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Abstract
Racial/ethnic disparities in birthweight are a large source of differential morbidity and mortality
worldwide and have remained largely unexplained in epidemiologic models. We assess the impact
of maternal ancestry and census tract residence on infant birth weights in New York City and the
modifying effects of race and nativity by incorporating random effects in a multilevel linear
model. Evaluating the significance of these predictors involves the test of whether the variances of
the random effects are equal to zero. This is problematic because the null hypothesis lies on the
boundary of the parameter space. We generalize an approach for assessing random effects in the
two-level linear model to a broader class of multilevel linear models by scaling the random effects
to the residual variance and introducing parameters that control the relative contribution of the
random effects. After integrating over the random effects and variance components, the resulting
integrals needed to calculate the Bayes factor can be efficiently approximated with Laplace’s
method.
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1 Introduction
Many studies collect data that have hierarchical or clustered structures. Examples include
randomized studies in which patients are clustered within practices, educational studies in
which students are clustered in schools, or environmental studies in which individuals are
clustered in homes clustered in counties. An analysis that ignores such clustering assumes
all observations are independent, resulting in incorrect model-based standard errors that can
lead to misleading scientific inferences. Multilevel models are used to account for the
correlation of observations within a given group by incorporating group-specific random
effects. These random effects can be nested (e.g. repeated observations of students nested in
schools, with random effects at the student and school levels), cross-nested (e.g. repeated
observations of students nested in high schools taking different courses, with random effects
at the student, school, and course levels), or even non-nested (e.g. individuals clustered
within job categories and states, with random effects at the job and state level). For an
introduction to multilevel models, see Gelman and Hill (2007), Fitzmaurice et al.
(2004),Sullivan et al. (1999), and Bryk and Raudenbush (1992).
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1.1 Motivating data
Birth records were obtained for all live births in New York City in 2003 and linked to the
hospital discharge data from the Statewide Planning and Research Cooperative System by
the New York State Department of Health. These data include information on mother’s
demographic characteristics, previous births, smoking, weight gain rate during pregnancy,
maternal birth outside the United States, and infant’s gender, birth weight, and gestational
age (Savitz et al. (2008)), all collected from the birth certificate. These data were also linked
to U.S. Census data to obtain additional demographic information at the census tract level.
Investigators are interested in identifying significant predictors of birth weight among term
births adjusting for gestational age, with particular emphasis on exploring disparities related
to race and ethnicity.

Research has shown a persistent racial disparity in birth outcomes in many countries (e.g.,
Osypuk and Acevedo-Garcia (2008); Kelly et al. (2009)). Although individual and
community-level covariates have been shown to account for some of the racial disparity in
low birth weight (Buka et al. (2003); Roberts (1997); Rauh et al. (2001); O’Campo et al.
(1997)), much of this excess risk remains unexplained. Howard et al. (2006) found
substantial variability in the risk of preterm birth and low birth weight among black race
subgroups defined by 8 distinct maternal ancestries (African, American, Asian, Cuban,
European, Puerto Rican, South and Central American, and West Indian and Brazilian). They
also found nativity (U.S. or foreign born) to be a significant predictor that varied by
ancestry. Additionally, 48 of 67 (72%) studies reviewed by Gagnon et al. (2009) found
differences in birthweight outcomes between migrants and natives in western industrialized
countries. These studies have been limited by coarse ethnic categorization that obscures
substantial with-in group heterogeneity in behavioral, psychosocial and environmental
exposures. Many data sets are also limited to the crude socioeconomic indicators on the birth
certificate, such as mother’s completed years of education.

To expand upon this research, investigators in the NYC birth study classified maternal
ancestry into 62 country regions to determine whether birthweight variability in ancestries
exists within smaller geographical regions, and whether potential ancestry effects are
modified by the effects of race, maternal weight gain rate, and nativity. Such variability and
potential patterns therein may help researchers further understand the factors associated with
racial disparities in birth outcomes. More specifically, the association with race may depend
on maternal ancestry (e.g. the association with black race may depend on whether the
mother has Nigerian or Jamaican ancestry), the association with ancestry may depend on
nativity (e.g. the association with Nigerian ancestry may depend on whether the mother
lived primarily in or outside of the U.S.), and the association with maternal weight gain rate
may depend on maternal ancestry (e.g. whether a mother has Nigerian or Jamaican
ancestry). Additionally, it is common for individuals with similar demographic
characteristics to live in close proximity, resulting in social as well as biological similarities
between subjects. Hence, investigators are also interested in controlling for and assessing the
impact of residential location as defined by census tract of residence. Neighborhood factors,
such as the neighborhood deprivation index (NDI), a standardized score of various
socioeconomic factors at the tract level (in which higher scores represent higher levels of
deprivation), may explain some racial disparities in birth outcomes.

We fitted a multilevel linear model for infant’s birth weight, predicted by infant gestational
age, gender, maternal race, parity, smoking status, age, weight gain rate, nativity, and the
NDI. Maternal weight gain rate is defined as total gestational weight gain (lbs.) divided by
the length of each woman’s pregnancy (weeks). We consider random effects that allow
heterogeneity in birth weights across maternal ancestries and across census tract groups, as
well as interactions between maternal ancestry and race, maternal weight gain rate, and
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nativity. To address the important question of whether heterogeneity exists within census
tracts and maternal ancestries and whether potential heterogeneity across ancestries is
affected by race, maternal weight gain rate, and nativity, one must be able to evaluate
whether the variances of the random effects are different from zero.

1.2 Testing variance components
Testing whether the variance of a random coefficient is equal to zero is problematic because
the null hypothesis lies on the boundary of the parameter space. Such issues are addressed
extensively in the literature in the context of two level linear models, e.g., strategies that use
a mixture of chi-square distributions (Self and Liang (1987); Stram and Lee (1994)), score
tests (Lin (1997); Commenges and Jacqmin-Gadda (1997); Verbeke and Molenberghs
(2003); Molenberghs and Verbeke (2007); Zhang and Lin (2008)), Wald tests (Molenberghs
and Verbeke (2007); Silvapulle (1992)), and generalized likelihood ratio tests (Crainiceanu
and Ruppert (2004)). These methods are only proposed in the context of the two-level linear
model although some may be generalised to further cases. In this manuscript, we use the
term “two-level linear model” to denote a class of linear models that accommodates two
levels in the data hierarchy (e.g. repeated observations nested within subjects); A notable
example of this model is the standard linear mixed model (see Laird and Ware (1982)) for
repeated measures on subjects over time. The broader term “multilevel linear model” is used
to denote a class of linear models that can have more than two levels in the data hierarchy or
more than one level of clustering (e.g. repeated observations nested within subjects nested in
schools). Such clusters can be nested, non-nested, or cross-nested with other clusters. The
two-level linear model can then be viewed as a special case of the multilevel linear model.

Methods for testing variance components in the two-level linear model are useful to some
extent in nested multilevel models for testing single variance components, but the null
distributions are not easily obtained for testing multiple variance components, and random
effects that are non-nested or cross-nested introduce additional complications. There is very
little research specifically on testing variance components in multilevel models with more
than two levels. Bryk and Raudenbush (1992) proposed a chi-square test of the residuals for
evaluating variance components in multilevel models and incorporate this test in the
multilevel modeling software package HLM. Other approaches for nested models include
various versions of the likelihood ratio test (Snijders and Bosker (1999); Bliese (2002); Hox
(2002)), e.g. using a one-tailed significance level or using a mixture of chi-square
distributions. Berkhof and Snijders (2001) proposed three score tests for variance
components in multilevel models and compared their methods via simulation to the
likelihood ratio test, fixed F test, and Wald test. Their simulations only considered two level
models and it is not clear whether generalizations to a larger number of levels are possible.
Goldstein (1986) proposed a simple algorithm for fitting a multilevel linear mixed effects
model for variance components near the boundary, but the manuscript did not provide a
method for testing of whether or not a variance component is equal to zero. Fitzmaurice et
al. (2007) proposed a permutation test for variance components in multilevel generalized
linear mixed models. They applied their method to two-level generalized mixed models and
suggested strategies for multilevel models with greater than two levels. Their strategy cannot
be directly applied to multilevel models with crossed random effects and can only test one
variance component at a time.

Bayes factors, or ratios of marginal likelihoods under equal prior probabilities, provide
alternatives to frequentist hypothesis testing (see Kass and Raftery (1995)). In multilevel
modeling settings, Bayes factors are ideal for comparing various types of models (e.g.
multiple random effects, cross-nested or non-nested random effects), but the marginal
likelihoods typically involve high dimensional integrals and are not available in closed form.
Hence one must rely on approximations to the Bayes factor. The most widely used
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approximation to the Bayes factor is based on the Laplace approximation (Tierney and
Kadane (1986)), resulting in the Bayesian information criterion (BIC) (Schwarz (1978))
under certain assumptions. These approximations suffer in performance from high-
dimensionality (Kass and Raftery (1995)) and hence have limited applicability in multilevel
models. The BIC and Laplace approximations are based on the assumption that the
dimension of parameters is fixed as the sample size goes to infinity. This is problematic in
multilevel models because the dimension of parameters increases as the sample size
increases. Due to a violation of regularity conditions underlying the approximation, the
Laplace method can fail when the parameter lies on the boundary of the parameter space
(Pauler et al. (1999); Hsiao (1997); Erkanli (1994)).

Markov chain Monte Carlo (MCMC) methods provide alternatives for approximating Bayes
factors. Many of these methods can fail for certain types of “default” priors on the variance
components (Pauler et al. (1999)). Bayesian stochastic search variable selection methods
using MCMC methods in the two-level linear model (e.g. Cai and Dunson (2006); Kinney
and Dunson (2008)) may be generalizable to multilevel models, but these methods are
generally computationally demanding and time consuming. Many other MCMC methods
exist for model comparisons, e.g. the logarithm of the pseudo marginal likelihood (Gelfand
(1996)), the Deviance Information Criterion (Spiegelhalter et al. (2002)), and other related
methods for estimating marginal likelihoods (e.g., Chib and Jeliazkov (2001)). These
methods generally require the fitting of each model being compared (i.e. MCMC samples
from the posterior distribution for eachmodel) and are computationally demanding in high
dimensional models. In addition, even though conceptually one can obtain a perfect estimate
of the Bayes factor using MCMC methods run for infinitely-many iterations, in practice
MCMC algorithms can only be run for a finite number of samples and the existing
algorithms may require a very large number of iterations to obtain an accurate estimate.
Hence, in practice MCMC-based estimates of Bayes factors are also approximate and it is
not clear that such estimates will in general be closer to the truth (given chains of the length
that are typically run for practical reasons) than faster analytic approximations. In an attempt
to develop a more efficient approximation to the Bayes factor, Saville and Herring (2008)
proposed a method for approximating Bayes factors in the two-level linear model via a
relatively simple Laplace approximation to the marginal likelihood. Their method does not
require the fitting of a model via MCMC methods but only applies to the simple case of a
two-level multilevel linear model.

It is well known that Bayes factors can be sensitive to the choice of prior distributions (Kass
and Raftery (1995)). This is challenging in model selection problems in which one has no
prior information on the parameters. In these situations it is common to use default priors
that do not require subjective inputs. One must choose these default priors with care,
because as the prior variance increases, the Bayes factor will increasingly favor the null
model (Bartlett (1957)). Berger and Pericchi (1996) discuss various procedures for default
priors for model selection via Bayes factors. These include the authors’ proposed intrinsic
Bayes factors, the Schwarz approximation (Schwarz (1978)), and the methods of Jeffreys
(1961) and Smith and Spiegelhalter (1980). For improper non-informative priors, the Bayes
factor involves an arbitrary constant, and hence is not well defined (Spiegelhalter and Smith
(1982)). Gelman (2006) discusses various approaches to default priors specifically for
variance components. Common approaches include the uniform prior (e.g. Gelman (2007)),
the half-t family of prior distributions, and the inverse gamma distribution (Spiegelhalter et
al. (2003)). These prior distributions can encounter difficulties when the variance
components are close to 0. Other discussions of selecting default priors on variance
components are presented by Natarajan and Kass (2000), Browne and Draper (2006), and
Kass and Natarajan (2006). As an alternative to these approaches, Saville and Herring
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(2008) scaled the random effects to the residual variance and introduced default priors that
were shown to have good frequentist properties in the two-level linear model.

As noted previously, testing hypotheses on the boundary is problematic for certain classical
(i.e. frequentist) approaches because traditional asymptotic results do not apply directly (e.g.
it becomes more difficult to approximate the p-value for a likelihood ratio test). In the
Bayesian case, there are no conceptual problems with testing null hypotheses on the
boundary of the parameter space, but the Laplace approximation to the marginal likelihood
under the alternative can be inaccurate when the parameter lies close to the boundary. We
generalize the approach of Saville and Herring (2008) for testing variance components via
Bayes factors to multilevel linear models with more than two levels in the data hierarchy
(i.e. more than one level of clustering). The method does not require MCMC samples from
the posterior distribution or the fitting of each model being compared; hence it is
computationally more efficient than many of the current Bayesian methods available for
multilevel linear models. The strategy is to scale the random effects to the residual variance
and introduce parameters that control the relative contribution of the random effects. This
scaling enables one to integrate over the random effects and variance components from the
posterior in closed form, such that the resulting integrals needed to calculate the Bayes
factor are of small dimension and can be efficiently approximated with Laplace’s method. In
addition, we have improved the accuracy of the Laplace approximation by transforming the
scale parameter so that the boundary lies at negative infinity instead of zero. Our method is
relatively fast to implement and may incorporate default prior distributions shown to have
good frequentist properties in the two-level linear model (Saville and Herring (2008)). We
present the Bayesian model selection problem in Section 2. We summarize our method for
approximating the marginal likelihood in Section 3 and apply our method to the NYC birth
data in Section 4. A discussion follows in Section 5.

2 Bayes factors and the multilevel linear model
2.1 Notation

We define the general multilevel linear model with q random factors as

(1)

in which Yi is the response for observation i, i = 1, … , m, xi is a p × 1 vector of predictors
with corresponding fixed effects β. Defining

, we note zih is a dh × 1 vector of predictors
with corresponding random effects bh[i], in which [i] indexes the group in factor h pertaining
to the ith observation, and bh[i] ~ N(0, Ψh) is independent of εi ~ N(0, σ2), with bh[i]
independent of bh′[i] for h ≠ h′. From a Bayesian perspective, prior distributions are specified
for β, Ψh, and σ2 to reflect prior knowledge of the parameters. When one of the q random
factors is nested within another random factor (e.g. maternal ancestry nested within
geographical region), a hierarchical structure is created. A key feature of multilevel
modeling is the incorporation of covariates xi that can be measured at any level of the
hierarchy. This allows one to address the effect of a given covariate, say at the ancestry
level, while controlling for the effect of a higher level covariate, say at the geographical
region level. One must interpret such regression parameters carefully because some
covariates can operate at many different levels.
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To illustrate, consider the NYC birth data for 2003, in which there are 104,710 observations
within 62 ethnic ancestries and 2,128 census tracts. The aims of our analysis are to identify
significant predictors of infant birth weight and to determine whether there is heterogeneity
across ancestry groups and census tracts. To start, we will consider one predictor, maternal
weight gain rate during pregnancy, which has been linked to infant birth weight. Because of
social and biological characteristics shared by persons of the same ancestry, the effect of
maternal weight gain rate may vary by country of origin. A non-nested multilevel linear
model, with a random intercept and slope (for weight gain rate) at the ancestry level and a
random intercept at the tract level, can evaluate this hypothesis. One model is

(2)

in which Yi is the weight of infant i, xi is the weight gain rate of the ith mother, β0 is the
model intercept, β1 is the parameter corresponding to weight gain rate, b10[i] is the random
intercept and b11[i] the random slope corresponding to the ancestry of mother i, and b20[i] is
the random intercept corresponding to the census tract of mother i. There are a total of 2 ×
62 = 124 random effects at the ancestry level and 2,128 random effects at the census level.
In order to test whether there is heterogeneity in birth weights across ancestries (h = 1) or
census tracts (h = 2), one can conduct a test of whether the variance of the respective
random effects is equal to 0. This corresponds to a test of H0 : Ψh = 0, which lies on the
boundary of the parameter space.

2.2 The Laplace approximation to the Bayes factor
From a Bayesian perspective, one can evaluate H0 : Ψh = 0 by calculating the Bayes factor,
or posterior odds of M1 versus M0 given equal prior odds, given by

(3)

in which M0 is model corresponding to the null hypothesis (variance components equal to 0)
and M1 is the model corresponding to the alternative hypothesis (variance components
greater than 0). Calculating the Bayes factor requires the marginal likelihood

(4)

in which p(Y|θk, Mk) is the data likelihood for model Mk, θk is the vector of model
parameters, and π(θk|Mk) is the prior distribution of θk.

To approximate the marginal likelihood, we consider the Laplace approximation, which is
based on a linear Taylor series approximation of l̃ (θk) = log{p(Y |θk, Mk)π(θk|Mk)}. The
marginal likelihood p(Y|Mk) is estimated by

(5)

in which ∑̃k is the inverse of the negative Hessian matrix of l̃(θk) evaluated at the posterior
mode θ̃k, p(Y| θ̃k, Mk) is the marginal posterior evaluated at the posterior mode, π(θ̃k|Mk) is
the prior evaluated at the posterior mode, and dk is the dimension of θk. Hence, in order to
implement the Laplace approximation, one only needs the matrix of second partial
derivatives and the posterior mode of l̃(θk), which for small dimensions is easily computed
in standard statistical software packages. As noted previously, multilevel models are
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typically high-dimensional and may involve variance components near the boundary,
meaning the Laplace approximation cannot be directly applied to the integral in (4).

3 Approximating the marginal likelihood
We outline the general strategy for the proposed methods and provide complete
mathematical details in the Appendix. For computational convenience, we reparameterize
the multilevel linear model given in (1) so that all random effects are contained in one vector
b. For example, in equation (2), there are 62 × 2 = 124 random effects corresponding to the
random intercept and slope for maternal ancestry, and there are 2,128 random effects
corresponding to the random intercept of census tract. These random effects are stacked into
one vector b of dimension (2,252 × 1). A corresponding sparse design matrix wi is created of
the same dimension (i.e. a vector) that will contain mostly 0’s, with non-zero elements
corresponding to the appropriate random effects for observation i. Prior distributions
specific to a given application are specified for β, σ2 and Ψh, which is the covariance matrix
of the random effects bhl corresponding to factor h and classification l. We assume normality
of the random effects bhl ~ N(0, Ψh) which are independent of the residual error εi ~ N(0,
σ2).

Extending the work of Saville and Herring (2008), we scale the random effects, now
denoted as b̃, to the residual variance such that b̃hl ~ N(0, σ2I) and introduce a parameter
vector ϕh that controls the relative contribution of the scaled random effects. We also allow
correlation between the respective random effects for a given factor through a parameter
vector γh. For example, consider the cross-classified (non-nested) model given by equation
(2). The re-parameterized model takes the form

(6)

in which b̃10[i] is the scaled random intercept and b̃11[i] the scaled random slope
corresponding to the ancestry of mother i, b̃20[i] is the scaled random intercept

corresponding to the census tract of mother i, and , in which γ110
allows correlation between the scaled random intercept and slope corresponding to ancestry

(where the subscript h10 on γ denotes correlation between  and b̃h0[i] for factor h). The
random effects for this example correspond to a random intercept and slope at the ancestry
level and a random intercept at the census level. Expression (6) is related to
reparameterizations used to reduce autocorrelation in MCMC algorithms for multilevel
models (Browne et al., 2009), though our focus and motivation are fundamentally different.

Let Y = (Yi, … , Ym)′ and σ2 ~ InvGam(v, w). The primary reason for scaling the random
coefficients to the residual variance is that it allows the integration of b̃ and σ2 from the
posterior distribution in closed form, i.e. the marginal posterior p(Y|β, ϕ, γ) has a
multivariate t-distribution. This enables one to obtain an accurate approximation of the
marginal likelihood using Laplace’s method. We assume the default prior ϕhk ~ N(log(0.3),
2) (corresponding to the kth random effect for factor h) suggested by Saville and Herring
(2008) and use the Laplace method to integrate over (β, ϕ, γ) to obtain the marginal density
p(Y). This default prior was shown to have good frequentist properties in simulation studies
in the two-level linear model. The prior distributions for β and γ as well as the values of v
and w in the prior for σ2 are set by the investigator based on the specific application.
Following Gelman et al. (2006; 2008), we advocate weakly informative priors that are
chosen by subject matter knowledge in an application area but with the prior variance
modestly inflated relative to one’s subjectively chosen prior variance to allow robustness.
The elicitation process is illustrated through the motivating application in the following
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Section. Because of the rescaling and subsequent integration, the dimension of the marginal
posterior p(Y|β, ϕ, γ) is much smaller than that of the data likelihood p(Y|β, ϕ, γ, b̃, σ2) and
lacks parameters with boundary constraints (i.e. variance components). For example, in the
model given by (6), the density p(Y|β, ϕ, γ) only incorporates 2 parameters in β, 3
parameters in ϕ, and one parameter in γ. In addition, the number of parameters in the
marginal posterior p(Y|β, ϕ, γ) is fixed as the sample size goes to infinity. Hence the Laplace
approximation can be used to efficiently approximate the marginal likelihood p(Y).

4 Application
We are interested in comparing various multilevel linear models for infant’s birth weight,
predicted by infant gestational age at delivery, gender, maternal race, parity, smoking status,
age, weight gain rate, maternal nativity, and the neighborhood deprivation index, with
random effects for census tracts and ethnic ancestries. We focus on singleton term births
with a gestational age ≥ 37 weeks and a birth weight between 900 g and 5300 g. After
exclusions, we have a total of 93,938 subjects with complete data available for the analysis.

We consider several competing models with various random coefficient structures (see
Table 1). The first model we investigate allows a random intercept for ancestry (country of
origin), defined as

(7)

with

(8)

The explanatory variables Blacki, Hispi, Asiani, and Otheri are indicator variables for race
corresponding to black, Hispanic, Asian or Pacific Islander, and other (white is the reference

group). Gesti is the infant gestational age in weeks for subject i and  is the
corresponding quadratic variable. The variables Pbirthi, Femalei, Smokei, and Foreigni are
indicator variables for any previous births, female infant gender, maternal smoking, and
maternal birth outside of the United States, respectively. The variable NDIi is the
neighborhood deprivation index corresponding to the census tract of subject i (with higher
values indicating more deprived living conditions). At the request of our epidemiologist
collaborators, maternal age was categorized into the following groups: < 25yrs (reference
group), 26–30 yrs (Age2i), 31–35 yrs(Age3i), 36–40 yrs (Age4i), and > 40 yrs (Age5i). The
variable Wtgaini is the difference in pounds in maternal pre-pregnancy weight and weight at

delivery (deliver weight minus pre-pregnancy weight), and  are the
corresponding quadratic and cubic variables, respectively. The continuous variables Gesti,
NDIi, and Wtgaini are centered and standardized by 2 standard deviations to place the
regression coefficients on a similar scale as the binary indicators (Gelman (2008)). The
quadratic and cubic versions of those variables are based on the standardized variables. The
random intercept b1[i] ~ N(0, ψ1) corresponds to the ancestry of subject i independent of εi ~
N(0, σ2).

We also consider a model with a random intercept for census tracts but without random
effects for ancestries,
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(9)

in which b2[i] ~ N(0, ψ2) is the random intercept corresponding to the census tract of subject
i. Incorporating random intercepts for both ancestries and census tracts, a two-factor cross-
classified (non-nested) model takes the form

(10)

in which b1[i] ~ N(0, ψ1) is independent of b2[i] ~ N(0, ψ2). As discussed previously, the
effect of race may depend on maternal ancestry. Hence we consider a variation of M3 with
random intercepts for both ancestry and census tract, but we allow the effect of race to vary
by ancestry. This model can be written as

(11)

in which b1p[i] ~ N(0, ψ1p) is the random intercept corresponding to the ancestry (factor 1) of
subject i within race p, independent of b2[i]. This model assumes that two persons of the
same ancestry with different races have different random intercepts. Similarly, it may also
be the case that the effect of ancestry varies by nativity. Hence we consider

(12)

in which b1s[i] ~ N(0, ψ1s) is the random intercept corresponding to the ancestry (factor 1) of
subject i within nativity s, independent of b2[i]. This model assumes that two persons of the
same ancestry but different nativity (one foreign born and one not foreign born) have
distinct random intercepts. It may also be the case that the effect of maternal weight gain
rate on infant birth weight is affected by ancestry. This may result from either biological or
social factors that are correlated with a given ancestry. We can model this heterogeneity by
including a random slope for maternal weight gain rate for the ancestry factor. Adding this
component to model M3, we have

(13)

in which b10[i] is the random intercept and b11[i] is the random slope for weight gain rate
corresponding to the ancestry of subject i, and b1[i] = (b10[i], b11[i])′ ~ N(0, Ψ1) are
independent of b2[i].

Previous research has shown heterogeneity of infant birth weights from women in different
geographical regions (Howard et al. (2006)). Hence we also consider a model that includes
random intercepts for the 15 geographical regions based on maternal ancestry in addition to
random intercepts for maternal ancestry (country of origin) and census tract, given by

(14)

in which b3[i] ~ N(0, ψ3) is the random intercept corresponding to the geographical region of
subject i, independent of b1[i] and b2[i]. Finally, we consider a model without random effects,

(15)

Our goal is to identify the preferred model and to proceed with inference using this chosen
model.
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The mean value for infant birth weight is 3,362 grams with a standard deviation of 460 g.
Converting to kilograms for computational convenience, we use prior distributions β0 ~
N(3.36,1), β ~ N(0, I), and σ2 ~ InvGam(0.1, 0.1), which are weakly informative priors
given the scale of the response and predictors. We found very strong evidence for
heterogeneity in birth weights across census tracts and across ancestries (log B̂10 = 275, log
B̂20 = 32, and log B̂30 = 283, in which B̂kk′ denotes the estimated Bayes factor comparing
Mk to Mk′ as given by equation 3), with birth weights tending to vary across maternal
ancestries in greater magnitude than across census tracts. We found that the effects of race
(log B̂43 = −6), nativity (log B̂53 = −10) and maternal weight gain rate (log B̂63 = −1) do not
vary by ancestry. Additionally, birth weights did not vary significantly by geographical
region after accounting for maternal ancestry and census tract of residence (logB73 = −2).

We fitted the preferred model, M3, using MCMC methods and based inference on 20,000
samples after discarding 5,000 as a burn-in. The posterior means and 95% credible intervals
of the fixed effects are given in Table 2. Results are presented in grams for better
interpretability. Predictors with 95% credible intervals greater than 0 include parity
(99,111), maternal age 26–30 (45,60), maternal age 31–35 (64,80), maternal age 36–40
(74,93), maternal age >40 (60,92), and maternal foreign nativity (3,19). Hence, previous live
births, greater maternal age, and maternal birth outside the U.S. are all associated with
greater infant birth weights. Predictors with 95% credible intervals that are less than 0
include maternal Asian race (−92,−21), black race (−75,−5), infant female gender
(−126,−115), maternal smoking (−186,−143), and higher neighborhood deprivation (95%
CI=(−23,−9) for a 2 sd increase). Hence, Asian and black race (compared to white), female
infants (compared to males), smokers (compared to nonsmokers), and greater NDI values
are associated with lower infant birth weights. Both maternal weight gain rate and infant
gestational age showed non-linear associations with infant birth weight. Figure 1 shows that
in the range of 0.25–2 lbs./week, a greater maternal weight gain rate is associated with
greater infant birth weights; in the range of less than 0.25 or greater than 2 lbs./week, a
greater maternal weight gain rate is associated with smaller infant birth weights, although
some caution should be exercised in the interpretation at the extremes of the data. Figure 1
shows greater gestational age is associated with greater infant birth weights, but this
association flattens somewhat as gestational age nears the right tail of its distribution (44
weeks), perhaps due to inaccurate pregnancy dating. The variables with the largest effects on
infant birth weight are smoking (β̂9 = −165), female infant gender (β̂8 = −120), maternal
weight gain rate (non-linear), and infant gestational age (non-linear). Variables with weaker
yet “significant” associations include a 2 sd increase in NDI (β̂11 = −16), maternal foreign
nativity (β̂10 = 11), and black versus white race (β̂1 = −40). Although these smaller effects
have little clinical relevance at the individual level, they are interesting findings for etiologic
purposes, as a shift of the population distribution by a few grams can push many individuals
beyond a critical point in the tail regions, potentially affecting perinatal mortality or other
related outcomes at the population level. The 95% credible intervals for Hispanic ethnicity
(−31, 57) and “other” race (−81, 75) contain zero, indicating non-significant associations
with infant birthweight. The non-significant result for Hispanic race may be due to the
nature in which the variable was constructed. Data were not initially collected for Hispanic
race, and investigators therefore constructed a Hispanic indicator variable using the ethnic
ancestry variable. Hence this predictor may lack the precision of the other race indicator
variables. The “other” race group suffered from small sample size.

Figure 2 displays 95% credible intervals for the ancestry random intercepts. Ancestries with
the greatest estimated infant birth weights include Peru, Morocco, and Nigeria, while
ancestries with the lowest estimated infant birth weights include Guyana, Bangladesh,
Gambia, and Ivory Coast. There were no notable trends across geographical regions.
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5 Discussion
In these data with uniquely rich ancestry and geographic information, we found very strong
evidence for heterogeneity in full-term infant birth weights across census tracts and across
ancestries. Moreover, the variation in birth weight across maternal ancestries was greater in
magnitude than across census tracts, and did not vary substantially by race, maternal weight
gain rate, or nativity. We note that the tests of heterogeneity for birth weights across
maternal ancestries by race or nativity may suffer from low power, due to the fact that many
countries are comprised predominantly of one race and similar nativity (see Table 3). The
finding of heterogeneity in birth weights across maternal ancestries is generally consistent
with the findings of Howard et al. (2006), although those authors studied only black women
in New York City and observed the effects of nativity to vary by maternal ancestry region.
One limitation of their study was the grouping of West Indian and Brazilian ancestry, which
was an artifact of the coding scheme used in data collection. Furthermore, Howard et al.
(2006) and many previous papers focus on preterm birth (gestational age less than 37
weeks), whereas the current paper examines birthweight variability among full-term births
only. The advantage of our outcome definition approach is to focus more clearly on
variations in fetal growth, as small babies can arise from two mechanisms: shorter
gestational age and intrauterine growth retardation, and the etiologies of these mechanisms
may be entirely distinct (Wilcox and Skjaerven (1992)). While more etiologically focused
on infant growth, however, this approach does restrict the distribution of birthweights
included in our analyses, since much of the natural variability is contributed by gestational
age. Therefore we are decomposing a subset of the true variability in birthweights, and our
results apply specifically to mechanisms that operate through modifying intrauterine growth
rate. The causal mechanisms for heterogeneity across ancestries may be due to any of a large
number of unmeasured social and biological factors, including diet, physical activity, social
support and maternal health conditions. Furthermore, it is important to note that coefficient
estimates shown here are adjusted for measured covariates, but that in reality groups differ
widely in mean values for these covariates. For example, the posterior means shown in
Figure 2 hold constant all variables included as covariates in Model 3, but the reality is that
these covariates are not constant across these groups in the population. Furthermore, the
group means could differ even more dramatically if preterm births were also included.

The estimates here are useful for demonstrating how dramatically subpopulations can differ
in outcomes, even when controlling for the important known determinants of birthweight.
Groups in Figure 2 range over several hundred grams in their adjusted mean weights, a
value which is large compared to known risk factors, such as maternal smoking.
Furthermore, despite a great deal of literature on racial predisposition to adverse birth
outcomes (Kistka et al. (2007)), the greatest variation observed in these data is at the level of
national ancestry. For example, Nigeria and Gambia are both West African populations tied
to the ancestral origins of the African-American population, and yet the former has an
adjusted mean about 100g above the overall grand mean, whereas the latter has an adjusted
mean about 100g below the overall grand mean. Unique patterns of selective migration from
these countries are among a large number of possible explanations for such patterns, but
they are less consistent with theories of racial predisposition. Ancestries with the greatest
adjusted infant birth weights include Peru, Morocco, and Nigeria, which have no obvious
connection. Nor do the ancestries with the lowest adjusted infant birth weights, such as
Guyana, Bangladesh, Gambia, and Ivory Coast. As noted previously, there were no notable
trends across broader geographical regions after accounting for country of origin. This
contrasts somewhat with earlier work that found heterogeneity in adverse birth outcomes
across large ancestry regions for black women (Howard et al. (2006)), though this work did
not account for country-specific effects.
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In summary, we have developed statistical methodology that has enabled the testing of
random effects in the NYC birth weight study. Our approach avoids issues with testing on
the boundary of the parameter space, uses low-dimensional approximations to the Bayes
factor, and incorporates default priors for the variance components. Simulation studies
(available from authors by request) suggest that these priors have good frequentist properties
and large sample consistency. The methodology is applicable to designs with any number of
random effects for any number of nested, non-nested, or crossnested factors, although
computational limitations may exist for extremely high dimensional problems (see
Appendix for discussion and proposed strategies). A major contribution of our method is the
ability to test several variance components from multiple factors simultaneously, and to do
so for nested, non-nested, or cross-nested multilevel designs.
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Appendix

A.1 Approximating the marginal likelihood
A.1.1 Reparameterization

For computational convenience, we reparameterize the multilevel linear model given in (1).
Let

(A.1)

in which , wih is an (rh × 1) vector of predictors with
corresponding random effects bh, and rh = dhch is the total number of random effects for
factor h, with dh the number of random effects for one observation for factor h, and ch the
total number of classifications for factor h. For example, in equation (2), d1 = 2 and c1 = 62
corresponding to a random intercept and slope (two random effects for observation i) for 62
classifications of ethnicity, and d2 = 1 and c2 = 2,128 corresponding to a random intercept
(one random coefficient for observation i) for 2,128 classifications of census tracts.
Additionally, wih = [δi ⊗ zih], in which δi is a (ch × 1) vector of indicator variables (equals 1
if yes, 0 if no) for group membership of observation i in each of the ch classifications, and ⊗
denotes the left Kronecker product. The basic idea of this reparameterization is that all
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random effects in the model are stacked into one large vector b. The design matrix wi will
contain mostly 0’s, with non-zero elements corresponding to the appropriate random effects

for observation i, and has dimension (r × 1), with  the total number of random

effects in the model. Also,  in which  is the vector of
all random effects for factor h. We assume bhl ~ Ndh(0dh, Ψh) (corresponding to factor h and
classification l) independent of εi ~ N(0, σ2). Prior distributions are specified for β, Ψh, and
σ2 that are appropriate for the application.

A.1.2 Rescaling the random effects
Extending the work of Saville and Herring (2008), we scale the random effects to the
residual variance such that b̃hl ~ N(0, σ2I). We then express the model as

(A.2)

in which b̃ is the vector of scaled random effects and

, and ϕh = (ϕh1, …, ϕhdh)′ are parameters
that control the relative contribution of the random effects. The role of

, in which Γh is a lower triangular
matrix with 1dh along the diagonal and lower off-diagonal elements γh, is to induce

correlation between the random effects within factor h. There are a total of 
parameters in the matrix Φ, or one parameter for each “random effect” in the model.

We can stack all observations into one response vector Y and write the model as

(A.3)

in which Y = (Yi, … , Ym)′, W = (w1, …,wm)′, X = (x1, …,xm)′, and ε = (ε1, … , εm)′. Let σ2

~ InvGam(v, w). By integrating out b̃ and σ2 from the posterior distribution, the marginal
posterior p(Y|β,ϕ,γ) can be shown to have the multivariate t-distribution given by

(A.

4)

in which Γ() denotes the gamma function and Σ=(WΦΓΓ′Φ′W′ + Im).

A.2 Computational considerations
A.2.1 Product of likelihoods

Although the theory previously outlined can accommodate any number of random effects
for any number of nested, non-nested, or cross-nested factors, there are computational
limitations that should be considered. If the number of factors is extremely large (unrealistic
for most settings), the Laplace approximation may eventually break down because the
multivariate t-distribution may not be of sufficiently small dimension. Aside from this issue,
for studies with large sample size m, the covariance matrix Σ in equation (A.4) may be too
large to handle computationally. For example, in applying model (2) to the complete 2003
NYC data (m =104,710), the covariance matrix Σ is (104,710 × 104,710). We note that this
matrix has the potential to be extremely sparse, and even with very large m may be
computationally feasible using sparse matrix computations. When the matrix is large and not
sufficiently sparse, it may be advantageous to work with the product of independent
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likelihoods (conditional on the random effects) as opposed to the likelihood of the vector of
response variables. To illustrate, the marginal distribution can be written as

(A.5)

with

in which Ir denotes the identity matrix with dimension (r × r).

Using this approach, it should be computationally possible to approximate the marginal
likelihood regardless of the size of m. The computation is limited, however, by the total
number of random effects r. If r is very large, it may not be feasible to compute the inverse
and determinant of the (r × r) matrix A (or may be very computationally expensive). For
example, in applying (2) to the NYC data, r = 2, 252. Although it may be possible to
compute the inverse and determinant of A in this example, computations are likely to be
very slow. Hence, an alternative computational approach is to write the data likelihood as
products of marginal likelihoods for lower-dimensional response vectors or scalars.

A.2.2 Alternative for non-nested models (cross-classified)
Consider the NYC data in which there are two non-nested (cross-classified) factors, ancestry
and census tracts. We denote the factor with fewer groups as h = 1 (ancestry) and the factor
with a larger number of groups as h = 2 (census tracts). We can write the marginal
likelihood as

(A.6)

in which c2 is the number of groups in factor 2, Yk is the vector of responses for group k in
factor 2, b̃2 are the random effects for factor 2, b̃2k are the random effects corresponding to
group k in factor 2, b̃1 are the random effects for factor 1, mk is the number of subjects in
group k of factor 2 and Yki is the response of the ith subject in group k of factor 2. This
approach allows one to integrate out the random effects for factor 2 in smaller dimensions,
as b̃2k is only a (d2 × 1) vector. For model (2) applied to the NYC data, b̃2k is a scalar
(representing a random intercept for census tract k) and results in matrices with smaller
dimensions than those obtained from (A.5). These derivations are specific to a model with
two cross-classified factors, but the general strategy could be applied to models with a larger
number of cross-classified factors.
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A.2.3 Alternative for nested models
Consider a 3-level nested design, such as subjects nested within maternal ancestry nested
within geographical region. In such cases one can use the nested structure for easier
computation. Let h = 1 denote the maternal ancestry factor and h = 2 denote the
geographical region factor. Then

(A.7)

in which c1k is the number of groups for factor 1 within group k of factor 2, mkj is the
number of subjects in group j of factor 1 within group k of factor 2, Ykj is the response
vector for subjects in group j of factor 1 within group k of factor 2, Ykji is the response of
subject i within group j of factor 1 within group k of factor 2, b̃1k are the random effects for
factor 1 within group k of factor 2, and b̃1kj are the random effects corresponding to group j
of factor 1 within group k of factor 2. This approach allows one to integrate out the random
effects b̃1kj and b̃2k which have smaller dimensions equal to (d1 × 1) and (d2 × 1),
respectively. For the NYC data with a random intercept for maternal ancestry and
geographical region, b̃1kj and b̃2k are both scalars. These derivations are specific to a 3-level
nested design, but the general strategy could be applied to models with larger numbers of
nested factors, or even combinations of nested and cross-nested factors. For example, such
strategies could be used on the NYC data, which has both nested and cross-classified
random effects via factors for census tracts and maternal ancestry nested within
geographical region.
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Figure 1.
Estimated change in infant birth weight by gestational age and maternal weight gain rate.
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Figure 2.
Posterior means and 95% credible intervals of random intercepts.
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Table 2

Model posterior means and 95% credible intervals

Parameter Posterior Mean 2.5% 97.5 %

β0 3331 3295 3366

β1 (Black) −40 −75 −5

β2 (Hisp) 13 −31 57

β3 (Asian) −57 −92 −21

β4 (Other) −4 −81 75

β5 (Gest*) 296 290 301

β6 (Gest*)2 −63 −71 −54

β7 (Pbirth) 105 99 111

β8 (Female) −120 −126 −115

β9 (Smoke) −165 −186 −143

β10 (Foreign) 11 3 19

β11 (NDP) −16 −23 −9

β12 (Age 26–30) 52 45 60

β13 (Age 31–35) 72 64 80

β14 (Age 36–40) 84 74 93

β15 (Age > 40) 76 60 92

β16 (Wtgain*) 182 175 189

β17 (Wtgain*)2 48 39 57

β18 (Wtgain*)3 −35 −41 −29

*
Estimates for a 2 sd increase

All estimates given in grams

J R Stat Soc Ser A Stat Soc. Author manuscript; available in PMC 2013 November 22.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Saville et al. Page 22

Ta
bl

e 
3

Fr
eq

ue
nc

y 
co

un
ts

 f
or

 a
nc

es
tr

y 
by

 r
ac

e

R
eg

io
n

A
nc

es
tr

y
W

hi
te

B
la

ck
H

is
pa

ni
c

A
si

an
O

th
er

T
ot

al

N
on

-H
is

p 
U

.S
. W

hi
te

N
on

-H
is

p 
U

.S
. W

hi
te

24
74

9
0

0
0

0
24

74
9

N
 A

fr
ic

a
M

or
oc

co
20

3
21

0
4

0
22

8

E
gy

pt
34

7
0

0
7

0
35

4

O
th

er
 N

 A
fr

ic
a

65
44

0
4

0
11

3

Su
bs

ah
ar

an
 A

fr
ic

a
N

ig
er

ia
3

41
0

0
3

0
41

6

G
ha

na
2

45
0

0
0

0
45

2

G
ui

ne
a

0
25

6
0

0
0

25
6

Se
ne

ga
l

1
20

6
0

1
0

20
8

G
am

bi
a

0
17

7
0

0
0

17
7

Iv
or

y 
C

oa
st

0
16

1
0

0
0

16
1

M
al

i
2

18
7

0
0

0
18

9

O
th

er
 W

 A
fr

ic
a

5
21

9
0

1
0

22
5

C
en

tr
al

-E
as

t-
So

ut
he

rn
 A

fr
ic

a
38

28
3

0
4

0
32

5

E
 A

si
a

C
hi

na
25

13
0

55
06

0
55

44

H
on

g 
K

on
g

0
0

0
36

0
36

T
ai

w
an

1
0

0
65

0
66

K
or

ea
8

2
0

78
4

0
79

4

Ja
pa

n
9

3
0

35
2

0
36

4

O
th

er
 E

 A
si

a
19

3
0

51
0

73

SE
 A

si
a-

Pa
c 

Is
la

nd
s

V
ie

tn
am

6
4

0
13

0
23

M
al

ay
si

a
0

0
0

78
2

80

Ph
ili

pp
in

es
22

9
0

64
6

0
67

7

O
th

er
 S

E
 A

si
a

12
5

0
15

1
0

16
8

SC
 A

si
a

In
di

a
8

56
0

13
74

7
14

45

B
an

gl
ad

es
h

30
20

0
11

90
0

12
40

Pa
ki

st
an

40
10

0
96

0
0

10
10

A
fg

ha
ni

st
an

65
2

0
70

0
13

7

Ir
an

96
0

0
2

0
98

O
th

er
 S

C
 A

si
a

14
9

3
0

14
8

0
30

0

J R Stat Soc Ser A Stat Soc. Author manuscript; available in PMC 2013 November 22.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Saville et al. Page 23

R
eg

io
n

A
nc

es
tr

y
W

hi
te

B
la

ck
H

is
pa

ni
c

A
si

an
O

th
er

T
ot

al

N
on

-H
is

p 
C

ar
ib

be
an

Ja
m

ai
ca

5
20

76
0

14
0

20
95

H
ai

ti
6

12
69

0
0

0
12

75

T
ri

ni
da

d 
an

d 
T

ob
ag

o
12

11
40

0
28

3
0

14
35

G
re

na
da

0
22

0
0

3
0

22
3

B
ar

ba
do

s
0

17
5

0
0

0
17

5

St
 V

in
ce

nt
0

16
0

0
0

0
16

0

A
nt

ig
ua

 a
nd

 B
ar

bu
da

0
11

8
0

0
0

11
8

St
 L

uc
ia

1
14

2
0

1
0

14
4

V
ir

gi
n 

Is
la

nd
s

2
40

0
0

0
42

O
th

er
 N

on
-H

is
p 

C
ar

ib
be

an
16

95
6

0
13

0
98

5

H
is

p 
C

ar
ib

be
an

D
om

in
ic

an
 R

ep
ub

lic
0

0
84

26
0

1
84

27

Pu
er

to
 R

ic
o

0
0

79
97

0
3

80
00

C
ub

a
0

0
19

2
0

0
19

2

M
ex

ic
o

M
ex

ic
o

0
0

65
85

0
0

65
85

S 
A

m
er

ic
a

G
uy

an
a

0
0

17
85

0
73

18
58

E
cu

ad
or

0
0

30
53

0
0

30
53

C
ol

om
bi

a
0

0
12

39
0

1
12

40

Pe
ru

0
0

52
1

0
0

52
1

B
ra

zi
l

0
0

17
8

0
0

17
8

A
rg

en
tin

a
0

0
19

8
0

0
19

8

V
en

ez
ue

la
0

0
18

1
0

0
18

1

O
th

er
 S

 A
m

er
ic

a
0

0
28

3
0

0
28

3

C
 A

m
er

ic
an

H
on

du
ra

s
0

0
74

0
0

23
76

3

E
l S

al
va

do
r

0
0

64
0

0
0

64
0

G
ua

te
m

al
a

0
0

39
7

0
13

41
0

Pa
na

m
a

0
0

22
6

0
0

22
6

B
el

iz
e

0
0

10
9

0
0

10
9

N
ic

ar
ag

ua
0

0
11

4
0

0
11

4

O
th

er
 C

 A
m

er
ic

a
0

0
59

0
0

59

A
fr

ic
an

 A
m

er
ic

an
A

fr
ic

an
 A

m
er

ic
an

62
12

32
3

0
12

6
12

40
3

A
m

er
ic

an
 I

nd
ia

n
A

m
er

ic
an

 I
nd

ia
n-

E
sk

im
o-

A
lu

et
5

18
0

0
12

35

J R Stat Soc Ser A Stat Soc. Author manuscript; available in PMC 2013 November 22.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Saville et al. Page 24

R
eg

io
n

A
nc

es
tr

y
W

hi
te

B
la

ck
H

is
pa

ni
c

A
si

an
O

th
er

T
ot

al

O
th

er
 E

th
ni

ci
ty

O
th

er
 E

th
ni

ci
ty

59
34

4
0

13
7

7
54

7

O
th

er
 U

S 
B

or
n 

H
is

pa
ni

c
O

th
er

 U
S 

B
or

n 
H

is
pa

ni
c

0
0

13
56

0
0

13
56

T
ot

al
26

07
3

21
52

5
34

27
9

11
91

3
14

8
93

93
8

J R Stat Soc Ser A Stat Soc. Author manuscript; available in PMC 2013 November 22.


