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Summary
Neuroimaging studies aim to analyze imaging data with complex spatial patterns in a large number
of locations (called voxels) on a two-dimensional (2D) surface or in a 3D volume. Conventional
analyses of imaging data include two sequential steps: spatially smoothing imaging data and then
independently fitting a statistical model at each voxel. However, conventional analyses suffer from
the same amount of smoothing throughout the whole image, the arbitrary choice of smoothing
extent, and low statistical power in detecting spatial patterns. We propose a multiscale adaptive
regression model (MARM) to integrate the propagation–separation (PS) approach (Polzehl and
Spokoiny, 2000, 2006) with statistical modeling at each voxel for spatial and adaptive analysis of
neuroimaging data from multiple subjects. MARM has three features: being spatial, being
hierarchical, and being adaptive. We use a multiscale adaptive estimation and testing procedure
(MAET) to utilize imaging observations from the neighboring voxels of the current voxel to
adaptively calculate parameter estimates and test statistics. Theoretically, we establish consistency
and asymptotic normality of the adaptive parameter estimates and the asymptotic distribution of
the adaptive test statistics. Our simulation studies and real data analysis confirm that MARM
significantly outperforms conventional analyses of imaging data.
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1. Introduction
Many large neuroimaging studies, which collect data that include anatomical and functional
images from multiple subjects, have been or are being widely conducted to better understand
the neural development of neuropsychiatric and neurodegenerative disorders and normal
brains. By using anatomical images, various morphometrical measures of the morphology of
the cortical and subcortical structures (e.g., hippocampus) are extracted to investigate
neuroanatomical differences in brain structure across different populations (Thompson and
Toga, 2002; Chung et al., 2005). By using diffusion tensor images, various diffusion
properties (e.g., fractional anisotropy) and fiber tracts are extracted for quantitative
assessment of anatomical connectivity in a single subject and across different populations
(Basser et al., 1994; Zhu et al., 2007b). Functional imaging, including functional magnetic
resonance imaging (fMRI), has been widely used to understand functional integration of
different brain regions in a single subject and across different populations (Friston, 2007;
Huettel et al., 2004).
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Following spatial normalization, each subject’s data consists of data points at a large number
of locations (called voxels), that number in the thousands to millions, on a common two-
dimensional (2D) surface or in a common 3 dimensional (3D) volume. Conventional
analyses of such high-dimensional imaging data are often executed by voxel-wise methods,
which are carried out in two sequential steps: spatially smoothing the imaging data and then
independently fitting a statistical model, such as a general linear model (LM), at each voxel.
Most smoothing methods are independent of the imaging data and apply the same amount of
smoothness throughout the whole image. See, for example Yue, Loh and Lindquist (2010)
for overviews of smoothing methods used in the neuroimaging literature. As shown in
Polzehl and Spokoiny (2000, 2006), Qiu (2005, 2007), and Tabelow et al. (2006, 2008a, b,
c), these smoothing methods can be very problematic near the edges of the significant
regions. Polzehl and Spokoiny (2000, 2006) proposed a powerful propagation–separation
(PS) approach to adaptively and spatially smooth images from a single subject. Tabelow et
al. (2006, 2008a, b, c) used the original PS idea to develop a multiscale adaptive linear
model to adaptively and spatially denoise fMRI and diffusion tensor images from a single
subject.

The existing voxel-wise methods for analyzing high-dimensional data involve fitting a
statistical model, such as LM, to neuroimaging data from all subjects at each voxel, and then
generating a statistical parametric map of test statistics and p-values (Lazar, 2008; Worsley
et al., 2004). Such methods have some obvious limitations for the analysis of neuroimaging
data, which underscore the great need for further methodological development. As shown in
Hecke et al. (2009) and Jones et al. (2005), voxel-wise methods can suffer from the arbitrary
choice of smoothing extent in the initial smoothing step and thus dramatically increase the
number of false positives and false negatives. Furthermore, as pointed out by Worsley
(2003) and Tabelow et al. (2006), voxel-wise methods treat all voxels as independent units
and do not employ the fact that the significant regions of interest have a spatial extent.
Neuroimaging data, however, are spatially dependent in nature, where we often observe
spatially contiguous effect regions with rather sharp edges, as is often the case in many
neuroimaging analyses.

Spatially modeling neuroimaging data in the 3D volume (or 2D surface) represents both
computational and theoretical challenges. It is common to use conditional autoregressive
(CAR), Markov random field (MRF), and other spatial correlation priors to characterize
spatial dependence among spatially connected voxels (Besag, 1986; Banerjee, Carlin, and
Gelfand, 2004). However, calculating the normalizing factor of MRF and estimating spatial
correlation for a large number of voxels in the 3D volume (or 2D surface) are
computationally prohibitive (Zhu, Gu, and Peterson, 2007; Bowman, 2007). Moreover, it
can be restrictive to assume a specific type of correlation structure, such as CAR and MRF,
for the whole 3D volume (or 2D surface).

The goal of this article is to develop a multiscale adaptive regression model (MARM) for the
spatial and adaptive analysis of neuroimaging data. MARM integrates the PS approach and
voxel-wise methods and thus it is a generalization of the PS approach (Polzehl and
Spokoiny, 2000, 2006) to neuroimaging data from multiple subjects. MARM has three
features: being spatial, being hierarchical and being adaptive. MARM can efficiently
combine all observations with adaptive weights in the voxels within the sphere of the current
voxel to increase the precision of parameter estimates and the power of test statistics in
detecting subtle changes of brain structure and function. Due to its hierarchical and adaptive
nature, MARM can efficiently learn the shape of activation areas, use the adaptive weights
to capture shape information, and then preserve the edges of activation areas.

Li et al. Page 2

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



MARM provides a general probability framework for adaptively carrying out statistical
inference on neuroimaging data obtained from multiple subjects. We establish consistency
and asymptotic normality of the adaptive estimator and the asymptotic distribution of the
adaptive test statistic for MARM as the number of subjects (or images) increases to infinity.
The covariance estimate of the adaptive estimator in MARM has a simple form. Our new
theoretical results show that in MARM, the adaptive weighting idea of the novel PS
approach is valid without imposing the propagation condition. Our results show that it is
critical to choose appropriate parameters in constructing adaptive weights in order to have
simple asymptotic results to carry out statistical inference including hypothesis testing.

To motivate the proposed methodology, we consider fractional anisotropy (FA) imaging
data acquired at 2 weeks, year 1 and year 2 from 38 subjects in a neonatal project on early
brain development, which is discussed in more detail in Section 4. The primary interest here
was to identify the spatial patterns of white matter maturation. We smoothed FA imaging
data with two levels of smoothness. Then, at each voxel, we fit a multivariate linear model
with age and age2 as covariates and calculated the Wald statistics and their associated p
values for testing age dependent effect. Inspecting Figure 3 reveals that the size of
significant regions and degree of significance associated with the age dependent effect
strongly depend on the size of smoothness, which agrees with the findings in Jones et al.
(2005). We also analyzed the same FA dataset using MARM and tested the age dependent
effect across all voxels. MARM can preserve the edges of significant regions compared with
the results from the smoothed images (Figs. 3(b)–(c)). In contrast, the significant regions
based on the smoothed images even spread over cerebrospinal fluid (CSF) areas (Fig. 3(c)),
in which FA values should be close to zero and have no age dependent effect. In Section 4,
we will revisit this data set.

Section 2 of this paper presents MARM and establishes the associated theoretical properties.
We establish consistency and asymptotic normality of the adaptive estimator and the
asymptotic distribution of the adaptive test statistic for MARM. In Section 3, we conduct
simulation studies with the known ground truth to examine the finite sample performance of
the adaptive estimates and test statistics in MARM. Section 4 illustrates an application of the
proposed methods in a real neuroimaging dataset. We present concluding remarks in Section
5.

2. Multiscale Adaptive Regression Model
2.1. Model Formulation

We consider imaging measurements in the 3D volume (or on the 2D surface) and clinical
variables from n subjects. Without loss of generality, we focus on the 3D volume. Let  and
d, respectively, represent a 3D volume and a voxel in , m be an integer, and N( ) equal the
number of voxels in . For the ith subject, we observe an m × 1 vector of imaging measures
Yi(d) at voxel d, which leads to an mN ( ) × 1 vector of measurements across , denoted by

 = {Yi(d) : d ∈ }, and a p1 × 1 vector of clinical variables xi. In neuroimaging studies,
imaging measurements can include the shape representation of the surfaces of cortical or
subcortical structures, fMRI signals, diffusion tensors, and so on (Ashburner and Friston,
2000; Thompson and Toga, 2002). Clinical variables often include pedigree information,
time, demographic characteristics (e.g., age, gender, and height), and diagnostic status
among others.

Statistically, our primary interest is to build the conditional distribution of  = {  : i = 1,
···, n} given X = {xi : i = 1, ···, n}, that is, p( |X). For a cross-sectional design, it is natural

to assume that data from different subjects are independent, that is .
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Thus, we only need to specify p( |Xi) for each i. However, the number of voxels in each
brain region can be more than 500,000 voxels, and at each voxel, the dimension of Yi(d) can
be univariate or multivariate, thus totaling a billion or more data points in an entire study. In
addition, imaging data  are spatially dependent in nature, and thus given the large number
of voxels on each brain structure, it is statistically challenging to model the spatial
relationships among all pairs of points simultaneously.

The voxel-wise approach essentially assumes that

(1)

where p(Yi(d)|xi, θ(d)) is the marginal density of p( |Xi) at voxel d and θ(d) = (θ1(d), ···,
θp(d))T is a p × 1 vector in an open subset Θ of Rp, in which p is an integer. Moreover, the
voxel-wise approach makes a strong perfect registration assumption. That is, after an image
warping procedure, the location of a voxel in the images of one person is assumed to be in
precisely the same location as the voxel identified in another person. Note that due to
possible model misspecification, p(Yi(d)|xi, θ(d)) is only a ‘pseudo’ density function for
Yi(d). Model (1) is general enough to comprise most statistical models including LM’s in the
neuroimaging literature. However, since the voxel-wise approach does not account for the
spatial nature of neuroimaging data, which often shows effects in spatially contiguous
regions with rather sharp edges, it may lead to a loss of power in detecting statistical
significance in the analysis of neuroimaging data.

To utilize the spatial nature of neuroimaging data, the multiscale adaptive regression model
is developed as follows. In many neuroimaging studies, our primary interest is to make
statistical inference about θ(d) at each voxel d ∈ . Instead of solely using the data in voxel
d, it would be more efficient to utilize all the data in the neighboring voxels of d to estimate
θ(d). Similar to standard kernel smoothing methods (Qiu, 2006), we consider a spherical
neighborhood of d with a radius (or bandwidth) r0, denoted by B(d, r0). By assuming spatial
independence among {Yi(d′) : d′ ∈ B(d, r0)}, we construct a weighted likelihood to estimate
θ(d), denoted by pW (Yi(d′) : d′ ∈ B(d, r0)|xi, θ(d)), as follows:

(2)

where ω(d, d′; h) characterizes the similarity between the data in voxels d′ and d with ω(d,
d; h) = 1. If ω(d, d′; h) ≈ 0, then p(Yi(d′)|xi, θ(d))ω(d,d′,;r0) is close to 1 and thus the
observations in voxel d′ do not provide information on θ(d). Therefore, ω(d, d′; r0) can
prevent incorporation of voxels whose data do not contain information on θ(d) and preserve
the edges of significant regions. In neuroimaging data, voxels, which are not on the
boundary of regions of significance (Fig. 1(c)), often have a neighborhood in which θ(d) is
nearly constant. In this case, ω(d, d′; h) for voxel d′ in the neighborhood of voxel d is greater
than zero and thus pW (θ(d)|Yi(d′) : d′ ∈ B(d, r0)) allows borrowing ‘good’ information from
these neighboring voxels. Furthermore, we assume that ω(d, d′; h) is independent of i just
for notational simplicity.

Let ω = {ω(d, d′; r0) : d ∈ , d′ ∈ B(d, r0)} and θ = {θ(d) : d ∈ }. Finally, by assuming the
spatial independence among imaging data, we take the product of pW (Yi(d′) : d′ ∈ B(d, r0)|
xi, θ(d)) for all d ∈  and then obtain a weighted likelihood function of MARM for 
given by
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(3)

When r0 = 0, B(d, r0) and model (3), respectively, reduce to d and model (1) for the voxel-
wise method.

2.2. Examples
MARM can be applied to the analysis of neuroimaging data from multiple subjects and
those from a single subject. For the case of a single subject, MARM reduces to the PS
approach. For the purposes of illustration, we consider the following three examples.

Example 1—We consider a multivariate nonlinear model at each voxel given by

(4)

for i = 1, ···, n and d ∈ , where μ(·, ·) is a known m × 1 vector of nonlinear functions, β(d)
is a p2 × 1 vector representing unknown regression coefficients, and εi(d) is an m × 1
random vector with mean zero and covariance matrix Σ(d). In this case, θ(d) contains all
parameters in β(d) and Σ(d). If we use the density of the Gaussian distribution to
approximate p(Yi(d)|xi, θ(d)) and assume the spatial independence among imaging data, then
log pW ( |Xi, θ, ω) based on model (4) is given by

(5)

If μ(xi, β(d)) = Xiβ(d), where Xi is an m × p2 covariate matrix of xi, then model (4) reduces
to the multi-scale adaptive multivariate linear model for the analysis of neuroimaging data
(Tabelow et al. 2006Tabelow et al. 2008a,b,c).

Example 2—We consider a generalized linear model (GLM) for the conditional
distribution of Yi(d) given xi (McCullagh and Nelder 1989). Specifically, for i = 1, …, n,
Yi(d) given xi has a density in the exponential family

(6)

where b(·) and c(·, ·) are known functions. Moreover,  for i = 1, …, n,
where g(·) is a known and monotonic link function and β(d) is a (p − 1) × 1 vector of
regression coefficients. In this case, θ(d) = (β(d), τ(d)) and the weighted quasi-likelihood
function of MARM under spatial independence is given by

(7)
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Example 3—In a fMRI session, n fMRI volumes are acquired at acquisition times t1, ···, tn
while a subject performs a cognitive or behavioral task. At each voxel, we consider a
regression model Yi(d) = μ(xi, β(d)) + εi(d), where εi(d) denotes measurement errors with
mean zero and variance 1/τ(d) and xi may include responses to differing stimulus types, the
rest status, and various reference functions (Lazar, 2008; Tabelow et al., 2006, 2008a, c).
The measurement errors εi(d) may include noise from stochastic variation, numerous
physiological processes, eddy currents, artifacts from the differing magnetic field
susceptibilities of neighboring tissues, non-rigid motion, preprocessing methods
(registration, normalization) among many others (Huettel et al., 2004; Lazar, 2008). By
performing a prewhitening procedure, we may assume that {εi(d) : i = 1, ···, n} have zero
mean and are approximately uncorrelated. If we use the density of the Gaussian distribution
to approximate p(Yi(d)|xi, θ(d)), where θ(d) = (β(d), τ(d)), then the weighted quasi-likelihood
function of MARM for fMRI is given by

2.3. Multiscale Adaptive Estimation and Testing Procedure
We use a multiscale adaptive estimation and testing (MAET) procedure to determine ω,
estimate θ(d), and calculate its associated test statistic across all voxels. MAET uses the
same multiscale adaptive strategy from the PS approach (Polzehl and Spokoiny, 2000,
2006), and thus it can be regarded as a generalization of the PS approach to neuroimaging
data with multiple subjects. MAET starts with building a sequence of nested spheres with
increasing radii h0 = 0 < h1 < ··· < hS = r0 ranging from the smallest scale h0 = 0 to the
largest scale hS = r0 at each d ∈  (panel (b) in Fig. 1). By setting ω(d, d′; h0) = 1, we can
estimate θ(d) at scale h0, denoted by θ ̂(d; h0), and construct a test statistic Wμ(d, h0). Then,
based on the information contained in {θ ̂(d; h0) : d ∈ }, we use methods as detailed below
to calculate weights ω(d, d′; h1) at scale h1 for all d ∈ . In this way, we can sequentially
determine ω(d, d′; hs) and adaptively update θ ̂(d; hs) and Wμ(d, hs), which are defined in (9)
and (12), respectively, as the radius ranges from h0 = 0 to hS = r0.

Specifically, for a given radius, we consider maximum weighted likelihood estimates of θ(d)
across all voxels d ∈  given the current fixed weights {ω(d, d′; h) : d, d′ ∈ }. Let ω̃(d, d′;
h) = ω(d, d′; h)/Σd′ ∈ B(d,h) ω(d, d′; h). For the sphere with radius h of the voxel d, based on
model (3), we consider a normalized weighted quasi-likelihood function ℓn(θ(d); h, ω̃),
which is given by

(8)

The ℓn(θ(d); h, ω̃) utilizes all the data in {Yi(d′) : d′ ∈ B(d, h)} and normalized weights
{ω(d, d′; h) : d′ ∈ B(d, h)}. The maximum weighted quasi-likelihood (MWQL) estimate of
θ(d), denoted by θ ̂(d, h), is defined by

(9)
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Numerically, we use various optimization algorithms, such as a Newton-Raphson type
algorithm, to estimate θ ̂(d, h). After convergence, Cov(θ ̂(d, h)) can be approximated by

(10)

where  and

, in which a⊗2 = aaT for any
vector a.

Our choice of which hypotheses to test is motivated by either a comparison of brain
structure (or function) across diagnostic groups or the detection of a change in brain
structure (or function) across time (Chung et al., 2005; Lazar, 2008; Thompson and Toga,
2002). These questions of interest usually can be formulated as testing hypotheses about
θ(d) as follows:

(11)

where R(θ(d)) is an r × 1 vector function of θ(d) with p ≥ r and b0 is an r × 1 specified
vector, such as an r × 1 vector of zeros. We test the null hypothesis H0,μ using the Wald test
statistic Wμ(d, h), which is given by

(12)

A path diagram of MAET is given below:

(13)

At each iteration, the computations involved for MARM are of the same order as that for the
voxel-wise approach. Thus, this multiscale adaptive method provides an efficient method for
flexibly exploring the neighboring areas of each voxel. Since MARM sequentially includes
more data at each iteration, it will adaptively increase the statistical efficiency in estimating
θ(d) in a homogenous region and decrease the variation of the weights ω(d, d′; h).

The MAET procedure consists of five key steps: (i) initialization, (ii) weights adaptation,
(iii) estimation, (iv) stop checking, and (v) inference. In the initialization step (i), we fix a
geometric series { : s = 1, …, S}of radii with h0 = 0, where ch > 1, say ch = 1.10. The
parameter  plays the same role as the bandwidth of local kernel methods. A small value of
ch only allows incorporating the closest neighboring voxels and thus it can prevent
oversmoothing θ(d) at the beginning of MAET, whereas a small ch leads to increased
computational effort. At each voxel d, let ω(d, d′; h0) = 1(d = d′), in which 1(·) is an
indicator function. Then, we calculate the MWQL estimate θ ̂(d, h0), which is defined in (9)
at each voxel d ∈ . The θ ̂(d, h0) are the same as those from the voxel-wise approach. We
then set s = 1 and h1 = ch.
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In the weight adaptation step (ii), we compute the similarity between voxels d and d′,
denoted by Dθ(d, d′; hs−1), and the adaptive weights ω(d, d′; hs), which are, respectively,
defined as

(14)

(15)

where Kloc(u) and Kst(u) are two nonnegative kernel functions with compact support such
that all of them decrease to zero as u increases, Cn is a number, which may be associated
with n, and ||·||2 denotes the Euclidean norm of a vector (or a matrix). The weights Kloc(||d −
d′||2/hs) give less weight to the voxel d′ ∈ B(d, hs), whose location is far from the voxel d.
The weights Kst(u) downweight the voxels d′ with large Dθ(d, d′; hs−1), which indicates a
large difference between θ ̂(d′, hs−1) and θ ̂(d, hs−1).

In the estimation step (iii), for the radius hs, we substitute ω(d, d′; hs) into (9) to calculate θ ̂
(d, hs) and then compute Wμ(d, hs) according to (12) at each voxel d ∈ .

In the stop checking step (iv), after the S0-th iteration, we calculate a stopping criterion
based on a normalized distance between θ ̂(d; hS0) and θ ̂(d; hs) for s > S0, which is given by

(16)

Then, we check whether θ ̂(d; hs) is in an α confidence ellipsoid of θ ̂(d; hS0) given by {θ:
D(θ ̂(d; hS0), θ(d)) ≤ C̃ = χ2(p)α}, where χ2(p)b is the upper 1−b percentile of the χ2(p)
distribution. To prevent a large D(θ ̂(d; hS0), θ ̂(d; hs)), we set α = 80% in the paper. If D(θ ̂(d;
hS0), θ ̂(d; hs)) is greater than C̃, then we set θ ̂(d, hS) = θ ̂(d, hs−1), Wμ(d, hS) = Wμ(d, hs−1),
and s = S. If s = S, we go to the inference step (v). If s ≤ S0 or D(θ ̂(d; hS0), θ ̂(d; hs)) ≤ C̃ for
S −1 ≥ s > S0, then we set hs+1 = chhs, increase s by 1 and continue with the weight
adaptation step (ii).

In the inference step (v), when s = S, we report the final θ ̂(d, hS), compute the p-values for
Wμ(d, hS), correct for multiple comparisons by using either the Bonferroni correction, the
false discovery rate (FDR) method (Benjamini and Hochberg, 1995) or random field theory
(Worsley et al., 2004; Nichols and Hayasaka, 2003), and then stop the algorithm.

Example 4—As an illustration, we consider the multiscale adaptive multivariate linear
model described in Example 1 and present the key components of the four steps of MAET
as follows. In the initialization step (i), at each voxel d, by setting Σ̂(d, h0)(0) = Im, an m × m
identity matrix, we iteratively update

(17)
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until convergence. Since in most neuroimaging applications, β is the primary parameter of
interest, we fix Σ(d) at Σ̂(d, h0) at each d. Then, we compute

.

In the weight adaption step (ii), compute Dβ(d, d′; hs−1) = {β ̂(d, hs−1) − β ̂(d′, hs−1)}T Σn(β ̂(d;
hs−1))−1{β ̂(d, hs−1)− β ̂(d′, hs−1)} and ω(d, d′; hs) = Kloc(||d − d′||2/hs)Kst(Dβ(d, d′; hs−1)/Cn).

In the estimation step (iii), for the radius, let

, compute

 and

where ε ̂i(d; ω, hs) = Σd′∈B(d,hs) ω(d, d′; hs)Σ ̂(d′, h0)−1{Yi(d′) − Xiβ ̂(d′, hs)}.

In the stop checking step (iv), we compute D(β ̂(d; hS0), β ̂(d; hs)) ={β ̂(d, hS0) − β ̂(d, hs)}T Σ ̂
(β ̂(d; hS0))−1{β ̂(d, hS0) − β ̂(d, hs)} for s > S0.

2.4. Parameters of MAET
The performance of MAET depends on specifying the following parameters of MAET,
including ch, Cn, Kloc(u), Kst(u), S0, and S. We have tested different combinations of these
parameters of MAET in both simulated and real imaging data. According to our experience,
the performance of MAET is quite robust to moderate changes in these parameters.

We suggest choosing a relatively small ch. The ch is essentially the bandwidth of local
kernel methods. When voxel d is near/on the edge of regions with distinct features, B(d, ch)
for a large ch may include voxels from these distinct regions, which can cause
oversmoothing of the parameter estimates image. In contrast, even when voxel d is near, but
not on the edge of distinct regions, B(d, ch) for small ch only includes the closest
neighboring voxels d′, whose data are similar to those of voxel d, and thus it can improve the
accuracy of parameter estimation in the first few iterations. Subsequently, when combined
with the stop checking step, small ch can improve the robustness of MAET and the accuracy
of parameter estimation across all voxels.

The Cn is used to penalize the similarity between any two voxels d and d′. If there is a
moderate similarity between the voxels d and d′, a large Cn leads to small D(d, d′; hs)/Cn and
thus it decreases the sensitivity of MAET in separating such voxels. Thus, a large Cn can
increase the estimation error near the boundary of two regions with distinct features, when
the difference between the two regions is moderate. In contrast, when voxels d and d′ are
similar to each other with a small D(d, d′; hs), a small Cn may lead to a relative large D(d, d′;
hs)/Cn and thus it may decrease the specificity of MAET in combining such similar voxels.
Thus, a small Cn can decrease the accuracy of parameter estimation in the interior of a
homogeneous region. Therefore, a good Cn should balance between the sensitivity and
specificity of MAET. So far, we have tested various values of Cn by using simulation
studies, among which n0.4χ2(p)0.95 and log(n)χ2(p)0.95 perform equally well. Without loss of
generality, we set log(n)χ2(p)0.95. However, to account for the variability in estimating Σn(θ ̂
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(d, hS)), it may be more suitable to use the quantiles of the F distribution instead of the χ2

distribution.

The Kloc(u) is a regular kernel function for further smoothing curves or surfaces based on
the Euclidean distance between voxels. Some common choices of Kloc(u) include the
Gaussian kernel and the Epanechnikov kernel (Tabelow et al., 2006Tabelow et al., 2008a, b,
c; Polzehl and Spokoiny, 2000, 2006). Because MAET mainly uses the similarity
information between any pairs of voxels, the specification of Kloc(u) is not critical for
MAET. We use Kloc(u) = (1 − u)+.

We set Kst(u) = exp(−u) in our simulated and real imaging data. Theoretically, as shown
later, exp(−u) gives an exponential decay rate of n. Although different choices of Kst(·) have
been suggested in the original PS approach (Polzehl and Spokoiny, 2000, 2006; Tabelow et
al., 2006, 2008a, b, c), we have tested these kernel functions and found that Kst(u) = exp(−u)
performs reasonably well. Another good choice of Kst(u) is min(1, 2(1 − u))+, which has
better performance in spatially and adaptively smoothing fMRI and DTI from a single
subject (Polzehl and Tabelow, 2007).

We suggest not to set S0 as 0 or a large integer. If S0 = 0, then only the data in voxel d are
included and the accuracy of θ ̂(d, h0) may be low. For large S0, since the number of voxels
in B(d, hS0) is large, it easily leads to both heavy computation and oversmoothing when
voxel d is either on the boundary of significant regions or in some regions in which the
parameters change slowly with voxel location. After the S0-th iteration, the stop checking
step starts to compute the stopping criterion and check whether further iteration is needed in
this voxel. Since  plays the same role as the bandwidth in the local kernel method, the stop
checking step is essentially a bandwidth selection procedure. This step is to compare
consecutive parameter estimates in order to prevent bad data from neighboring voxels and
oversmoothing the parameter estimates image. We have found that S0 = 3 coupled with a
small ch = 1.1 performs very well in numerous simulations.

As the maximal iteration S increases, the number of neighboring voxels in 
increases exponentially. Moreover, a large S also increases the probability of oversmoothing
θ(d) when the current voxel d is near the edge of distinct regions and the parameters change
slowly with other locations. In practice, we suggest the maximal step S to be between 10 and
20.

Setting the starting value of θ ̂(d, hs)(0) as θ ̂(d, hs−1) for each s > 0 is an efficient way of
selecting the initial value in the Newton-Raphson algorithm. Since the MAET procedure
always downweights voxel d′ ∈ B(d, h) in ℓn(θ(d); h, ω̃) when the value of Dθ(d, d′; hs−1) is
large, θ ̂(d, hs−1) and θ ̂(d, hs) should be close to each other. By starting from θ ̂(d, hs)(0) = θ ̂(d,
hs−1), the Newton-Raphson algorithm converges very fast. The additional computational
time for MARM is moderate compared to the voxel-wise approach, since MARM only
involves some additional operation for locally averaging over all voxels in B(d, hs) at each
voxel d.

2.5. Theoretical Properties
We establish the asymptotic properties of adaptive estimators and test statistics for MAET
with stochastic adaptive weights. A critical question is that what kinds of stochastic weights
can automatically incorporate ‘good’ information and prevent ‘bad’ information from
neighboring voxels. By appropriately utilizing information from neighboring voxels, the
MAET procedure can dramatically increase the accuracy and efficiency in estimating the
true value θ*(d) in each voxel. Another important question is whether the stochastic weights
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chosen can ensure consistency and asymptotic normality of θ ̂(d, h) at each fixed scale h. To
have a better understanding of the MAET procedure, we focus on the asymptotic behavior of
the adaptive weight when s = 1 and then discuss the scenario when s > 1.

Throughout the paper, we only consider the asymptotic properties of θ ̂(d, hs) and Wμ(d, hs)
for a finite number of iterations and bounded r0 for MAET, since a brain volume is always
bounded. We assume that the number of voxels in the brain volume does not increase with
the sample size, since the resolution of a given imaging dataset is always fixed. We obtain
the following theorems, whose detailed assumptions and proofs can be found in a
supplementary report.

Theorem 1—If assumptions (C1)–(C7) in the supplementary report are true, then we have

a. θ̂(d, h0) converges to θ*(d) in probability;

b. {Σn,2(θ̂(d, h0))}−1/2Σn,1(θ̂(d, h0)){θ̂(d, h0) − θ*(d)} → L N (0, Ip), where →L

denotes convergence in distribution;

c. Dθ(d, d′; h0) and  can be, respectively, approximated by

(18)

where Δ*(d, d′) = θ*(d)− θ*(d′) and Σ* (d) = Σ1*(d)−1Σ2* (d)Σ1* (d)−1, in which

 and Σ2*(d) = E({∂θ(d) log p(Y (d)|x,
θ *(d))}⊗2});

d. For any ε0 > 0, limn→∞ P(|Kst(Dθ(d, d′; h0)/Cn) − 1(Δ*(d, d′) = 0)| > ε0) = 0.

Theorem 1 (a) and (b) characterize the asymptotic behavior of Dθ(d, d′; h0) and Kst(Dθ(d, d′;
h0)/Cn). Theorem 1 (c) and (d) shows that if the two voxels d and d′ have the same true
values, then Kst(Dθ(d, d′; h0)/Cn) and ω(d, d′; h0) converge to 1 and Kloc(||d − d′||2/h1),
respectively. However, if the two voxels d and d′ substantially differ from each other, then
Kst(Dθ(d, d′; h0)/Cn) imposes a decreasing weight on the voxel d′. As an example, when
Kst(u) = exp(−u) and , Kst(Dθ(d, d′; h0)/Cn) converges
to zero at the rate of  when θ*(d) ≠ θ* (d′), whereas it converges to 1 at the rate
of  otherwise. In the interior of a nonhomogeneous region, Kst(Dθ(d, d′; h0)/
Cn) automatically puts small weight on the voxels d′ with θ*(d) ≠ θ*(d′), and thus in the
estimation step (ii), the contribution of these voxels d′ to the estimation of θ*(d) is
negligible. Thus, if limu→∞ Kst(u) = 0 and limu→0 Kst(u) = c, where c > 0 is a fixed scalar,
then Kst(Dθ(d, d′; h0)/Cn) can efficiently incorporate information from ‘good’ voxels, while
it prevents incorporating information from ‘bad’ voxels. In contrast, other kernels with
limu→∞ Kst(u) > 0 do not have these features.

For h > 0, we can also establish important theoretical results to characterize the attractive
behavior of θ ̂(d, h) and Wμ(d, h) from MARM as follows.

Theorem 2—Suppose assumptions (C1)–(C7) in the supplementary report are true. As h >
0, we have the following results for MARM:

a. θ̂(d, h) converges to θ*(d) in probability;

b. {Σn,2(θ̂(d, h))}−1/2Σn,1(θ̂(d, h)){θ̂(d, h) − θ*(d)} → L N (0, Ip),
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c. If R(θ*(d)) = b0 is true and ∂θ(d)R(θ* (d)) is of full rank, then the statistic Wμ(d, h)
is asymptotically distributed as χ2(r), a chi-square distribution with r degrees of
freedom.

Theorem 2 shows that the MAET procedure has several remarkable features. Theorem 2 (a)
ensures that θ ̂(d, h) is a consistent estimate of θ*(d) for the adaptive weights in (15) for any
h > 0. Theorem 2 (b) ensures that θ ̂(d, h) is a  estimate of θ*(d). Theorem 2 (c) ensures
that the Wald test statistic Wμ(d, hs) is asymptotically χ2(r) distributed under the null
hypothesis R(θ* (d)) = b0. However, for small sample sizes n, it would be better to adjust for
sample uncertainty in estimating the covariance matrix of θ ̂(d, h). Following Hotelling’s T2

test, we suggest calibrating Wμ(d, h) with a critical value of , where

 is the upper α-percentile of the Fr,n−r distribution. That is, we reject H0 if

, and do not reject H0 otherwise.

We can characterize the asymptotic behavior of θ ̂(d, h) and Wμ(d, h) even when Cn is
bounded. Our results show the unpleasant behavior of θ ̂(d, h) and Wμ(d, h) when h > 0.

Corollary 1—Suppose assumptions (C1)–(C6) in the supplementary report are true,
limn→∞ log(N ( ))/n = 0, and Cn = O(1). Then we have the following results:

a. θ̂(d, h1) converges to θ* (d) in probability;

b. If there is a d′ ∈ B(d, h1)/{d} such that θ*(d) = θ*(d′), then θ̂(d, h1) may not be
asymptotically normal and the statistic Wμ(d, h1) is not asymptotically distributed
as χ2(r) even though R(θ* (d)) = b0 is true.

Corollary 1 (a) ensures that the PS approach based on a bounded Cn is valid for imaging
construction, since θ ̂(d, h1) is a consistent estimate of θ* (d). However, Corollary 1 (b) also
shows that a bounded Cn can lead to several unpleasant consequences for carrying out
statistical inference on θ(d). Although a bounded Cn has been proposed in the PS approach
to smooth the parameter estimates from linear models, we have established here the
consistency of θ ̂(d, h) as an estimate of θ* (d) under a general setup. Moreover, if there is a
voxel d′ ∈ B(d, h1)/{d} such that θ * (d) = θ * (d′), Corollary 1 (b) shows that θ ̂(d, h1) is not
asymptotically normal and the Wald test statistic Wμ(d, h1) is not asymptotically χ2(r)
distributed under the null hypothesis R(θ* (d)) = b0. Thus, we cannot directly calibrate Wμ(d,
h1) using the critical values of χ2(r).

Finally, we focus on a multiscale adaptive linear model. Assume that ,
where εi(d) ~ N(0, τ(d)−1). Let ω̃τ (d, d′; h) = τ (d′)ω(d, d′; h)/Σd′ ∈ B(d,h) τ(d′) ω(d, d′; h), we
have

(19)

where Yi(d; ω̃τ, h) = Σd′ ∈ B(d,h) ω̃τ(d, d′; h) Yi(d′) and

. Although Tabelow et al. (2006) have
obtained the same β ̂ (d, h) as in (19), the MARM developed here has several advantages. We
will show below that β ̂(d, h) based on the adaptive weights in the PS approach may not be
asymptotically normal. The covariance estimate of β ̂(d, h) in (19) has a simple form. We
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obtain the following results for the multiscale adaptive linear model. For simplicity, we
assume that all τ(d) are known.

Theorem 3
a. If assumptions (C1), (C2), (C6) and (C7) in the supplementary report are true,

 and , then  is asymptotically
equivalent to

(20)

where C(d, d′; h) = 1(Δ*(d, d′) = 0)Kloc(||d− d′||2/h). The A1(d; h) converges in
distribution to

(21)

where {Z(d′): d′ ∈ B(d, h)} is a Gaussian vector with mean zero and covariance
structure Cov(Z(d)) = τ(d)−1 Ip1 and Cov(Z(d), Z(d′)) = E(ε1(d)ε1(d′))Ip1.

b. If assumptions (C1), (C2) and (C6) in the supplementary report are true, Cn = O(1)
and limn→∞ log(N ( ))/n = 0, then  is asymptotically equivalent to

where . As n → ∞
A2(d; h1) converges in distribution to a random vector given by

Theorem 3 gives a theoretical justification of the multiscale adaptive linear model. Theorem
3 (a) and (b) formally characterize the key differences between a bounded and unbounded
Cn in the linear model. Theorem 3 (a) shows that for certain unbounded Cn, the asymptotic
distributions of β ̂(d, h) are always normally distributed. For a bounded Cn, however,
Theorem 3 (b) only gives the asymptotic distribution of β ̂(d, h1), which may not be normally
distributed when there is a voxel d′ ∈ B(d, h1) whose data are close to those of the voxel d.

3. Simulation Studies
We conducted three sets of Monte Carlo simulations to examine the finite sample
performance of β ̂(d, h) and Wμ(d, h) with respect to different scales h and compare MARM
with the voxel-wise method. For the sake of space, we only present some results based on a
64 × 64 phantom image with four known effect regions and put additional simulation results
in the supplementary document.
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We simulated data at all m = 4096 pixels on the 64×64 phantom image for n subjects. At a
given pixel d in , Yi(d) was simulated according to  for i = 1, ···, n,
where β(d) = (β1(d), β2(d), β3(d))T and xi = (1, xi2, xi3)T. Errors εi(d) were first
independently generated from N (0, 1) and χ2(3) − 3, respectively, and then they were
smoothed by using heat kernel smoothing with 4 iterations, which gave an effective
smoothness of about 2 pixels (Chung et al., 2005). The χ2(3) − 3 distribution is a very
skewed distribution. We set n = 60 and n = 80. We generated xi2 independently from a
Bernoulli distribution with probability of success being 0.5, and generated xi3 independently
from the uniform distribution on [1, 2]. The xi2 and xi3 were chosen to represent group
identity and scaled age, respectively. Furthermore, we set β1(d) = β3(d) = 0 across all pixels
d. For β2(d), we divided the 64×64 phantom image into five different regions of interest
(ROIs) with different shapes and then varied β2(d) as 0, 0.2, 0.4, 0.6 and 0.8, respectively,
across these five ROIs. Different β2(d) values, which represent different signal-to-noise
ratios, were chosen to examine the performance of our method at different signal-to-noise
ratios and also to test whether MARM can perform well for different shapes. The true β2(d)
was displayed for all ROIs with black, blue, red, yellow, and white colors representing
β2(d)=0, 0.2, 0.4, 0.6, and 0.8, respectively (Fig. 2(k)).

We fitted the linear model , where εi(d) ~ N (0, τ (d)−1), and then applied
the MAET procedure described in Example 4 to calculate adaptive parameter estimates
across all pixels at 11 different scales. Next, for β2(d), we calculated the bias, the empirical
standard error (RMS), the mean of the standard error estimates (SD), the ratio of RMS over
SD (RE), and the achievable variance reduction (VR), defined as Var(β ̂2(d, hs))/Var(β ̂2(d,
h0)), at each pixel of all five ROIs based on the results obtained from the 1,000 simulated
data sets. For the sake of space, we only presented the results of β ̂2(d, h0) and β ̂2(d, h10)
obtained from N (0, 1) distributed data with n = 60 in Fig. 2. We also calculated the average
bias, RMS, SD, RE, and maximum VR (MVR) in each of the five ROIs and presented them
in Table 1. The biases are slightly increased from h0 to h10 (Fig. 2(b) and (g) and Table 1),
whereas RMS and SD at h5 and h10 are much smaller than those at h0 (Fig. 2(c), (d), (h), (i)
and Table 1). In addition, the RMS and its corresponding SD are relatively close to each
other at all scales for both the normal and chi-square distributed data (Table 1 and Fig. 2(e)
and (j)). Moreover, the SDs in these pixels of ROIs with β2(d) > 0 are larger than the SDs in
those pixels of ROI with β2(d) = 0 (Figs. 2(i)), because the interior of ROI with β2(d) = 0
contains more pixels (Fig. 2(k)). The biases, SDs, RMSs, and MVRs of β2(d) are smaller in
the normally distributed data than in the chi-square distributed data (Table 1), because the
signal-to-noise ratios (SNRs) in the normally distributed data are 2.45 times bigger than
SNRs in the chi-square distributed data. Increasing the sample size and SNR decreases the
bias, RMS, SD, and MVR of the parameter estimates (Table 1).

We then tested the hypotheses H0: β2(d) = 0 and H1: β2(d) ≠ 0 across all pixels to assess
both Type I and II error rates at the pixel level. We applied the same MAET procedure and
computed the p-values of Wμ(d, h) at each scale. The 1,000 replications were used to
calculate the estimates and standard errors of rejection rates at α = 5% significance level. For
Wμ(d, h), the Type I error rates in ROI with β2(d) = 0 were relatively accurate for all scales,
while the statistical power for rejecting the null hypothesis in ROIs with β2(d) ≠ 0 was
significantly increased with radius h and SNR (Table 2).

4. Real Data Analysis
Understanding white matter development in the human brain in vivo is critical to the
understanding of the functional formation of the central nervous system. An important
feature of diffusion tensor imaging (DTI) is its capability to reveal the white matter
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maturation process in the human brain using a set of water diffusion related parameters, such
as fractional anisotropy (FA) and radial (RD) diffusivity. For instance, FA represents the
inhomogeneous extent of local barriers to water diffusion and has been widely used to
investigate early brain development from identifying transient brain structures such as
ganglionic eminence and cortical subplate as well as estimating the correlation of white
matter maturation with functional development measures such as IQ and working memory.

We considered 38 subjects from the neonatal project on early brain development led by Dr.
Gilmore at the University of North Carolina at Chapel Hill. For each subject, diffusion-
weighted images were acquired at 2 weeks, year 1 and year 2. Diffusion tensor acquisition
scheme includes 18 repeated measures of six non-collinear directions, (1,0,1), (−1,0,1),
(0,1,1), (0,1,−1), (1,1,0), and (−1,1,0) at a b-value of 1000 s/mm2 and a b=0 reference scan.
Forty-six contiguous slices with a slice thickness of 2 mm covered a field of view (FOV) of
256×256 mm2 with an isotropic voxel size of 2 × 2 × 2 mm3. High resolution T1 weighted
(T1W) images were acquired using a 3D MP-RAGE sequence. Then, a weighted least
squares estimation method was used to construct the diffusion tensors (Basser et al., 1994;
Zhu et al., 2007b). All DT images (38 subjects, 3 time points each) were registered to a
randomly selected brain DTI of a 2-year-old subject using a tensor image morphing for
elastic registration (TIMER) (Yap et al., 2009).

Fractional anisotropy (FA) calculated from DTIs is widely used as a measurement to assess
directional organization of the brain which is greatly influenced by the magnitude and
orientation of white matter tracts. We used FA images to identify the spatial patterns of
white matter maturation, and then considered a multivariate linear model

 for i = 1, ···, 38 and j = 1, 2, 3, at each voxel of the
template, where tij denotes the j-th scan time for the i-th subject, εi(d) = (εi1(d), εi2(d),
εi3(d))T ~ N (0, Σ(d)), and Σ(d) is a 3×3 unstructured covariance matrix. The MAET
procedure described in Example 4 with ch = 1.15 and S = 10 was used to carry out statistical
analysis. We tested H0: β2(d) = β3(d) = 0 for age dependent effects across all voxels d and
calculated the corrected p-values using the Bonferroni correction with overall significance
level of 1%. As s increases from 0 to 10, MARM shows a clear advantage in detecting more
significant and smoothed significant areas as well as preserving the edges of gray matter,
white matter, and cerebrospinal fluid areas (Fig. 3(a)–(d) and (h)). We also smoothed FA
imaging data using an isotropic Gaussian kernel with FWHM 6mm and then analyzed the
data using the voxel-wise approach. The results based on the smoothed FA images show the
obvious oversmoothing in CSF and the gray matter areas, such as the ventricle (Fig. 3(a)–
(c)). Furthermore, we identified a voxel in the red circle in the ventricle, whose location is
near the boundary of the white matter and CSF (see red circle in Fig. 3(a)). Its corrected p
values of Wμ(d, h0) and Wμ(d, h10) are much higher than 0.01. Inspecting raw FA values in
the red voxel of Figure 3(a) does not reveal any growth patterns, which agrees with the fact
that the ventricle contains CSF in the brain (Fig. 3(d)). However, after being smoothed with
the Gaussian kernel, smoothed FA values gradually increase with age (Fig. 3(h)). This
indicates that the data in the red voxel was oversmoothed due to its neighboring voxels
containing white matter.

The parameters β1(d), β2(d), and β3(d) represent the FA value at birth (age = 0) and the
speed and acceleration of the change of FA, respectively (Figs. 3(e)–(g)). Major white
matter structures are already presented in FA at birth (Fig. 3(e)). Within the central brain
region, results show different developing patterns for the genu, splenium and body of corpus
callosum, internal and external capsules (Figs. 3(i)–(l)). Comparing FA values, while genu
and splenium have a similar FA value at birth, results indicate that genu’s FA gradually
increases to a higher value than splenium’s over time. The corpus callosum body has a
slightly lower FA compared to the internal capsule at birth, but gradually surpasses the
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internal capsule. The external capsule, having the lowest FA value among these white matter
regions at birth, demonstrates a slow linear-like changing pattern.

5. Discussion
This article studies the idea of using a multiscale adaptive regression model for the spatial
and adaptive analysis of neuroimaging data. MARM integrates the PS approach with the
voxel-wise method for neuroimaging data from multiple subjects. There are three features in
MARM: being spatial, being hierarchical and being adaptive. MARM builds a sphere with a
given radius at all voxels, and then uses these consecutively overlapping spheres to capture
local and global spatial dependence among different voxels. Thus, MARM explicitly utilizes
the spatial information to carry out statistical inference. MARM also builds hierarchically
nested spheres by increasing the radius of a spherical neighborhood around each voxel and
utilizes information in each of the nested spheres across all voxels. Finally, MARM
combines all observations with adaptive weights in the voxels within the sphere of the
current voxel to adaptively calculate parameter estimates and test statistics. Without
imposing any spatial correlation patterns, we have derived the asymptotic properties of the
parameter estimates and test statistics for MARM when the logarithm of the number of
voxels is relatively small compared with the number of subjects. We also investigated the
issue of selecting the appropriate values of various parameters in MAET.

Many issues still merit further research. The three key features of MARM can be easily
adapted to more complex data structures (e.g., longitudinal, twin and family) and other
parametric and semiparametric models. For instance, for longitudinal neuroimaging data, we
can develop a multiscale adaptive method for generalized estimating equations. It is also
feasible to consider statistical models with nonparametric components. More research is
needed for optimizing the choices of parameters in MAET and regularity assumptions. For
instance, by assuming spatial smoothness in the neuroimaging data, the assumption
log(N( )) ≪ Cn ≪ n can be weakened. Another interesting issue that warrants future
investigation is the development of methods which determine multiscale neighborhoods
adaptive to the pattern of imaging data at each voxel. An important issue is that the voxel-
wise approach and MARM are also based on the perfect registration assumption, that is
demonstrably false. We may need to integrate the registration method, smoothing method,
and voxel-wise approach into a unified framework so that we can appropriately account for
registration errors in the statistical analysis.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Illustration of the key features in the multiscale adaptive regression model. For a relatively
large radius r0, panel (a) shows the overlapping spherical neighborhoods B(d, r0) of multiple
points (or voxels) d on the cortical surface. Panel (b) shows the spherical neighborhoods
with four different bandwidths h of the six selected points d on the cortical surface. Panel (c)
shows the spherical neighborhoods B(d, r0) of three selected voxels in a 3D volume, in
which voxels A and C are inside the activated regions, whereas voxel B is on the boundary
of an activated region.
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Fig. 2.
Results from a simulation study of comparing the voxel-wise method and MARM based on
1,000 N(0, 1) distributed data with n = 60. Panel (k) is the ground truth image of five ROIs
with black, blue, red, yellow, and white color representing β2(d)=0, 0.2, 0.4, 0.6, and 0.8,
respectively. The first row contains the results from the voxel-wise method: (a) a selected
image of β ̂2(d, h0) obtained from a simulated data set; (b) bias image of β ̂2(d, h0); (c) RMS
image of β ̂2(d, h0); (d) SD image of β ̂2(d, h0); and (e) RE image of β ̂2(d, h0). The second row
contains the results obtained from MAET as S = 10 and ch = 1.1: (f) a selected image of
β ̂2(d, h10) obtained from a simulated data set; (g) bias image of β ̂2(d, h10); (h) RMS image of
β ̂2(d, h10); (i) SD image of β ̂2(d, h10); and (j) RE image of β ̂2(d, h10). Panels (l) and (m) are
the scatter plots of biases and REs of β ̂2(d, h0) versus β ̂2(d, h10), respectively.
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Fig. 3.
Results from the neonatal project on brain development. Panel (a): the Bonferroni corrected
−log10(p) values of Wμ(d, h0) from a selected slice and a selected voxel in the red circle in
the ventricle; panel (b): the Bonferroni corrected −log10(p) values of Wμ(d, h10) from the
same selected slice; panel (c): the Bonferroni corrected −log10(p) values of the Wald test
statistics obtained from the Gaussian kernel smoothed FA images for the same selected
slice; panel (d): longitudinal trajectories of unsmoothed FA values in the red voxel identified
in panel (a); panel (h): longitudinal trajectories of the Gaussian kernel smoothed FA values
in the red voxel identified in panel (a); panels (e), (f), and (g): estimated β ̂1(d, h10), β ̂2(d,
h10), and β ̂3(d, h10) for the same selected slice; panels (i), (j), and (k): anatomical images
with eight labeled regions of interest including the genu, splenium (Sple), internal capsule
(IC), external capsule (EC), ventricle, grey matter (GM), white matter (WM), cerebrospinal
fluid (CSF), and corpus callosum body (Body); panel (l): the growth patterns from the ROIs
located in the splenium (Sple), genu (Genu) and body (Body) of corpus callosum, internal
capsule (IC), and external capsule (EC) for FA.

Li et al. Page 21

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Li et al. Page 22

Ta
bl

e 
1

A
ve

ra
ge

 B
ia

s (
×1

0−
3 )

, R
M

S,
 S

D
, R

E,
 a

nd
 M

V
R

 o
f β

2(
d)

 p
ar

am
et

er
s i

n 
th

e 
fiv

e 
R

O
Is

 a
t 3

 d
iff

er
en

t s
ca

le
s (

h 0
, h

5, 
h 1

0)
, 2

 d
iff

er
en

t d
is

tri
bu

tio
ns

 (N
 (0

, 1
)

an
d 
χ2

(3
) −

 3
 d

is
tri

bu
tio

ns
), 

an
d 

2 
di

ff
er

en
t s

am
pl

e 
si

ze
s (

n 
= 

60
, 8

0)
. B

IA
S 

de
no

te
s t

he
 b

ia
s o

f t
he

 m
ea

n 
of

 e
st

im
at

es
; R

M
S 

de
no

te
s t

he
 ro

ot
-m

ea
n-

sq
ua

re
er

ro
r; 

SD
 d

en
ot

es
 th

e 
m

ea
n 

of
 th

e 
st

an
da

rd
 d

ev
ia

tio
n 

es
tim

at
es

; R
E 

de
no

te
s t

he
 ra

tio
 o

f R
M

S 
ov

er
 S

D
; M

V
R

 d
en

ot
es

 th
e 

m
ax

im
um

 a
ch

ie
va

bl
e 

va
ria

nc
e

re
du

ct
io

n.
 F

or
 e

ac
h 

ca
se

, 1
,0

00
 si

m
ul

at
ed

 d
at

a 
se

ts
 w

er
e 

us
ed

.

χ2
(3

) −
 3

N
(0

, 1
)

n 
= 

60
n 

= 
80

n 
= 

60
n 

= 
80

h 0
h 5

h 1
0

h 0
h 5

h 1
0

h 0
h 5

h 1
0

h 0
h 5

h 1
0

β 2
(d

) =
 0

.0
β 2

(d
) =

 0
.0

B
IA

S
0.

00
0.

00
0.

01
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

R
M

S
0.

48
0.

35
0.

26
0.

41
0.

31
0.

22
0.

20
0.

15
0.

11
0.

17
0.

13
0.

09

SD
0.

47
0.

34
0.

24
0.

41
0.

30
0.

21
0.

19
0.

14
0.

10
0.

17
0.

12
0.

09

R
E

1.
03

1.
05

1.
06

1.
02

1.
03

1.
04

1.
03

1.
05

1.
06

1.
02

1.
03

1.
04

V
M

R
1.

00
0.

59
0.

44
1.

00
0.

61
0.

46
1.

0
0.

63
0.

46
1.

0
0.

64
0.

47

β 2
(d

) =
 0

.2
β 2

(d
) =

 0
.2

B
IA

S
0.

00
−
0.
03

−
0.
07

0.
01

−
0.
02

−
0.
06

0.
00

−
0.
03

−
0.
05

0.
00

−
0.
02

−
0.
05

R
M

S
0.

46
0.

34
0.

24
0.

39
0.

29
0.

21
0.

19
0.

14
0.

11
0.

16
0.

12
0.

09

SD
0.

46
0.

33
0.

24
0.

40
0.

29
0.

21
0.

19
0.

14
0.

10
0.

16
0.

12
0.

09

R
E

1.
01

1.
01

1.
01

0.
99

1.
00

1.
01

1.
02

1.
04

1.
06

1.
02

1.
02

1.
03

V
M

R
1.

00
0.

70
0.

50
1.

00
0.

71
0.

51
1.

00
0.

72
0.

52
1.

00
0.

73
0.

52

β 2
(d

) =
 0

.4
β 2

(d
) =

 0
.4

B
IA

S
−
0.
01

−
0.
05

−
0.
09

0.
01

−
0.
02

−
0.
06

0.
00

0.
00

−
0.
01

0.
00

0.
00

0.
00

R
M

S
0.

46
0.

34
0.

25
0.

40
0.

30
0.

22
0.

19
0.

15
0.

12
0.

16
0.

13
0.

10

SD
0.

46
0.

33
0.

24
0.

40
0.

29
0.

21
0.

19
0.

14
0.

11
0.

16
0.

12
0.

09

R
E

1.
01

1.
02

1.
03

1.
01

1.
02

1.
03

1.
03

1.
05

1.
07

1.
00

1.
01

1.
02

V
M

R
1.

00
0.

70
0.

50
1.

00
0.

70
0.

51
1.

00
0.

71
0.

52
1.

00
0.

72
0.

52

β 2
(d

) =
 0

.6
β 2

(d
) =

 0
.6

B
IA

S
0.

00
−
0.
05

−
0.
09

0.
00

−
0.
04

−
0.
07

0.
00

0.
01

0.
02

0.
00

0.
00

0.
01

R
M

S
0.

46
0.

35
0.

26
0.

40
0.

30
0.

23
0.

19
0.

15
0.

12
0.

16
0.

13
0.

10

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2011 December 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Li et al. Page 23

χ2
(3

) −
 3

N
(0

, 1
)

n 
= 

60
n 

= 
80

n 
= 

60
n 

= 
80

h 0
h 5

h 1
0

h 0
h 5

h 1
0

h 0
h 5

h 1
0

h 0
h 5

h 1
0

SD
0.

46
0.

34
0.

25
0.

40
0.

30
0.

22
0.

19
0.

14
0.

11
0.

16
0.

13
0.

10

R
E

1.
01

1.
03

1.
04

1.
01

1.
02

1.
03

1.
02

1.
04

1.
06

1.
01

1.
03

1.
04

V
M

R
1.

00
0.

70
0.

50
1.

00
0.

71
0.

52
1.

00
0.

71
0.

52
1.

00
0.

72
0.

52

β 2
(d

) =
 0

.8
β 2

(d
) =

 0
.8

B
IA

S
0.

00
−
0.
04

−
0.
06

0.
00

−
0.
02

−
0.
05

0.
00

−
0.
01

−
0.
02

0.
00

0.
00

−
0.
01

R
M

S
0.

47
0.

35
0.

26
0.

40
0.

30
0.

23
0.

19
0.

15
0.

11
0.

17
0.

13
0.

10

SD
0.

46
0.

34
0.

25
0.

40
0.

30
0.

22
0.

19
0.

14
0.

11
0.

16
0.

12
0.

09

R
E

1.
02

1.
03

1.
04

1.
01

1.
02

1.
03

1.
02

1.
04

1.
05

1.
03

1.
05

1.
06

V
M

R
1.

00
0.

71
0.

51
1.

00
0.

71
0.

51
1.

00
0.

71
0.

51
1.

00
0.

73
0.

52

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2011 December 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Li et al. Page 24

Ta
bl

e 
2

Si
m

ul
at

io
n 

st
ud

y 
fo

r W
μ(

d,
 h

): 
es

tim
at

es
 (E

S)
 a

nd
 st

an
da

rd
 e

rr
or

s (
SE

) o
f r

ej
ec

tio
n 

ra
te

s f
or

 p
ix

el
s i

ns
id

e 
th

e 
fiv

e 
R

O
Is

 w
er

e 
re

po
rte

d 
at

 2
 d

iff
er

en
t s

ca
le

s
(h

0, 
h 1

0)
, 2

 d
iff

er
en

t d
is

tri
bu

tio
ns

 (N
 (0

, 1
) a

nd
 χ

2 (
3)
−

3)
, a

nd
 2

 d
iff

er
en

t s
am

pl
e 

si
ze

s (
n 

= 
60

, 8
0)

 a
t α

 =
 5

%
. F

or
 e

ac
h 

ca
se

, 1
,0

00
 si

m
ul

at
ed

 d
at

a 
se

ts
w

er
e 

us
ed

.

β 2
(d

)
h s

N
(0

, 1
)

χ2
(3

) −
 3

n 
= 

60
n 

= 
80

n 
= 

60
n 

= 
80

E
S

SE
E

S
SE

E
S

SE
E

S
SE

0.
2

h 0
0.

20
0.

06
6

0.
24

0.
07

0
0.

08
0.

03
8

0.
08

0.
03

7

h 1
0

0.
30

0.
12

6
0.

38
0.

12
1

0.
10

0.
06

9
0.

18
0.

08
1

0.
4

h 0
0.

56
0.

09
0

0.
67

0.
07

9
0.

15
0.

06
5

0.
18

0.
07

0

h 1
0

0.
93

0.
05

1
0.

98
0.

03
0

0.
26

0.
12

9
0.

35
0.

15
9

0.
6

h 0
0.

88
0.

03
9

0.
95

0.
02

4
0.

27
0.

05
7

0.
33

0.
05

0

h 1
0

1.
00

0.
00

4
1.

00
0.

00
4

0.
51

0.
09

1
0.

63
0.

08
3

0.
8

h 0
0.

99
0.

01
5

1.
00

0.
00

5
0.

43
0.

08
0

0.
52

0.
08

0

h 1
0

0.
99

0.
01

0
0.

99
0.

01
1

0.
78

0.
09

9
0.

90
0.

00
6

0.
0

h 0
0.

07
0.

00
6

0.
07

0.
00

6
0.

06
0.

00
7

0.
07

0.
00

6

h 1
0

0.
08

0.
01

1
0.

07
0.

01
1

0.
07

0.
01

2
0.

08
0.

01
2

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2011 December 1.


