respectively, where n is the number of distinct values of the sample of
the nonparametric covariate. However, in many practical situations where the regression
function is smooth and either monotonic or unimodal, 10 to 20 knots are very adequate, as
suggested in Yu (2008). Given our choice of nonlinear function, the number of knots are
chosen from 10 to 30 in our simulation which works quite well (see Figure 1). Given a fixed
number of knots, Wu and Yu (2004) and Yu (2008) recommended that the knots are placed
at equally-spaced sample quantiles of the index Z.

As in Wu and Yu (2004) and Yu (2008), we take a quadratic penalty of the form λδTDδ in
our paper. When the nonparametric function has discontinuity, the nonquadratic penalty
functions may be a better choice. Ruppert and Carroll (1997) gave a general penalty of the

form , and pointed out that penalties with γ ≤ 1 can perform better than a
quadratic penalty for discontinuous functions. Otherwise, the quadratic penalty is preferred.

3 Simulation Studies
We investigate the small sample behavior of the proposed method through simulation
studies, comparing the proposed estimator with several potential competing estimators.
Mimicking the design of CPP study, we generate data according to the following regression
model:

where X1i ~ N(1, 0.25), X2i ~ N(0, 1), β1 = 1, β2 = 1.5, Zi = ξi + X1iI(|X1i| ≤ 1) with ξi ~ U(0,
1), and ξi ~ N(0, 1). We take (n0, n1, n2,N) = (100, 25, 25, 600), (200, 25, 25, 500), (200, 50,
50, 1200) and C1 = (−∞, µy − σy) and C2 = (µY + σY,∞). We consider two choices for α(z)
that represent nonlinear forms commonly observed in practice:
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Case 1: α(z) = sin(2πz),

Case 2: α(z) = (0.02 exp(10(z − 1)))/(1 + exp(8(z − 1.5))).

The first case has a cyclic pattern (Hickey et al. 1984, Strum and Pinsky 2006, Elkum et al.
2008) while the second has a flat response at the beginning and a sharp rise at the end of the
range (e.g, Figure 1(a) and (c)).

Under each setting, we compare three estimators:

β̂P: the proposed penalized spline maximum likelihood estimator.

β̂HT: the modified Horvitz-Thompson weighted-likelihood method. The estimator of ζ =
(βτ, δτ)τ maximizes

where λδτDδ has the same definition as in (3).

β̂BC: the modified Breslow-Cain pseudo-likelihood method. The estimator of ζ = (βτ,
δτ)τ maximizes

We take the number of knots as 15, 13 and 30 respectively corresponding to the sample size
600, 500 and 1200 in the simulations. The means, standard errors (SE), estimators of
standard errors  and coverages of 95% nominal confidence intervals (CI) were
calculated from 1,000 independent runs. Table 2 lists results for the above estimators under
various configurations.

Clearly, β̂P, β̂HT and β̂BC are approximately unbiased for both β1 and β2. The proposed
estimator (β̂P) is always more efficient than β̂HT and β̂BC. This supports the notion that
taking the nonvalidation sample into account can improve the efficiency of estimation. The
nominal 95% confidence intervals based on the proposed standard errors provide good
coverage for the cases studied for β̂P, β̂HT, β̂BC.

Figure 1 (a) and (b) show the estimators of α(z) = sin(2πz) and their corresponding pointwise
SEs. Figure 1 (c) and (d) show the estimators of α(z) = (0.02 exp(10(z−1)))/(1+exp(8(z −
1.5))) and their corresponding pointwise SEs. From Figure 1, we see that α̂P (z), α̂HT (z) and
α̂HT(z) are approximately unbiased. Furthermore, α̂P (z) has smallest pointwise SE among
α̂HT (z) and α̂BC(z), suggesting that the proposed method is indeed a more efficient approach.

4 Analysis of the CPP Data
We analyze the CPP data to identify the relationship of the children’s IQ at 7 years of age to
in utero exposure to polychlorinated biphenyls (PCBs), after adjusting for potential
confounders, including the highest education level attained by the mother (EDU).

Additional covariates in the analysis are socioeconomic status of the child’s family (SES),
the gender of the child (SEX, with female=1 and male=0) and the race of the child (RACE,
with black=1 and other=0). To model the nonlinear effect of education noted in the
Introduction, we consider the following partial linear model,
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where α(EDU) is an unspecified function to be estimated along with βi, i = 1,…,4. To
estimate the nonparametric function α(·), we adopted a three-degree truncated power

function basis  with five fixed knots ϑ1,…,ϑ5
selected as the equally spaced sample quantiles of EDU, i.e., 2,5,9,12,15. Under these
specifications, the above model can be rewritten as IQ = β1PCB+β2SES+β3RACE+β4SEX
+MT (EDU)δ+ε, where δ = (δ0,…, δ8)T is the parameter vector associated with the
nonparametric function α(·).

We analyzed the CPP data with the following methods using a penalized spline for α(EDU):
the proposed method (P), the modified Horvitz-Thompson weighted likelihood method
(HT), the modified Breslow-Cain pseudo-likelihood method (BC), and the MLE estimator
based on the SRS sample (MLE-SRS). The smoothing parameter was selected as 0.0853 by
the proposed GCV method. Additionally, for the proposed method, we also considered
modeling α(EDU) as a linear, quadratic, or cubic function of EDU. Furthermore, we
considered using a restricted cubic spline (Herndon and Harrell 1990) for α(EDU) and
obtained the corresponding estimate through maximizing ℓ̂F (β, δ). The restricted cubic
spline, which has a linearly constrained tails which is slightly different from the general
cubic spline function and can be used directly to fit models without penalty.

The estimated α̂(EDU) from the different methods and their corresponding 95% confidence
intervals given in Figure 2. The fitted α̂(EDU) tell a similar story in that there is a clear
nonlinear trend present in all fitted lines. The most noticeable difference is the width of the
confidence interval band, which indicates which method is more efficient. A careful
inspection of the trend of α̂(EDU) reveals that the rate of rise of α̂(EDU) is much faster after
around year 12 (i.e. after high school education). This agrees with the previous published
results (e.g., Breslau et al., 2005; Oddy et al., 2003) that mother’s years in college have a
much greater effect on child IQ.

We conducted likelihood ratio tests for testing if the nonlinear fit of α(EDU) from the
proposed method can be represented by a simple polynomial function. The following three
tests on the form of α(EDU) are for linear, quadratic, and cubic functions, respectively.

Test 1: H0 : α(EDU) = δ0 + δ1EDU,

Test 2: H0 : α(EDU) = δ0 + δ1EDU + δ2EDU2,

Test 3: H0 : α(EDU) = δ0 + δ1EDU + δ1EDU2 + δ3EDU3.

The test statistic for the Test 1–3 are: for linear α(EDU),  with p<
0.001; for quadratic α(EDU),  with p< 0.001; and for cubic
α(EDU),  with p< 0.001, respectively. These results suggest that,
although the cubic fit in Figure 2(e) may be sufficiently close to the fully nonparametric fit
in Figure 2(a) for practical purposes, there is still statistical evidence suggesting that α̂(EDU)
may be more complex than a cubic function.

The parameter estimates from the six methods are presented in Table 4 which also includes
the analysis with a linear effect for EDU using the Zhou et al. (2002) method which is based
on the ODS data only. Overall, the point estimates from the above methods are similar. The
most obvious difference across the methods is that the standard error estimates from the
proposed methods (the P, cubic and restricted cubic spline) are much smaller for the
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covariates. This reflects the fact that these three methods utilized the real values of the
covariates in the entire study cohort while the others only used the fraction as weight in the
inference. In addition, we computed the values of the penalized log-likelihood function (3)
for these three methods, which are Qp = −150441.651, Qc = −150474.636, QR =
−150452.816 respectively corresponding to the P, cubic and restricted cubic spline methods,
indicating that the P method is more suitable for this CPP data set than the other two
methods. However, for practical purposes, the restricted cubic spline method is a viable
alterative in this case.

5 Discussion
In this paper we proposed a semiparametric regression model to analyze data obtained by
outcome dependent sampling. We only partially parametrize the relationship between the
response variable and the covariates. By combining the estimated semiparametric likelihood
and penalized spline techniques, we propose a penalized spline maximum likelihood
estimation method for the key parametric and nonparametric components. The resulting
estimators were shown to be consistent and asymptotically normal. In practice, our
penalized spline maximum likelihood estimation offers a few additional advantages. For
example, as a direct approach, penalized spline maximum likelihood estimates can be
obtained through standard penalized maximum likelihood estimation. The algorithm is
efficient and convergence is fast; moreover, as a global smoothing method, the penalized
spline maximum likelihood approach yields a parsimonious model, which is convenient for
inference and forecasting.

The smoothing parameter λ is used to balance goodness-of-fit and smoothness. Compared
with the restricted cubic spline, use of the penalized spline can help avoid undersmoothing
in some cases, e.g., large number of knots are needed when the nonparametric function has
many local mimima and maxima. We only focused on the setting where Z is univariate.
When Z is bivariate or multivariate, we can approximate the unknown function α(·) by
bivariate or multivariate basis functions (Ruppert, Wand and Carroll 2003). In addition,
when Z is bivariate or multivariate, to avoid excess dimensionality one can use structural
nonparametric regression models such as a varying-coefficient model, additive model, or a
single-index model. We believe the proposed penalized spline maximum likelihood
estimation can be extended to these corresponding semiparametric regression models
without significant modification.
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Appendix

Outline of Proofs for the Main Results
The asymptotic properties of the proposed estimators based on the estimated penalized
likelihood (3) and model (2) are summarized in the following theorems.

Theorem 1 Under some regularity conditions (Weaver and Zhou 2005), if the smoothing
parameter λ = o(1), then ζ ̂ is a strong consistent estimator of ζ.

Theorem 2 Under same regularity conditions above, if the smoothing parameter λ =
o(N−1/2), then ζ ̂ has asymptotic distribution,
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with

where dk = πk(1 − ρ0ρV) − ρkρV, πk = πk(β, α(·),GX,Z), ρk = limN→∞ nk/nV and ρV = limN→∞
nV /N,

Ek denotes expectation conditional on Y ∈ Ck,

and

A consistent estimator for Ω can be constructed using sample quantities.

Theorem 3 Under same regularity conditions above, if the smooth parameter λ = o(N−1/2),

then for testing the null hypothesis H0 : ψ(ζ) = 0, we have .

Proof of Theorem 1. Let the full-information log likelihood be

Then

According to the proof of Theorem 3.1 in Weaver (2001) it holds that
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Therefore, combining the fact that λ = o(1) we have ∂QN,λ(β, δ)/∂ζ →p 0 as N → ∞. In
addition,

According to the proof of Theorem 3.1 in Weaver (2001) it holds that

uniformly for ζ ∈ Θ as N → ∞. Therefore, combining the fact that λ = o(1) we have

Thus, if we let  we can apply Lemma 3.3 in Weaver (2001) to conclude

that  exists in the set Θ with probability approaching one as N → ∞, and since the
size of Θ is arbitrarily small, that ζ ̂ →p ζ. Furthermore, the sequence of estimators {ζ ̂} is

unique in the sense that any other sequence {ζ ̄} such that  and θ̄ = θ̂ must lie
outside of the set Θ with probability going to one as N → ∞.

Proof of Theorem 2. For consistent estimator ζ ̂, using a first order Taylor expansion near ζ
yields that

where ζ* is a vector between ζ ̂ and ζ. By standard manipulation, we have

Thus, to prove the asymptotic normality of , we need only show 

has an asymptotic normal distribution and that  converges in
probability to an invertible matrix.

According to the definition of QN,λ(β, δ) we have
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Note that λ = o(N−1/2). Therefore, we have  . Thus, by
the same argument as the proof of Theorem 3.2 ofWeaver (2001), we can show that
Theorem 2 holds.

Proof of Theorem 3. Note that when λ = o(N−1/2), the penalty term in R(ζ) tends to zero with
a rate of o(N−1/2). Then through the similar procedure for proof of the asymptotic
distribution of the classical likelihood ratio statistics, Theorem 3 can be obtained. We have
omitted the details here.
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Figure 1.
The estimated function α(·) in Cases 1 and 2 in the simulation studies. Left column: α̂P (z)
(solid line), α̂HT (z) (dashed line), α̂BC (z) (dash-dotted line) and true α(z)(bold dotted line).
Right column: The corresponding SEs of these estimators. Note that the notation α(·)
represents α(z).
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Figure 2.
The estimated function α(·) on EDU for CPP data. Plot a: the curve obtained by proposed
method; Plot b: the curve obtained by HT method; Plot c: the curve obtained by BC method;
Plot d: the curve obtained by MLE method based on the SRS sample; Plot e: the curve
obtained by the proposed method applied to the model considering α(·) as a cubic function.
f: the curve obtained by the restricted cubic spline maximum method conducted by
maximizing ℓ̂F (β, δ). Note that for plots (b)–(f), the curve by the proposed penalized spline
method is also plotted as background using dashed lines.
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