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Summary

Prior specification for non-parametric Bayesian inference involves the difficult task of quantifying 

prior knowledge about a parameter of high, often infinite, dimension. A statistician is unlikely to 

have informed opinions about all aspects of such a parameter but will have real information about 

functionals of the parameter, such as the population mean or variance. The paper proposes a new 

framework for non-parametric Bayes inference in which the prior distribution for a possibly 

infinite dimensional parameter is decomposed into two parts: an informative prior on a finite set of 

functionals, and a non-parametric conditional prior for the parameter given the functionals. Such 

priors can be easily constructed from standard non-parametric prior distributions in common use 

and inherit the large support of the standard priors on which they are based. Additionally, posterior 

approximations under these informative priors can generally be made via minor adjustments to 

existing Markov chain approximation algorithms for standard non-parametric prior distributions. 

We illustrate the use of such priors in the context of multivariate density estimation using Dirichlet 

process mixture models, and in the modelling of high dimensional sparse contingency tables.
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1. Introduction

Many real world data analysis situations do not lend themselves well to simple statistical 

models indexed by a finite dimensional parameter. This has led to the development of a rich 

class of non-parametric Bayesian (NP Bayes) methods, the general idea of which is to obtain 

inference under a prior that has support on the entire space of relevant probability 

distributions (Ferguson, 1973). These methods have been applied to a variety of problems, 
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such as density estimation (Müller et al., 1996), image segmentation (Sudderth and Jordan, 

2009), speaker diarization (Fox et al., 2011), regression and classification (Neal, 1999), 

functional data analysis (Petrone et al., 2009) and quantitative trait loci mapping (Zou et al., 

2010) to name only a few. This breadth of applications reflects the utility of NP Bayes 

methods in modern statistical data analysis.

Many NP Bayes methods are built on either the Dirichlet distribution (DD) for finite sample 

spaces or the Dirichlet process (DP) (Ferguson, 1973) for infinite sample spaces. For the 

latter, the body of work on parameter estimation (Escobar, 1994), density estimation and 

inference (Escobar and West, 1995) and the steady improvement in sampling methods 

(Escobar, 1994; Walker, 2007; Yau et al., 2011; Kalli et al., 2011) have all made the DP 

prior an attractive choice for many applications. For a given sample space , a DD or DP 

prior over distributions on  is parameterized in terms of a ‘base measure’ Q0 on  and a 

‘concentration parameter’ α. Although samples from the DP prior are discrete with 

probability 1, this prior is non-parametric in the sense that it has weak support on the set of 

all distributions having the same support as Q0. Analogously, the DD prior is NP in the 

sense that it has support on the entire -dimensional simplex. For both the DD and 

the DP, a large value of α corresponds to a prior concentrated near Q0. For the DP, a small α 

results in distributions with probability mass concentrated on only a few points, drawn 

independently from Q0. For the DD, a small α can result in mass being concentrated near the 

vertices of the simplex.

For many NP Bayes methods, the DP is used as a prior for a mixing distribution in a mixture 

model: the data are assumed to come from a population with density p(y∣Q) = ∫p(y∣ψ)Q(dψ), 

where {p(y∣ψ) : ψ ∈ Ψ} is a simple parametric family. A DP prior on Q results in a Dirichlet 

process mixture model (DPMM) (Lo, 1984; Escober and West, 1995; MacEachern and 

Müller, 1998). As Q is discrete with probability 1, the resulting model for the population 

distribution is a countably infinite mixture model, where the parameters in the component 

measures are determined by Q0, and the number of components with non-negligible weights 

is increasing in α.

Clearly, the choice of α and Q0 will have a significant effect on the prior for the population 

density, and potentially on posterior inference. Many applications include priors for the base 

measure (Escobar and West, 1995; Müller et al., 1996) and incorporate estimation of Q0 and 

α in the posterior inference. Other approaches have addressed the challenge of specifying Q0 

by applying empirical Bayes techniques to develop a point estimate for Q0 (McAuliffe et al., 

2006). Although it is common to give the base measure an overdispersed form in an attempt 

to avoid an unduly informative prior, such an approach is actually highly informative in 

favouring allocation to a single cluster unless α is appropriately adapted (Bush et al., 2010). 

The particular case of the DP prior illustrates the general challenge of incorporating prior 

information in an NP setting. The results of Yamato (1984) and Lijoi and Regazzini (2004) 

can be extended to adjust α and Q0 in normal DPMMs so that the induced prior expectation 

and variance of the population mean can be approximately specified (as will be discussed 

further in Section 3), although specification beyond the population mean is problematic. 

Moala and O’Hagan (2010) proposed a method to update a Gaussian process (GP) prior with 

expert assessments of the mean and other aspects of an unknown density. As with the DP 
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prior, the GP prior requires specification of the mean and covariance functions that 

characterize the GP. These provide a base for the prior in the same way that the Q0 base 

measure does for the DP prior. In the Moala and O’Hagan approach, elicitation of these 

quantities is derived from expert assessments of quantiles of the unknown distributions.

In this paper, we propose a very general method that allows for the combination of an 

arbitrary prior on a finite set of functionals with an NP prior on the remaining aspects of the 

high or infinite dimensional unknown parameter. In the next section we show how such a 

partially informative prior distribution can be constructed from the combination of any prior 

distribution on the functionals of interest with the conditional distribution of the parameter 

given the functionals under a canonical NP prior. We show that the resulting marginally 

specified prior (MSP) inherits desirable features from the canonical prior: the MSP will 

generally share the support of the canonical prior, and posterior approximation under the 

MSP can typically be made via small modifications to any Markov chain Monte Carlo 

(MCMC) algorithm that is applicable under the canonical prior.

In Section 3 we illustrate the use of the MSP in the context of multivariate density 

estimation using normal DPMMs. In an example, we show that existing approaches to 

incorporate prior information on the mean and covariance in DPMMs lead to poor density 

estimates relative to marginally specified priors unless the parametric base model is an 

accurate approximation.

In Section 4 we examine the important problem of NP Bayes analysis of large sparse 

contingency tables in the presence of prior information on the margins. In this context, we 

develop a marginally specified prior from a canonical NP Bayes approach. In an example, 

we illustrate how canonical NP Bayes methods that are designed to be informative on the 

margins result in poor performance in terms of margin-free functionals (such as dependence 

functions). In contrast, an MSP accommodates prior information about the population 

margins while being minimally informative about other aspects of the population, resulting 

in strong performance in terms of both marginal and margin-free aspects of the population. 

A discussion of the results and directions for future research follows in Section 5.

Computer code to replicate the results can be obtained from http://wileyonlinelibrary.com/

journal/rss-datasets

2. Marginally specified priors: construction and computation

We consider the general problem of Bayesian inference for a parameter f belonging to a high 

or infinite dimensional space . For example, Section 3 considers multivariate density 

estimation over the space of all densities on  with respect to Lebesgue measure, and 

Section 4 considers the high dimensional space of multiway contingency tables. In general, 

Bayesian inference for f is based on a posterior distribution π(f ∈ A∣y) derived from a 

sampling model  and a prior distribution π defined on a σ-algebra  of . 

In many high dimensional problems there are only a few classes of priors for which 

posterior inference is tractable. Typically, practitioners choose a member π0 of such a class 

on the basis of support considerations and the feasibility of posterior approximation, rather 

than on how well it accurately represents any information that we have about specific 
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features of f. In this section, we show how to construct an NP prior π1 that is informative 

about specific features of f but has the same support as π0 and is ‘close’ to π0 in terms of 

Kullback–Leibler divergence. We also show how MCMC approximation methods for π0 can 

be modified to obtain posterior inference under π1.

2.1. Construction of a marginally specified prior

Let θ = θ(f) be a function of f, such as a population mean of p(y∣f), variance, marginal 

probability vectors or some finite set of functionals, and let Θ be the range of θ. Any prior 

distribution π0 on  induces a prior distribution P0 on  defined by

(1)

for each . If π0 is chosen for computational convenience, the induced prior P0 need 

not show substantial agreement with available prior information P1 for the functional θ(f). In 

some cases a prior π0 that is selected from a computationally feasible class will make the 

induced prior P0 similar to P1. The results of Lijoi and Regazzini (2004) and Yamato (1984) 

provide some guidance for DP priors if the functionals are means, but in general this will be 

difficult. Furthermore, depending on the structure of the NP class, selecting π0 to match P0 

to P1 will result in π0 being inappropriate for other aspects of f. We present an example in 

Section 3 to illustrate a case where making π0 highly informative about θ(f) also makes it 

highly informative about other aspects of f.

Suppose that an NP prior π0 has been identified that is viewed as reasonable in some 

respects, such as being computationally feasible and having a large support, but does not 

represent available prior information P1 about θ. The information in P1 can be 

accommodated by replacing P0, the θ-margin of π0, with the desired margin P1. Specifically, 

an MSP π1 for f is obtained by combining the conditional distribution of f given θ with our 

desired marginal distribution P1 for θ, so that

(2)

where Λ0(A∣θ) is the conditional probability of A given θ under π0. A prior π1 that is 

constructed this way should have the desired marginal distribution P1 over  and, if P1 

⪡ P0, should also have the same support as π0, since the conditional probabilities under π1 

should match those under π0.

Such a construction is straightforward if f is finite dimensional. Accommodation of NP 

problems where f is potentially infinite dimensional requires some additional mathematical 

detail. We consider the case where  are the Borel sets of a Hausdorff space , and 

 is a measurable map with respect to a σ-algebra  on Θ. Let the prior π0 be a 

regular probability measure on , and let P0 be the induced prior distribution on 

, i.e., for all .

2.1.1. Example (Dirichlet process mixture model)—Recall the DPMM prior, defined 

by
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where  is a collection of absolutely continuous probability densities over 

some Euclidean space  and Q0 is an absolutely continuous probability measure over . 

The random mixing measure Q has a representation as an infinite weighted sum of point 

mass measures, Q =dΣwkδψk, where ψ = {ψ1, ψ2, …} are an infinite independent and 

identically distributed (IID) sample from Q0, and wk = vkПj<k (1 − vj), with v = {v1, v2, …}, 

are an infinite IID sample from a beta(1, α) distribution. Therefore the prior over Q can be 

represented as a prior over . This space, with the usual product topology, is Hausdorff. 

Now let θ be a moment of p(y∣Q), so that

The function θ is Borel measurable as long as p(y∣ψ) is measurable in ψ for each .

Returning to the marginally specified prior given by equation (2), note that π0(A∣θ) is not 

well defined on null sets of P0. To make equation (2) meaningful, we restrict attention to 

informative prior distributions such that P1 is dominated by P0. Under this condition and the 

conditions on  and θ given above, the measure π1 on  is well defined and the θ-

marginal of π1 is given by P1.

Theorem 1: Let  be a conditional probability function for π0 given 

θ and let P1 be a probability measure on  such that P1 ⪡ P0. Then , 

defined by

a. is a probability measure over ,

b. satisfies π1({f : θ ∈ B}) = P1(B) for each  and

c. is dominated by π0 with Radon–Nikodym derivative

For notational economy, we have used θ to represent both an element of Θ and as the 

function mapping  to Θ, depending on the context. A proof of theorem 1 is provided in 

Appendix A.
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The MSP π1 that was constructed above is dominated by π0, but ideally we would like it to 

have the same support as π0. Since π1 and π0 share conditional distributions, intuitively it 

seems that π1 should have reduced support relative to π0 only if P1 has reduced support 

relative to P0. This result can be shown with the aid of the Radon–Nikodym derivative given 

above, which implies that π1(A) can be computed as

where p1 and p0 are densities of P1 and P0 with respect to some common dominating 

measure (which could be taken to be P0, for example). On the basis of this identity, we have 

the following result.

Lemma 1: Suppose that P1 ⪡ P0 ⪡ P1. Then π1 ⪡ π0 ⪡ π1.

Proof: It is clear from the definition of π1 that π1 ⪡ π0. To show π0 ⪡ π1, let  be a 

set such that π1(A) = 0. We shall show that P0 ⪡ P1 implies that π0(A) = 0. Let Bj = {θ : 

pj(θ) > 0} and Aj = {f : θ(f) ∈ Bj} so that πj(Aj) = Pj(Bj) = 1 for j ∈ {0, 1}. We have

(3)

Since p1/p0 > 0 on A0 ⋂ A1, equation (3) implies that π0(A ⋂ A0 ⋂ A1) Since π0(A0) = 1, we 

have . Since  and P0 ⪡ P1, we 

must have , and so π0(A) = 0.

We also note that π1 has a characterization as the prior distribution that is closest to π0 in 

terms of Kullback–Leibler divergence, among priors with θ-marginal density equal to p1. 

This follows from re-expressing the probability measures π1 and π0 in terms of densities 

with respect to a common dominating product measure, so that

for k ∈ {0, 1}. The Kullback–Leibler divergence is then

Fixing p1, the divergence is minimized by setting λ1(f∣θ) = λ0(f∣θ) for θ almost everywhere 

P1, i.e. matching the conditional distributions, giving D(π1∥π0) = D(P1∥P0).

Lemma 2: Let P1 ⪡ P0. Then, among probability measures π1 on  with θ-marginal 

equal to P1, the Kullback–Leibler divergence of π0 from π1 is minimized when π1(A) = ∫ 

Λ0(A∣θ)P1(dθ) for all  and θ almost everywhere P1.
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A more detailed derivation of this result is given in Appendix A.

2.2. Posterior approximation under marginally specified priors

Let  be a dominated statistical model, i.e. a family of probability densities 

with respect to a common measure. Given a prior distribution π, inference for 

proceeds via the conditional probability distribution , or alternatively the 

conditional density π(f∣y), given by

where π(f) denotes the density of π with respect to a dominating measure μ. This represents 

the conditional measure in that ∫Aπ(f∣y)μ(df) is a version of the conditional probability 

π(A∣y) for each .

For practical reasons the most commonly used priors are those for which there are 

straightforward Gibbs samplers or Metropolis–Hastings algorithms for posterior 

approximation. In many cases, simple modifications to these algorithms will allow for the 

incorporation of informative priors over functionals of interest. To illustrate, suppose that 

under prior π0 we have a Gibbs sampler for a high dimensional parameter f. Recall that the 

Gibbs sampler can be viewed as a Metropolis–Hastings algorithm for which the proposals 

are accepted with probability 1. From this perspective, a Gibbs sampler for approximating 

the posterior density π0(f∣y) is constructed from proposal distributions with densities J(f*∣f, 

y) that are proportional to the posterior density, so that

(4)

For example, decomposing f as {f1, … , fK}, the full conditional distribution π0(fk∣f−k, y) is 

one such proposal distribution.

Posterior approximation of π1(f∣y) can proceed by using the proposal distributions of the 

Gibbs sampler for π0(f∣y), but adjusting the acceptance probability. Specifically, the 

algorithm for approximating π1(f∣y) proceeds by iteratively simulating proposals f* from 

distributions of the form J(f*∣f, y) which satisfy equation (4), and accepting each proposal f* 

with probability 1 ∧r
MH, where

Let the θ-marginal distribution of π0 be P0, and let π1 be an MSP based on π0 and a θ-

marginal distribution P1 ⪡ P0. Let p0 and p1 be the densities of P0 and P1 with respect to a 
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common dominating measure. By theorem 1, π1(f)=π0(f) = p1(θ)=p0(θ) and the acceptance 

ratio simplifies to

Similarly, an approximation algorithm for π1(f∣y) can be constructed from a Metropolis–

Hastings algorithm for π0(f∣y) via the same adjustment. Suppose that we have a proposal 

distribution J(f*∣f, y) such that the acceptance ratio  for π0 is computable:

The Metropolis–Hastings algorithm for approximating π1(f∣y) using J(f*∣f, y) has acceptance 

ratio

These results show that an MCMC approximation to π1(f∣y) can be constructed from an 

MCMC algorithm for π0(f∣y) long as the ratio p1(θ)/p0(θ) can be computed. The value of 

p1(θ) for each θ ∈ Θ is presumably available as p1 is our desired prior distribution for θ. In 

contrast, obtaining a formula for p0(θ) will be difficult in some settings. In situations where 

the dimension of θ is moderate, one simple solution is to obtain a Monte Carlo estimate of 

p0 based on samples of f from π0. Specifically, we can obtain an IID sample {θ(s) = θ(f(s)), s 

= 1, … , S} from f(1), … , f(S)~IID π0, and then approximate p0 with a kernel density estimate 

or flexible parametric family. The method of approximation will depend on the nature of θ; 

the approaches just described are appropriate when p0(θ) is absolutely continuous with 

respect to Lebesgue measure. Note that this can be done before the Markov chain is run, so 

that the same estimate of p0 is used for each iteration of the algorithm.

In situations where obtaining a reliable estimate of p0 is not feasible, it is still possible to 

induce a prior p1 that is approximately equal to a target prior , as long as p0 is chosen to be 

flat compared with . This can be done by replacing p0, the θ-marginal density of π0, with 

. This defines a valid probability density as long as 

 is integrable, which is so, for example, if either density is bounded. In terms of the 

MCMC approximation to the resulting marginally specified prior π1, the adjustment to the 

acceptance ratio is then
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which is presumably computable as  is the desired prior density. In this setting,  contains 

the marginal prior information and p1 takes on a form with computational convenience.

The algorithm proposed is closely related to importance sampling methods described in the 

literature. Besag et al. (1995) detailed an importance-sampling-based approach for assessing 

prior sensitivity. In this development, an existing MCMC chain {θ(t)} is weighted by using 

the ratios ∣, where h(·) is the original prior used to produce the sample and  is an 

alternative prior. The similiarity with our proposed method and its use of ratios of the 

marginally specified prior p1 to the induced prior p0 is clear; one important distinction is that 

our method replaces an induced prior on functionals with an elicited prior on those 

functionals, rather than substituting a prior in the main specification.

3. Density estimation with marginally adjusted Dirichlet process mixture 

model

Perhaps the most commonly used NP Bayes procedure is the DPMM (Lo, 1984; Escobar 

and West, 1995; MacEachern and Müller, 1998). The DPMM consists of a mixture model 

along with a DP prior for the mixing distribution. The population density to be estimated 

and the prior can be expressed as

where α and Q0 are hyperparameters of the DP prior, with Q0 typically chosen to be 

conjugate to the parametric family of mixture component densities, p(y∣ψ) : ψ ∈ Ψ}, to 

facilitate posterior calculations. In this section we show how to obtain posterior 

approximations under an MSP π1 on the basis of a DPMM. The approach is illustrated with 

the specific case of multivariate density estimation, for which we take the parametric family 

to be the class of multivariate normal densities. In an example analysis of the well-known 

bivariate data set on eruption times of the Old Faithful Geyser, we construct a prior 

distribution π1 based on the multivariate normal DPMM with a marginally specified 

informative prior on the marginal means and variances. Here, we use a parametric 

approximation for the induced joint distribution p0 of these specific functionals θ. Inference 

under π1 is compared with inference under two standard DPMMs: one where the 

hyperparameters are chosen to be informative about θ and another where the 

hyperparameters are non-informative.

3.1. Posterior approximation

Given a sample y1, … , yn ~IID p(y∣Q), posterior approximation for conjugate DPMMs is 

often made with a Gibbs sampler that iteratively simulates values of a function that 

associates data indices with the atoms of Q. In a DPMM, since Q is discrete with probability 

1, a given mixture component (atom of Q) may be associated with multiple observations. 

Let g : {1, … , n} → {1, … , n} be the unknown mixture component membership function, 

so that gi = gj means that yi and yj came from the same mixture component. Note that g can 

always be expressed as a function that maps {1, … , n} onto {1, … , K}, where K ≤ n. 
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Inference for conjugate DPMMs often proceeds by iteratively sampling each gi from } its 

full conditional distribution p(gi∣y1, … , yn, g−i) (Bush and MacEachern, 1996). Additional 

features of Q and p(y∣Q) can be simulated given g1, … , gn and the data.

This standard algorithm for DPMMs can be modified to accommodate an MSP distribution 

on a parameter θ = θ(Q). Let f = {g, θ} and let π0 be the prior density on f induced by the DP 

on Q. Our marginally specified prior is given by π1(f) = π0(f)p1(θ)/p0(θ), where p0 is the 

density for θ induced by π0, and p1 is the informative prior density. An MCMC 

approximation to π1(f∣y1, … , yn) can be obtained via the procedure that was outlined in 

Section 2.2. Given a current state of the Markov chain f = {θ, gi, g1, … , gi−1, gi+1, … , gn} 

= {θ, gi, g−i}, the next state is determined as follows.

Step 1: generate a proposal  from π0(θ, gi∣g−i, y) = π0(gi∣g−i, y)π0(θ∣g, y) by

a. generating  and

b. generating .

Step 2: set the value of the next state of the chain to f* with probability

otherwise let the next state equal the current state.

This procedure is iterated over values of i ∈ {1, … , n}, possibly in random order, and 

repeated until the desired number of simulations of f is obtained. Note that steps 1(a) and 

1(b) compose a standard Gibbs sampler for the DPMM in which posterior inference for θ is 

provided, although typically we would simulate θ only once per complete update of g1, … , 

gn. The algorithm for the marginally specified prior π1 requires that θ be simulated with 

each proposed value of gi so that the acceptance probability in step 2 can be calculated.

Implementing the steps of this MCMC algorithm involves two non-trivial computations: 

simulation of θ from π0(θ∣g, y), and calculation of p0(θ) to obtain the acceptance probability. 

General methods for the latter were discussed in Section 2.2. For the former, we suggest the 

use of a Monte Carlo approximation to Q based on a representation of DPs due to Pitman 

(1996). Let K be the number of unique values of g1, … , gn and let nk be the number of 

observations i for which gi = k. If Q0 is conjugate, then the parameter values ψ(1), … , ψ(K) 

corresponding to the mixture components can generally be easily simulated. Corollary 20 of 

Pitman (1996) gives the conditional distribution of Q given ψ(1), … , ψ(K) and counts n1, … , 

nK as
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where γ ~ beta (n, α), w ~ Dirichlet(n1, … , nK) and . A Monte Carlo 

approximation to Q, and therefore any functional of Q, can be obtained via simulation of a 

large number S of ψ-values from Q. To do this, we first simulate γ and w1, … , wK from 

their beta and Dirichlet full conditional distributions. From these values we sample cluster 

memberships for a sample of size S from Q by using a multinomial(S, {γw1, … , γwK, 1 − γ) 

distribution. Note that the count s for the (K + 1)th category represents the number of ψ-

values that must be simulated from . To obtain the sample from  we run a Chinese 

restaurant process of length s and then generate the unique ψ-values from Q0 for each 

partition. This can generally be done quickly for two reasons: first, the expected number of 

samples that is needed from  is only Sα/(α + n). For example, with S = 1000, n = 30 and α 

= 1, we expect to need only about s = 32 simulations from . Second, the number of unique 

values in a sample of size s from  is only of order log(s), which will generally be 

manageably small.

The marginal sampler that we described above has advantages in terms of efficiency and 

convergence rates (MacEachern, 1994). However, because it does marginalize out the 

random measure Q, we must use the embedded Pitman method to draw samples from θ(Q) 

to evaluate the Metropolis–Hastings ratio. An alternative approach is to use a stick breaking 

representation that does not integrate out the random measure. We can then use a slice 

sampler (Kalli et al., 2011) or exact block Gibbs sampler (Yau et al., 2011) and compute 

θ(Q) without needing an embedded sampling step, but at the possible expense of lower 

efficiency in the sampler.

3.2. Example: Old Faithful eruption times

The Old Faithful data set consists of 272 bivariate observations of eruption times and 

waiting times between eruptions, both measured in minutes. To illustrate and evaluate the 

MSP methodology we construct two subsets of these data: a random sample of size n0 = 30 

from which we obtain prior information and a second, non-overlapping random sample of 

size n = 30 representing our observed data. The random samples were obtained by setting 

the random seed in R (version 2.14.0) to 1, sampling the prior data set, and then sampling 

the observed data set from the remaining observations. The observed sample had marginal 

means (2.97, 64.2) and marginal variances (1.29, 206.7). The prior sample had marginal 

means (3.54, 71.9) and marginal variances (1.24, 134.9). For the purpose of this example, 

we view the full data set of 272 observations as the true population. A scatter plot of the 

observed data and marginal density estimates are shown in Fig. 1. The observed data set 

consisting of n = 30 observations clearly captures the bimodality of the population. 

However, the marginal plots indicate that the sample has overrepresented one of the modes.

Suppose that our knowledge of the prior sample is limited to the bivariate marginal sample 

means  and sample variances . In such a situation it would be desirable 

to construct a prior density p1 over the unknown population marginal means m and variances 

v on the basis of the values of m0, v0 and n0, and to combine this information with the 

information in our fully observed sample to improve our inference about the population. 

Incorporating this information with conjugate priors would be straightforward if our 
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sampling model were bivariate normal, but it is difficult in the context of a DPMM. 

Proposition 5 of Yamato (1984) indicates that, if the base measure Q0 in the DP prior is 

multivariate normal(μ0, Σ0), then the induced prior distribution on the mean ∫xQ(dx) is 

approximately multivariate normal{μ0, Σ0/(α + 1)}. This result is not directly applicable to 

the multivariate normal DPMM for two reasons, one being that Q represents the mixing 

distribution and not the population distribution, and the other being that in the conjugate 

multivariate normal DPMM the parameter ψ in the mixture component consists not just of a 

mean μ but also a covariance matrix Σ. Specifically, in the conjugate p-variate normal 

DPMM, the density q0 of the base measure Q0 for ψ = (μ, Σ) is given by

(5)

where the functions on the right-hand side are the multivariate normal and inverse Wishart 

densities, the latter being parameterized so that E[Σ] = S0/(ν0 − p − 1). Given a choice for α 

it is possible to obtain values of the hyperparameters (μ0, κ0, S0, ν0) so that the induced prior 

distributions on the population mean

and variance

have the following properties:

(6)

Here, m0 is the desired prior mean and V0 is the desired prior covariance matrix, derived 

from the marginal prior information. Within the context of the DPMM, it is difficult to 

specify the prior on V(Q) separately from that on m(Q). We construct three different NP 

prior distributions for a comparative analysis of the Old Faithful data.

a. Informative DPMM : the base measure density q0 is as in expression (5) with (μ0 

= m0, κ0 = n0/(α + 1), ν0 = n0, S0 = ν0V0), where the diagonal of V0 is v0, the 

marginal variances from the prior sample, and the correlation is equal to the sample 

correlation from the observed data. This results in a prior on Q satisfying properties 

(6), thereby utilizing the prior information.

b. Non-informative DPMM : the base measure density q0 is as in expression (5) 

with , where  is the sample mean from the 

n = 30 values in the observed sample and Sy is sample covariance matrix. This prior 

does not use information from the prior sample and is designed to promote relative 
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diffuseness of the induced prior on the marginal population means and variances. 

Using sample moments for the hyperparameters weakly centres the prior near the 

observed data. We can view this as a type of ‘unit information’ prior (Kass and 

Wasserman, 1995).

c. MSP π1: letting θ = (m1, m2, v1, v2) be the unknown population means and 

marginal variances, we construct an MSP by replacing the θ-margin of  with 

, a product of two univariate normal and two inverse gamma densities, chosen 

to match the prior on θ induced by  as closely as possible.

Fig. 2 compares p1 with kernel density estimates of the marginal priors induced by , 

showing that  and π1 have very similar θ-margins, but otherwise π1 matches the more 

diffuse prior . We can give π1 any θ-margin we wish, but matching the margins of  and 

π1 facilitates comparison. The hyperparameter α was set to 1 for all the above prior 

distributions. To evaluate the Metropolis–Hastings ratios when approximating the posterior 

distribution under π1, we found that a skewed multivariate t-distribution provided a very 

accurate approximation to the joint distribution of the marginal means and log-variances 

induced by . Via a change of variables, this provides an accurate approximation to p0(θ), 

with which the acceptance probability is computed for approximation of π1(f∣y). Fig. 3 gives 

an assessment of the adequacy of this approximation, comparing a smoothed density 

estimate of random draws from the approximated p0 with a smoothed density estimate of 

random draws from the true p0 induced by .

We ran Markov chains of length 25000 under each prior, with parameter values being saved 

every 10th iteration, resulting in 2500 simulated values of each parameter with which to 

make posterior approximations. The chains showed no evidence of non-stationarity and 

mixed well under each prior: on the basis of the dependent MCMC sequences of length 

2500, the equivalent numbers of independent observations of θ (i.e. the effective sample 

sizes) were estimated as above 2000 for each element of θ and under each prior. We did 

sample from the posterior under π1 by using a stick breaking representation and a slice 

sampler. The results were not markedly different from those obtained by using the marginal 

sampler. This slice sampling approach required dependent MCMC sequences of length 

550000 to achieve an effective sample size of 2500; computational time per independent 

sample was 95% that of the marginal sampler.

Posterior predictive distributions under the three priors are shown in Fig. 4. The informative 

DPMM provides a poor representation of the population distribution, given in light grey 

contours. This is primarily a result of having to set the κ0-hyperparameter to be moderately 

large (κ0 = 15) to obtain the desired informative prior variance for the population mean m = 

(m1, m2). Unfortunately, setting this parameter so high means that values of μ in the mixture 

model are tightly concentrated around m0, and so the multimodality is not captured. In 

contrast, the posteriors under the non-informative DPMM  and the MSP π1 can capture the 

multimodality of the population.
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Fig. 5 gives marginal density estimates under the various priors. Fig. 5 suggests that the 

posterior under π1 is better at representing the underlying population than the posteriors 

under the other priors. Recall that the observed sample contains an unrepresentative number 

of low valued observations. The posterior under the non-informative prior  uses only the 

observed data and thus is equally unrepresentative of the population. In contrast, π1 can use 

some information from the prior sample and is therefore more representative of the 

population.

Finally, the marginal posterior distributions of the marginal parameters m and log(v) are 

given in Fig. 6. The priors are given in grey and the resulting posterior distributions are 

given in black. The population values based on the full set of 272 observations are given by 

grey vertical lines. Across all parameters, π1 gives posteriors that are most concentrated 

around the population means. Note that the difference between the priors and the posteriors 

under  is not that large. We conjecture that this is primarily a result of the fact that, under 

, most observations are estimated as coming from the same mixture component, thereby 

overestimating the entropy, when in fact the data are bimodal. In contrast, π1 can recognize 

the bimodality and obtain improved estimates of the marginal densities.

In this example, we have shown that efforts to make the canonical DPMM informative in 

terms of marginal means and variances leads to poor density estimates, whereas a non-

informative DPMM leads to suboptimal estimates of functionals because of its inability to 

incorporate prior information. In contrast, a marginally specified prior can both incorporate 

prior information and provide accurate density estimation.

4. Marginally specified priors for contingency table data

Even when multivariate categorical data include only moderate numbers of variables and 

categories, large or full models that allow for complex or arbitrary multivariate dependence 

can involve a very large number of parameters. For example, a full model for the (2 × 3 × 2 

× 8 × 12)-way contingency table data that we consider later in this section requires a 1151-

dimensional parameter. One Bayesian approach to the analysis of such data is via model 

selection between reduced log-linear models (Dawid and Lauritzen, 1993; Dobra and 

Massam, 2010). However, model selection can be difficult even for moderate numbers of 

variables and categories, owing to the large number of models with low posterior probability 

and the resulting difficulty in completely exploring the model space. An alternative NP 

Bayes approach was provided by Dunson and Xing (2009), who developed a prior based on 

a DP mixture of product multinomial distributions. Such a prior has full support on the 

parameter space but concentrates prior mass near simple submodels. One drawback to this 

approach is the lack of a straightforward method for incorporating the type of marginal prior 

information that is frequently available for categorical data.

In this section we consider an alternative NP Bayes approach based on a marginal 

adjustment to a standard Dirichlet prior distribution. This approach is computationally 

straightforward and allows for the incorporation of prior information on specific functionals 

of the unknown population distribution, such as the univariate marginals.
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4.1. The canonical Dirichlet prior

Multivariate categorical data consist of observations yi = (yi1, … , yip), for which yij ∈ {1, 2, 

… , dj} for j = 1, … , p. A p-way contingency table is a common representation for such 

data, in which each cell of the table indicates the count of observations yi such that yi1 = c1, 

… and yip = cp for a specific response vector c = (c1, … , cp). The sampling model for a 

contingency table can be expressed as a multinomial distribution, where for each cell 

 we define fc ≡ Pr(yi1 = c1, … , yip = cp). The full model 

of all distributions for the data can then be indexed by the parameter , which 

lies in the (Пdj − 1)-dimensional simplex. Given n IID observations, the likelihood is

for which a standard conjugate prior is the Dirichlet distribution with hyperparameter 

. This is an NP prior in the sense that it gives full support on the space of 

possible values of f.

The Dirichlet prior is an appealing choice computationally because of its conjugacy, but this 

convenience can have undesirable side effects. In particular, choosing an uninformative 

Dirichlet prior for f induces substantial informativeness about the marginals {θ1, … , θp}, 

where θj = {θj1, … , θjdj} = {Pr(yij = 1∣f), … , Pr(yij = dj∣f)}. For example, setting αc = 1 for 

each cell  results in a uniform prior distribution for f, which is often used as a default 

prior distribution in the absence of prior information. However, the induced prior on the 

marginals θ1, … , θp is highly informative: the marginalization properties of the Dirichlet 

distribution result in θj ~ Dirichlet(Пk ≠ j dk, … , Пk ≠ j dk), which is generally highly 

concentrated around the uniform distribution on {1, … , dj}. However, it is reasonably 

straightforward to choose values of αc to induce particular marginal Dirichlet priors on the 

θjs, although each marginal prior must have the same concentration, but this approach to 

constructing an informative prior for the margins necessarily induces a prior over the 

remaining aspects of f, such as the dependence structure, that could be undesirably 

informative.

4.2. A marginally specified prior

To overcome these undesirable features of the Dirichlet prior, we construct an NP prior on f 

based on a Dirichlet distribution with a low total concentration, but with the induced 

marginal priors for θ1, … , θp replaced with informative priors to reflect known information. 

Specifically, our prior for f takes the form
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where π0(f) is a Dirichlet(α0, … , α0) distribution on the (Пdj − 1)-dimensional simplex and 

p1j is an informative Dirichlet distribution on a (dj − 1)-dimensional simplex. Recall from 

Section 2 that the MSP π1 is the closest distribution in Kullback–Leibler divergence to π0 

that has the desired priors on θ1, … , θp. Also note that the methodology does not require 

that these induced priors be Dirichlet, although making them so will facilitate comparison 

with an informative Dirichlet prior distribution on f in the example data analysis that 

follows.

Estimation of f via the posterior distribution π1(f∣y) can proceed via an MCMC algorithm. 

As in the previous section, we modify an MCMC algorithm for simulating from π0(f∣y), the 

posterior under the canonical NP prior, to obtain simulations from π(f∣y), the posterior under 

the marginally specified prior. Our particular MCMC scheme relies on the representation of 

a Dirichlet-distributed random variable as a set of independent gamma variables scaled to 

sum to 1, i.e., if Zc ~ gamma(αc, 1) and fc = Zc/ΣZc’, then f ~ Dirichlet . We 

employ an MCMC algorithm that is based on simulating proposed values of 

 from a normal distribution centred at the current values. Because of the 

high dimension of the parameter f, proposing changes to every element of f simultaneously 

results in low rates of acceptance. To avoid this problem, at each iteration of the algorithm 

we propose changes to randomly chosen subvectors of f. The steps in a single iteration of the 

MCMC algorithm are then as follows.

Step 1: generate a proposal ,

a. randomly sample a set of cells ;

b.
simulate proposals ;

c. compute the corresponding f* and marginal probabilities .

Step 2: compute the acceptance ratio r = r0r1 from r0, the acceptance ratio for f under π0, 

and r1, the marginal prior ratio:

Step 3: accept  with probability 1 ∧ r.

Note that the ratio r0 includes the Jacobian of the transformation from Z to ln(Z), as the 

proposal distribution is symmetric on the log-scale. The number of cells  to update at 

each step and the variance parameter δ in the proposal distribution can be adjusted to 

achieve target acceptance rates.

As mentioned above, we take p1 to be a product of Dirichlet densities representing prior 

information about the margins θ1, … , θp. To calculate r1 we must also compute the 

corresponding joint distribution p0 of θ1, … , θp under the Dirichlet distribution π0 on f. We 
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approximate p0 by the product of the prior marginal densities of θ1, … , θp under π0, each of 

which are Dirichlet. However, we note that the θjs are only approximately independent of 

each other under π0.

4.3. Example: North Carolina public use microdata sample data

We evaluate the performance of the MSP and several associated priors in terms of their 

performance under the scenario of a researcher with accurate prior information about the 

marginal distributions of the p categorical variables. Our scenario is based on data from the 

public use microdata sample of the American Community Survey, which is a yearly 

demographic and economic survey. We consider data on gender (male or female: d1 = 2), 

citizenship (native, nat uralized or non-citizen: d2 = 3), primary language spoken (English or 

other: d3 = 2), class of worker (d4 = 8) and mode of transportation to work (d5 = 12), from 

40769 survey participants. The last two variables are each dominated by a single category: 

‘employee of private company’ (63.75%) for worker class and ‘car, truck or van’ (91.97%) 

for transportation. These classifications yield a five-way contingency table with 

cells. From these data we constructed a true joint distribution  and marginal frequencies 

by filling out the multiway contingency table with the public use microdata sample data, 

replacing zero counts in the contingency table with small fractional counts, and normalizing 

the resulting counts to produce a probability distribution over . We then simulated smaller 

data sets of various sample sizes from  and obtained posterior estimates for each under 

three different prior distributions.

a. The informative Dirichlet prior  is a Dirichlet distribution with parameter , 

where  and  is in the -simplex. Using the method of Csiszár (1975), 

the prior mean  of f was chosen to be the frequency vector that was closest in 

Kullback–Leibler divergence to the uniform distribution on  among those with 

margins equal to . The induced marginal prior on each θj is then Dirichlet

which has prior expectation  as desired. Note that the concentration 

hyperparameter αI is the same as that for a uniform prior on the simplex.

b. The non-informative Dirichlet prior  is a Dirichlet distribution with parameter 

, where  and . This prior has the same prior 

expectation as the uniformprior on the -simplex, but a smaller prior 

concentration by a factor of .

c. The MSP π1 was constructed by replacing the marginal prior for θ induced by 

with the marginal prior under . (To compute acceptance ratios,we have used a 

product of independent Dirichlet distributions corresponding to the marginal 

distributions induced by  to approximate p0. The adequacy of the approximation 

to p0 is assessed in Fig. 7 through a comparison of smoothed density estimates of 

random draws from the approximated p0 with smoothed density estimates of 

random draws from the true p0 induced by .
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We used the true joint distribution  to generate 200 replicate data sets of sizes n ∈ {100, 

1000, 5000, 10000, 20000, 40000}. The - and -priors are conjugate to themultinomial 

likelihood, and so their posterior distributions are available in closed form. For estimation 

under π1, the MCMC algorithm that was described above was run for 3 × 106 iterations for 

each simulated data set. The acceptance rate varied with the sample size n, from 89% at n = 

100 down to 63% at n = 10000. Effective sample sizes corresponding to thinned Markov 

chains based on every 500th iterate were obtained and were found to be around 1000 (based 

on thinned chains of length 6000).

For each simulated data set and prior we obtain posterior mean estimates  which we 

compare with the true values  that were used to generate the simulated data. To 

evaluate , we use an average of the absolute value of the Kullback–Leibler divergence 

between the true marginal distributions  and the estimated marginal 

distributions :

Smaller values of M indicate better performance with respect to this marginal metric.

To assess the performance of  on aspects of f other than the marginal distributions, we 

compared the true and estimated values of the local dependence functions (LDFs) of the 

 separate two-way marginal distributions. These LDFs describe the two-way 

dependences between the variables and are invariant to changes in the marginal distributions 

(Goodman, 1969). The LDFs are formed from cross-product ratios of f as follows: letting 

, we define

For each simulated data set and prior distribution, we computed the average squared error 

between  and  as

Smaller values of L indicate better performance in terms of representing the two-way 

dependence structure of the true distribution .
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Fig. 8 shows the M and L performance metrics for each prior and simulated data set, with the 

averages over simulations at each sample size joined by lines. The sample sizes are 

displayed ordinally, with a slight horizontal shift for each prior so that the results under 

different priors can be distinguished. Not surprisingly, the estimates of θ under  and π1 

outperform those under , as these former two priors were designed to have correct prior 

expectations for θ. The initial non-monotonic trend in the performance of  with sample 

size is because  has exactly correct prior expectation. If the sample size were 0, then M 

would be 0 as well. In contrast, Fig. 8(b) indicates that  provides poor estimates of the 

dependence functions: at all sample sizes, this prior underperforms compared with the other 

two, demonstrating the cost of making  directly informative about the marginals. In 

contrast,  and π1 have very comparable performance in terms of estimation of the 

dependence functions. These comparisons, using both the marginal and the margin-free 

performance metrics, highlight the desirable properties of the marginally specified prior 

formulation: an MSP π1 can represent prior information about specific functionals θ of the 

high dimensional parameter f without being overly informative about other aspects of the 

parameter.

5. Discussion

NP priors for a high dimensional parameter f based on DPs or Dirichlet distributions do not 

easily facilitate partial prior information about arbitrary functionals θ = θ(f). Attempts to 

make such priors informative about θ can make the prior undesirably informative = about 

other aspects of f.

In this paper, we have presented a simple solution to this problem, via construction of an 

MSP that can induce a target marginal prior on a functional θ but is otherwise as close as 

possible to a given canonical ‘non-informative’ NP prior. We have provided general 

posterior approximation schemes for such priors, based on simple modifications to standard 

MCMC routines for canonical NP priors. In two examples we have shown that the MSP 

behaves as expected: given accurate prior information, the MSP provides improved 

estimation for θ compared with non-informative priors, while providing similar or better 

estimation performance for other aspects of the unknown parameter f.

One barrier to the adoption of MSPs is that the posterior approximation schemes that we 

have presented require that the ratio p1(θ)/p0(θ) be computable, where p1 is the desired 

informative prior for θ and p0 is the prior induced on θ by a canonical prior π0. Generally, p0 

will not have a closed form and so must be approximated numerically or otherwise. If the 

dimension of θ is small, it should generally be feasible to approximate p0 with a kernel 

density estimate, or by a simple parametric family. If θ is high dimensional, then other 

approximation strategies will be required, such as approximating the joint density of θ as a 

product density (i.e. assuming independence of subvectors of θ) or perhaps by using mixture 

models. The latter strategy is more flexible than the former, but it doubles the modelling 

efforts in any given problem by requiring one to estimate p0 before estimating f.
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Replication code is available at the second author’s Web site: http://

www.stat.washington.edu/hoff/Code/kessler_hoff_dunson_2012.

Acknowledgements

David Kessler’s work was partially supported by National Institute of Environmental Health Sciences training grant 
T32ES007018. Peter Hoff’s work was partially supported by National Institute of Child Health and Development 
grant 1R01HD067509-01A1. David Dunson’s work was supported by award R01ES017436 from the National 
Institute of Environmental Health Sciences.

Appendix A: Proofs for Section 2

A.1. Proof of theorem 1

Let  be the Borel sets of a Hausdorff space  and let θ be a measurable map from 

to the measurable space . Let P0 be the probability measure over  defined by 

. The results of Hoffman-Jørgensen (1971) give the existence of 

a regular conditional probability function Λ0(A∣θ) such that Λ0(A∣·) is  measurable for 

each  is a probability distribution over  for each θ ∈ Θ, and that 

Λ0{A∣θ(f)} is a version of the conditional probability of A given , in that

where θ represents either the function mapping  or a point in Θ, depending on the context.

Let P1 be a probability measure on  such that P1 ⪡ P0. Define  by

Then clearly  for all  Additionally, for a countable 

disjoint collection of sets  with A = ⋃ Ai, we have

where the second-to-last line follows from the monotone convergence theorem. Therefore, 

π1(A) is a probability measure on . To compute the marginal distribution of π1, let 

 and h(θ)=dP1=dP0. Then
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The Radon–Nikodym derivative h(θ) is positive and measurable, and so we can express h(θ) 

as the limit of simple functions, . By the monotone 

convergence theorem we have

Finally, the Radon–Nikodym derivative of π1 with respect to π0 can be found via a similar 

calculation: for any ,

A.2. Proof of lemma 2

Let  be the Borel sets of a Hausdorff space . For k ∈ {0, 1} let πk be a probability 

measure on  and let Pk be the measure on  induced by the measurable map 

. Recall that, if , then the Kullback–Leibler divergence D(π1∥π0) is 

infinite. In contrast, we shall show that, if π1⪡π0 and P1⪡P0, then the Kullback–Leibler 

divergence D(π1∥π0) of π0 from π1 can be expressed in terms of marginal and conditional 

densities with respect to a common dominating measure, and that, if P1 and P0 are fixed, the 

divergence is minimized by matching the conditional distributions of π0 and π1.

Let μ be a dominating measure for π0 and π1, and let ν be a dominating measure for P1 and 

P0. The results of Hoffman-Jørgensen (1971) give the existence of a regular conditional 

probability function  with the properties that were described in the 

proof of theorem 1. Now, for each  and θ ∈ Θ, define 

. It is easy to check that this is measurable in θ for each 

, is a version of the conditional probability of A given θ and is dominated by π0, and 

therefore by μ, for each θ ∈ θ. Therefore, the measures {Λ0(·∣θ):θ ∈ Θ} form a dominated 

class with densities {λ0(·∣θ):θ ∈ Θ} with respect to μ. By Tonelli’s theorem we can write

Kessler et al. Page 21

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



and so π0 has a density λ0(f∣θ)p0(θ) with respect to the product measure μ × ν. The same 

construction can be made for π1, giving the existence of a conditional probability density 

λ1(f∣θ) for which

Letting B = {θ: p0(θ) > 0}, the Kullback–Leibler divergence is

(7)

where the last line follows from the assumption that P1 ⪡ P0 and so P1(B) = P0(B) = 1. 

Since the integrand in equation (7) is always greater than or equal to 0, we have D(π1∥π0)

≥D(P1∥P0) with equality when Λ1(·∣θ)=Λ0(·∣θ) for θ almost everywhere P1. Of course, if 

D(P1∥P0) = ∞ then equation (7) is ‘minimized’ at ∞ for all π1.
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Fig. 1. 
Population and sample: (a) contours of the population density and a scatter plot of the n = 30 

randomly sampled observations; (b), (c) marginal densities for the population ( ) 

and sample ( )
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Fig. 2. 

p1-priors ( ) and kernel density estimates of priors induced by  ( )
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Fig. 3. 

Comparison of approximated p0 ( ) and p0 induced by  ( )
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Fig. 4. 
Contour plots of the posterior predictive density ( ) and the population density 

( ), under (a) , (b)  and (c) π1

Kessler et al. Page 27

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 5. 
Marginal population densities and estimates from the three priors: , informative 

DPMM; , non-informative DPMM; , MSP; , population
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Fig. 6. 
Priors ( ) and posteriors ( ) for the marginal means and log-variances: , 

corresponding population values derived from the full (n = 272) data set
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Fig. 7. 

Comparison of approximated p0 ( ) and p0 induced by  ( ) for a 

subset of the margins: to facilicate comparison, a logit transform was used
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Fig. 8. 

Comparison of the M- and L-metrics on the log-scale for ( ),  ( ) 

and π1 ( ) at various sample sizes
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