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SUMMARY
In a large, prospective longitudinal study designed to monitor cardiac abnormalities in children born
to HIV-infected women, instead of a single outcome variable, there are multiple binary outcomes
(e.g., abnormal heart rate, abnormal blood pressure, abnormal heart wall thickness) considered as
joint measures of heart function over time. In the presence of missing responses at some time points,
longitudinal marginal models for these multiple outcomes can be estimated using generalized
estimating equations (GEE) (Liang and Zeger, 1986), and consistent estimates can be obtained under
the assumption of a missing completely at random (MCAR) mechanism. When the missing data
mechanism is missing at random (MAR), that is the probability of missing a particular outcome at a
time-point depends on observed values of that outcome and the remaining outcomes at other time
points, we propose joint estimation of the marginal models using a single modified GEE based on
an EM-type algorithm. The proposed method is motivated by the longitudinal study of cardiac
abnormalities in children born to HIV-infected women and analyses of these data are presented to
illustrate the application of the method. Further, in an asymptotic study of bias, we show that under
an MAR mechanism in which missingness depends on all observed outcome variables, our joint
estimation via the modified GEE produces almost unbiased estimates, provided the correlation model
has been correctly specified, whereas estimates from standard GEE can lead to substantial bias.
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1 Introduction
Longitudinal data are frequently collected in social science studies as well as In health studies
such as AIDS, cardiovascular, and cancer clinical trials. Although most statistical methods
focus on a single outcome of interest at each time point, in many longitudinal studies, multiple
outcomes are measured at each time point. For example, in longitudinal studies of cardiac
function, many binary measures of heart function are collected at each time point, and focusing
on just a single outcome over time, say abnormal blood pressure, may provide an incomplete
picture of cardiac function. This is particularly true for the Pediatric Pulmonary and Cardiac
Complications (P2C2) of Vertically Transmitted HIV Infection Study (Lipshultz et al., 1998),
which was a large, prospective longitudinal study designed to monitor heart disease and the
progression of cardiac abnormalities in children born to HIV-infected women. Previous results
(Lipshultz et al., 1998; Lipshultz et al., 2000; Lipshultz et al., 2002) from the P2C2 study have
shown that subclinical cardiac abnormalities develop early in children born to HIV-infected
women, and that they are frequent, persistent, and often progressive. Cardiac abnormalities
include cardiomyopathy (decreased left ventricular (LV) contractility) and reduced pumping
ability of the heart (low LV fractional shortening). In the P2C2 study, cardiovascular function
was measured approximately every year, including at birth, for up to six years, in a birth cohort
of 393 infants born to women infected with HIV-1; this yielded up to 7 measurements on each
child. The 393 children in this study (Lipshultz et al., 1998) were enrolled between May 1990
and April 1993. To better understand longitudinal change in heart function, multiple
dichotomous measures of heart function (low LV fractional shortening, decreased LV
contractility, abnormal heart rate, and abnormal blood pressure) must be jointly modeled over
time.

Thus, the P2C2 data can be considered to be multivariate in two aspects: more than one outcome
variable at any time-point, and multiple time points. In this paper, we focus on marginal
regression models for multivariate longitudinal binary data, where the marginal probability of
an abnormal outcome over time is related to a set of covariates. Here, we are primarily interested
in estimating the marginal regression parameters for each outcome. We treat the association
among multiple measures, and across time, as a nuisance characteristic of the data, but propose
a parsimonious model for the association structure. In the marginal models, we assume that
each outcome has a different set of marginal regression parameter. For example, the marginal
regression parameters for abnormal blood pressure and abnormal heart rate over time are
distinct.

Although most studies are designed to collect complete data on all participants, missing data
very commonly arise and must be properly accounted for in the analysis. For example, in the
P2C2 study, each patient was supposed to have an echocardiogram every year for the first 6
years of life, including at birth. However, a feature of this study which complicates the analysis
is missing outcome data; for example, only 1 (0.25 %) of the 393 patients have outcomes
measured at all 7 occasions. All four outcomes (fractional shortening, contractility, heart rate,
and blood pressure) were either measured or not measured at each point in time; thus, we do
not have missingness within time points, either the whole set of outcomes is observed at any
time point or is missing. Table 1 gives the frequency distribution of the number of
echocardiograms per individual, and Table 2 shows the number of subjects seen at each of the
7 possible occasions. As we see from Table 1, only 21 % of the subjects were seen more than
three times. In Table 2, we see that 262 of the 393 children (66.7 %) had baseline measurements;
after birth, the percentage of children with measurements of the outcomes slowly drops until
only 7 (1.8 %) of the 393 subjects have the measures at 6 years of age. Most of the missing
data are due to patients who “drop-out”, i.e., once the patient misses a scheduled visit, no more
measurements of the outcome variables are obtained thereafter. However, there are 29 (3.9 %)
patients who missed at least one measurement occasion, but returned at a later measurement
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occasion. Furthermore, as we will see in Section 4, patients with HIV, abnormal blood pressure,
abnormal heart rate, and abnormal fractional shortening are more likely to be seen at later
measurement occasions. This implies that missingness cannot be assumed to be a completely
random process. None of the 393 children died, so that we do not need to jointly model survival
time along with the repeated measures data, as might be the case if death was related to the
values of the repeated measures.

To estimate the regression parameters of marginal models, Liang and Zeger (1986) proposed
the “standard” generalized estimating equations (GEE) to obtain consistent parameter
estimates. This approach does not require the complete specification of the joint distribution
of the repeated responses, but only the first two moments. When some individuals’ response
vectors are only partially observed, the standard GEE approach circumvents the problem of
missing data by simply basing inferences on the observed responses, with correlations
estimated using “all-available-pairs”. This approach yields consistent marginal regression
parameter estimates provided that the responses are missing completely at random (MCAR)
(Rubin, 1976; Laird, 1988). In particular, when the outcome data are MCAR, missingness
depends only on the covariates (that are included in the model), and the standard GEE provides
consistent regression parameter estimates. However, when missingness is related to the
observed data (covariates and observed responses), but conditionally independent of the
missing responses given the observed data, the missing data are said to be missing at
random (MAR) (Rubin, 1976; Laird, 1988) and standard GEE can yield biased regression
parameter estimates. In this paper we consider a modification of GEE that yields regression
parameter estimates with considerably less bias than the standard GEE when data are MAR
and the “working correlation” structure is the true correlation structure. The proposed
modification uses the EM-type algorithm proposed by Lipsitz et al (2000) for estimation of the
correlation parameters. Lipsitz et al., (2000) showed that with MAR missing data, their
modified GEE was practically unbiased for the marginal model for a single outcome repeatedly
measured over time, whereas the “standard” generalized estimating equations can be heavily
biased. Although the association structure is usually treated as a nuisance in the GEE approach,
the association structure must be correctly specified in the modified GEE in order to minimize
the bias in estimating the marginal regression parameters.

Assuming the longitudinal model for each outcome variable has a separate set of marginal
regression parameters, one can estimate the marginal models using separate generalized
estimating equations for each outcome. These estimates will be consistent under MCAR.
However, just as in the case of a single outcome measured repeatedly over time, when data are
missing at random (MAR), these estimates are potentially biased. The modified GEE of Lipsitz
et al. (2000) applied separately to each outcome will, in general, reduce the bias of the standard
GEE, but bias will remain if missingness depends on all of the observed data (e.g., if
missingness depends on observed outcomes other than the one being estimated via the separate
GEE's). When data are MAR, it is likely that missingness can depend on all of the observed
outcome data, and estimating the marginal models for each outcome separately, even using the
modified GEE, can still produce biased results. In this paper, we propose joint estimation of
the marginal models for all outcomes using a single modified GEE; in this modified GEE, one
must also specify the association parameters among the different outcomes (e.g., between heart
rate and blood pressure). We compare the proposed method with the standard GEE approach
of Liang and Zeger (1986).

In Section 4, using the binary measures of cardiac abnormalities in children born to HIV-
infected women, we show that that discernably different regression parameter estimates are
obtained when using the various GEE approaches. In this example, we also describe a logistic
regression procedure for exploring whether the data are MCAR versus MAR. Using the results
of this logistic regression procedure, we discuss whether MAR is a plausible assumption for
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the data on cardiac abnormalities in children born to HIV-infected. These analyses illustrate
the potential for bias under different assumptions about missingness. To make more general
recommendations to the applied investigator, as well as to complement the results of these data
analyses, in Section 5 we conduct an asymptotic study of bias of the different GEE approaches.
In this study of asymptotic bias, we show that if the missing data are MAR, and missingness
depends on all observed outcomes, then joint estimation via the modified GEE produces almost
unbiased estimates, assuming the correlation model has been correctly specified; in contrast,
the standard GEE can yield highly biased estimates.

An alternative to GEE is estimation of the parameters via a full likelihood approach. To
formulate a full likelihood under MAR, one must specify a joint model for the binary outcomes
within each time point as well as across time points. Unfortunately, the full likelihood approach
has many nuisance parameters, and it can be conceptually difficult to model higher-order
associations in a flexible and interpretable manner that is consistent with the model for the
marginal expectations (e.g., Bahadur, 1961). Full likelihood approaches are complicated
algebraically since, given a marginal model for the vector of repeated outcomes, the
multinomial probabilities cannot, in general, be expressed in closed-form as a function of the
model parameters. Finally, maximum likelihood estimation can be computationally
prohibitive, especially when the number of outcomes at each time and the number of times is
large, since the number of multinomial probabilities grows exponentially with the number of
repeated measures. For instance, in our example, there are 7 measurement occasions and 4
outcomes, meaning a full likelihood under MAR requires the specification of a multinomial
distribution with 27·4 = 268, 435, 456 joint probabilities. As a result, ML estimation is feasible
for only a relatively small number of repeated measures (say, less than 5). Also, unlike GEE,
to obtain asymptotically unbiased estimates, the full joint distribution of the data must be
correctly specified.

Thus, one of the chief attractions of our modified GEE approach over maximum likelihood is
that it significantly eases the numerical complexities of the full likelihood approach by only
requiring specification and estimation of pairwise association parameters. Further, it alleviates
the need to specify and estimate many nuisance parameters that are needed in a full likelihood
approach. In addition, with MAR missing data, approximately asymptotically unbiased
estimators of the regression parameters can be obtained provided that the first two moments
are correctly specified when using the modified GEE. Thus, when using the proposed modified
GEE approach with MAR missing data, the key requirement is that the marginal model and
the model for bivariate associations for all outcomes must be correctly specified and estimated
simultaneously.

2 Notation and Distributional Assumptions
Suppose K binary random variables are collected at pre-specified time points t, t = 1, ..., T, as
in the P2C2 study in which echocardiograms were to be taken every year from birth until six
years of age. Let Yikt be the kth binary random variable (k = 1, ..., K) collected on subject i (i =
1, ..., n) at time t. Then, for the kth outcome variable from the ith individual measured at T times,
we can form a (T × 1) response vector, Yik = [Yik1, ..., YikT]′, (for k = 1, ..., K). In principal,
each of the K outcome variables can have its own set of covariates. However, for simplicity,
we assume each outcome has the same set of covariates and these covariates are fully observed.
We denote the J × 1 covariate vector for subject i as xi. The main interest here is in the marginal
model for each binary outcome Yikt, which we assume follows a logistic regression. The
marginal distribution of Yikt is Bernoulli with success probability,
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(1)

Even though we assume the covariate vector xi is the same for all outcome variables, we assume
the regression parameter vector βk is distinct across the K outcomes. For outcome k, the pikt's
can be grouped together to form a (T × 1) vector pik containing the marginal probabilities of
success over time, pik = E[Yik|xi, βk] = [pik1, ..., pikT]′. Further, the K vectors {Yik} and {pik}

can be grouped into overall TK × 1 vectors  and . Note that
we are primarily interested in making inference about βk. In this paper we are interested in the
case where individuals are not observed at all T times; however, we assume that no covariates
are missing.

The association between a pair of binary outcomes is typically measured in terms of marginal
odds ratios (Plackett, 1965) or marginal correlations (Bahadur, 1961). For ease of exposition,
here, we discuss marginal correlations, which are a function of the unknown parameter vector.
We propose an autoregressive type correlation structure that is an extension of the correlation
model proposed by (Galecki, 1994). In general, for outcomes (j, k) and times (s, t), the
correlation model is

(2)

where −1 < αjk < 1, −1 < α2jk < 1, and I(·) is an indicator variable. In particular, for the same
outcome variable (k = j) at two different points in time s ≠ t, the model is first-order
autoregressive,

For different outcomes (j ≠ k) at the same point in time (s = t), the model is

(3)

and for different outcomes (j ≠ k) at different points in time (s ≠ t), the model is

(4)

Note that as  and ρi,js,kt → αjk, so that (4) agrees with (3). For the
correlation structure given by (2), there are K(K + 1)/2 αkk's and K(K − 1)/2 αjk's.

Note, in general, the joint distribution of Yijs and Yikt is bivariate binary (Bahadur, 1961),
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(5)

From (5), the joint probability that Yijs = 1 and Yikt = 1 equals

(6)

this result is used in the GEE approach discussed in the next section.

3 Generalized estimating equations
Lipsitz et al., (2000) showed that, for a single outcome variable measured repeatedly over time,
a modified GEE which uses an EM-type algorithm was practically unbiased for the marginal
model when the missing data are MAR, whereas the standard GEE of Liang and Zeger
(1986) could be highly biased. In datasets such as ours with multivariate longitudinal data, i.e.,
multiple outcomes measured over time, one would typically estimate the regression parameters
βk by applying separate generalized estimating equations to each outcome. The modified GEE
of Lipsitz et al. (2000) applied separately to each outcome will reduce the bias of the standard
GEE, but will still lead to bias if missingness depends on all of the observed data (for example,
if separate GEEs are used, there will be bias in the estimated marginal model for abnormal
blood pressure if missingness depends on the previous value of fractional shortening). When
data are MAR, it is likely that missingness can depend on all of the observed outcome data,
and estimating the marginal models for each outcome separately, even using the modified GEE,
can still produce biased results. In this section, we describe joint estimation of the marginal
models for all outcomes using a single modified GEE with the TK × 1 outcome vector Yi
containing all outcomes over times.

When there are no missing data, the generalized estimating equations (GEE) for β are given
by

(7)

where Di = ∂pi(β)/∂β, and Vi = Vi(α,β) is the TK × TK “working” or approximate covariance
matrix of Yi (Liang and Zeger, 1986); β is the JK vector of regression parameters. Since Yikt
is binary, the corresponding diagonal elements of Vi is Var(Yikt) = pikt(1 − pikt), which is
specified entirely by the marginal distributions (i.e., by β). A general off-diagonal element of
Vi is Cov(Yijs,Yikt) = pi,js,kt − pijspikt, where pi,js,kt is specified in equation (6).

When there are missing outcome data, we can write , where Yo,i is a (Ci × 1)
vector containing the observed components of Yi, and Ym,i is a [(TK − Ci) × 1] vector containing
the missing components of Yi. If the missing data are MAR, a consistent estimate of β can be
obtained by setting the conditional expectation of u1(β) in (7), denoted , to 0 and solving
for . Here, the conditional expectation is taken with respect to the conditional distribution of
the missing data given the observed data. In particular,
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(8)

In (8), we have conditioned of the observed data (a partition of the full vector Yi). This
conditional expectation E(Yi|Yo,i, xi) is a function of the observed data Yo,i. If we then take
the expection of E(Yi|Yo,i, xi) with respect to Yo,i, we get Eyo,i{E(Yi|Yo,i, xi)} = E(Yi|xi) =
pi. It then follows that

Heuristically, using method of moment ideas, since , and we are solving

 for ,  is consistent.

Note, however, that the computation of the conditional expectation of Yi given (Yo,i, xi)
requires the full specification of the distribution of Yi. With a vector of TK binary responses,
there are 2TK possible response sequences, and Yi has a multinomial distribution with 2TK joint
cell probabilities. If we specify all 2TK joint cell probabilities to calculate the conditional
expectation of Yi given (Yo,i, xi), we might as well use maximum likelihood since the full
likelihood will be specified; further, (8) with E(Yi|Yo,i, xi) correctly specified would be
identical to the part of the maximum likelihood score vector for estimating β. The primary
appeal of GEE lies in avoiding the full specification of this joint distribution of Yi. In particular,
as opposed to maximum likelihood, our proposed GEE only requires specification of the first
two moments. Therefore, we consider an approximation for E(Yi|Yo,i, xi), based on the
multivariate normal distribution, that avoids the full specification of the joint distribution of
Yi. Thus, our motivation for using the multivariate normal approximation is to find as simple
approximation as possible to the first two moments of the joint multinomial distribution of the
data; in other settings, we have found this approximation works very well (Lipsitz et al.,
2000). In particular, we pro- pose replacing E(Yi|Yo,i, xi) in (8) by the corresponding expression
for this conditional expectation when Yi is assumed to have a multivariate normal distribution,

(9)

where

and

i.e., po,i and Vo,i are the elements of pi and Vi corresponding to the observed data Yo,i.
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Estimating E(Yi|Yo,i, xi) based on the multivariate normal distribution, it can be shown that
the estimating equations for β in (8) reduce to

(10)

where Do,i = ∂po,i(β)/∂β. Although not derived using the multivariate normal approximation
for E(Yi|Yo,i, xi), the “standard” generalized estimating equations for β , as originally proposed
by Liang and Zeger (1986) and Prentice (1988), are identical to (10). The difference between
the “standard” generalized estimating equations of Liang and Zeger and our approach is in the
estimating equations for α (and thus Vo,i). Different estimates of Vo,i produce different
solutions to (10), so that, even though the form of the estimating equations for β are identical,
the estimates of β will be different when Vo,i is estimated by different approaches. In our
experience, we have found, when data are MAR, as long as Vi is specified correctly, and
consistently estimated, we expect the estimate of β to have little bias. With MAR missing data,
for any GEE, the solution  is asymptotically normal with mean β*, where β* may not
necessarily equal the true β. Further, the covariance matrix is given by the so-called sandwich
estimator proposed by Huber (1967),White (1982) and Royall (1986). In particular, the
asymptotic covariance matrix of  can be consistently estimated with

(11)

In the usual case where Vi, and specifically, is unknown, we must parameterize and estimate
ρi,js,kt = Corr(Yiks, Yikt|xi). Prentice (1988) suggests a second set of estimating equations for
α by first forming the cross-products YijsYikt, which have expected value pi,js,kt = E(YijsYikt|xi,
α) (the joint probabilities in (6)). The estimating equations for α are then based on linear
combinations of TK(TK − 1)/2 pairs [YijsYikt−pi,js,kt], which have mean 0 when no data are
missing. With missing data, we propose replacing YijsYikt in the estimating equations for α with
E[YijsYikt|Yo,i, xi], the conditional expectation of YijsYikt given the observed data Yo,i, where
this conditional expectation is again calculated as if the complete data Yi is multivariate normal.
In particular, the conditional expectation YijsYikt given Yo,i under multivariate normality is an
off-diagonal element of

In contrast, Liang and Zeger's standard GEE approach is based on an “all-available-pairs”
estimator. To estimate Corr(Yis, Yit), the “all-available-pairs” method uses all subjects who are
observed at times s and t; thus a subject contributes all pairs of times at which she/he is observed.
Since the number of subjects observed at the different pairs of times can be different, the sample
size used to estimate the different pairwise correlation coefficients can also be different. It is
well-known (Little and Rubin, 2002) that this method can lead to an estimate of Vo,i that is not
positive definite, and very biased when data are MAR. In contrast, our proposed estimator of
α based on the multivariate normal conditional expectation YijsYikt given Yo,i, lead to an
estimate of α and thus Vo,i that will be positive definite and have minimal bias (Fitzmaurice
et al., 2001). In order to get approximately unbiased estimates using GEE, the mutltivariate
normal approximation must be used for both the first, E[Yijs|Yo,i, xi] and the second, E
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[YijsYikt|Yo,i, xi], moments. In summary, the primary difference between the proposed
“modified” GEE and the “standard” GEE is in the method of estimating Vo,i. As will be
demonstrated later, this will have a huge impact on the resulting bias in the estimate of β.

In summary, the proposed modified GEE estimate is the solution to (10) with α replaced by
the solution to our second set of estimating equations after replacing YijsYikt with its
approximate conditional expectation given Yo,i under multivariate normality. The modified
GEE yields consistent estimates of β when data are MCAR, and based on the results of Lipsitz
et al. (2000) for a single outcome measured repeatedly over time, we expect minimal bias under
MAR when the covariance structure (Vi) is correctly specified. Note, though, this requires that
all correlations, both for each outcome over time, and across different outcomes (at a given
time or at different times), be correctly specified. Also, the modified GEE applied separately
to each outcome can be thought of as a special case of our proposed modified GEE, with
”working correlation” of independence across different outcomes. If the data are MAR, but
not MCAR, then E(Yo,i|xi,β) may not equal po,i, but the weighted linear combination,

, with Vo,i estimated using the multivariate normal approximation for
E{YijsYikt|Yo,i, xi}, may nonetheless have mean close to 0. When this is the case, then the
modified GEE will be approximately unbiased. The unbiasness of any GEE approach requires
unbiased estimates of Vi, so that correct linear combinations of the residuals [Yo,i − po,i] are
taken in these estimating equations; our experience has found that if the estimate of Vi is poor
and highly biased, such as under MAR with an “all-available-pairs” approach, then the resulting
estimate of β can be highly biased. We explore this conjecture in a study of asymptotic bias in
Section 5, where the bias of the estimate from our joint modified GEE is compared to the bias
of the estimate using standard GEE. Further, since they will be used often in practice, we also
explore the bias of the GEE from separate estimation for each outcome, using both the modified
approach and the standard approach.

4 Application: Analysis of cardiac abnormalities in children born to HIV-
infected women

Data from cross-sectional and short-term longitudinal studies (Lipshultz et al., 1998) have
shown that children infected with HIV-1 have an increased risk of cardiovascular
abnormalities. We aimed to investigate this hypothesis using data from the P2C2 study
described in the Introduction. The P2C2 study is also used to illustrate the application of the
proposed methodology. In the P2C2 study, a birth cohort of 393 infants born to women infected
with HIV-1 were to have cardiovascular function measured approximately every year from
birth to age 6; giving up to 7 measurements on each child. Of these 393 infants, 74 (18.8%)
were HIV positive, and 319 (81.2%) were HIV negative. The main scientific interest is in
determining if HIV-1 infected children have worse heart function over time. To truly
understand the change in heart function over time, four dichotomous measures of heart function
are jointly modelled over time. These four measures of abnormal heart function are: abnormal
LV fractional shortening (1=yes, 0=no); decreased LV contractility (1=yes, 0=no); abnormal
heart rate (1=yes, 0=no); and abnormal blood pressure (1=yes, 0=no). The main covariate of
interest is the effect of HIV infection; other possible covariates that could be confounders are
mother's smoking status during pregnancy (1=yes, 0=no); gestational age (in weeks) and
birthweight standardized for age (1=abnormal, 0=normal). A child of a mother who smokes is
expected to have worse heart function. Children with younger gestational age and lower
birthweight (standardized for gestational age) may also be at risk for cardiac problems.

Thus, to examine the effect of HIV-1 effect in these children born to HIV-infected women, we
considered the following marginal logistic regression model,
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for t = 0, 1, ..., 6, where HIVi equals 1 if the ith child is born with HIV-1 and equals 0 if otherwise;
smokei equals 1 if the mother smoked during pregnancy, and 0 otherwise; agei is the gestational
age (in weeks); and wti equals 1 if the child's birthweight for gestational age was abnormal,
and 0 otherwise. To account for the association among the binary outcomes, the autoregressive
correlation structure given in (2) was used. As seen in Table 1, a feature of this study which
complicates the analysis is that there is a lot of missing data, with only 1 out of the 393 children
having outcomes measured at all 7 occasions. To explore how missing data affects various
estimation techniques, we compare the proposed joint modified GEE estimates of β to those
obtained using three alternative approaches using an AR1 correlation structure: 1) the standard
GEE approach using “all-available-pairs”, separately for each outcome; 2) the modified GEE
approach, separately for each outcome; 3) joint standard GEE using “all-available-pairs”. In
effect, approaches 1) and 2) assume the correlations between different outcome variables, at
the same or different times, is 0, i.e., Corr(Yijt, Yikt|xi) = 0 for j ≠ k.

Before describing the results of the different GEE approaches, it is of interest to explore the
missing data mechanism that might be generating the missing data. A somewhat informal way
to assess if the data are missing completely at random is to formulate a logistic regression
model for missingness at each time point, given the outcome data at the previous time point
was observed. In particular, we define the indicator random variable Rit which equals 1 if the
outcomes {Yijt} are observed at time t and 0 if (Yijt) is unobserved, for t = 1, ..., 6. Then the
conditional probability of interest is

(12)

for t = 1, ..., 6. Note that this probability is estimable since the values of (Yi1,t−1, ..., Yi4,t−1) are
observed when Ri,t−1 = 1. We fit a logistic regression model to πit with a linear time effect
(quadratic was not significant), covariate effects corresponding to the four outcomes,
(Yi1,t−1, ..., Yi4,t−1), and interactions between time and (Yi1,t−1, ..., Yi4,t−1), between xi and
(Yi1,t−1, ..., Yi4,t−1); and between the elements of (Yi1,t−1, ..., Yi4,t−1). Under MCAR, all effects
of the outcomes, and interactions with the outcomes will be 0, e.g.,

and any GEE approach will be approximately unbiased There were 904 observations over time
that contributed to this logistic regression; since these 904 were repeated measures from the
393 children, we fit a GEE under independence to estimate the logistic regression parameters
for πit. Out of these 904 times when (Yi1,t−1, ..., Yi4,t−1) was observed, (Yi1t, ..., Yi4t) was
observed at the next visit (Rit = 1) 448 times (49.6%). The results are given in Table 3. We
kept all interactions in the model that were significant at .10. We see that older patients with
abnormal blood pressure at the previous visit are more likely to be seen at the current visit (p
< .05); patients with abnormal gestational age and abnormal heart rate at the previous visit are
more likely to be seen at the current visit (p < .10); and patients with both abnormal blood
pressure and fractional shortening at the previous visit are more likely to be seen at the current
visit (p < .10). The latter two effects are only marginally significant, but could still be a factor
as to whether the standard GEE will be approximately unbiased. Thus, it does appear that the
sicker patients are more likely to be seen; a GEE approach that minimizes the bias is warranted.
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Table 4 gives the estimates of β obtained using the four different approaches; joint modified
GEE, joint standard GEE, separate modified GEE, and separate standard GEE. In general,
assuming that the proposed joint modified GEE is correct, we see that the estimated relative
differences (calculated as 1 minus the ratio of a given estimate to the proposed GEE estimate)
are large for some effects. In particular, the standard GEE and the modified GEE (separately
for each outcome), as well as joint standard GEE gave different estimates than the newly
proposed estimate for the low birthweight effect for most outcomes, and for the mother smoked
and gestational age effects on contractility. Although the joint standard GEE tends to have
smaller relative difference than standard GEE (separately for each outcome), it is not uniformly
smaller than the modified GEE (separately for each outcome). We do note here, though, that
if one chooses a .05 level of significance as a cutoff, all three approaches give the same
conclusions as to which effects are significant. Further the estimated standard errors are very
similar using all approaches; we are mainly concerned with bias in this paper, but a simulation
comparing finite sample mean square error is a topic for future exploration. Overall, the results
based on the newly proposed joint modified GEE suggest that the covariates appear to only
significantly affect the heart rate outcome. Children with HIV have exp(0.9753) ≈ 2.7 times
the odds of having an abnormal heart rate than children without HIV; further, children whose
mother smoked during pregnancy have exp(0.4453) ≈ 1.6 times the odds of having an abnormal
heart rate than children whose mother did not smoke.

Finally, without knowledge of the true model generating the data, we can only remark that
these different approaches can yield discernibly different regression parameter estimates, but
we cannot assess which method produces the most or least bias. To address the latter issue, we
conducted an asymptotic study of bias that compared these methods for handling missing data.

5 Asymptotic Study of Bias of β
In the asymptotic study of bias that follows, we assume that the models for the means, E(Yi|
xi,β), are correctly specified. Thus, bias will result only from the fact that the missing data are
not MCAR.

For simplicity, we consider the case of two binary outcomes at three time points, resulting in
6 correlated binary outcomes per subject. We assume a simple two group configuration, e.g.
active treatment versus placebo. Subjects are assumed to belong to either group with equal
probability. To specify the true underlying joint distribution of the binary responses, we choose
the model for correlated binary data first described by Bahadur (1961), and later by Cox
(1972). With 2 binary outcomes at each of 3 times, there are 6 binary outcomes, and the joint
distribution of an individual's responses is multinomial with 26 probabilities. Thus, in Bahadur's
correlated binary model, the joint distribution of an individual's responses at the three times is
multinomial,

(13)

where

and
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for t = 1, 2, 3 and k = 1, 2. Here, xi is a dichotomous covariate indicating group membership
for the ith individual.

For the study of asymptotic bias, the parameters of the true model are as follows. The marginal
regression parameters for the outcomes k = 1, 2 are

A variety of different correlation structures were examined and the same overall pattern of
results were obtained. For simplicity, the results from a true exchangeable correlation structure
are presented here, in which ρi,js,kt = for α ∈ {0.1, 0.25} for all js ≠ kt. Because of constraints
on the joint distribution in (13), the maximum possible value of α is approximately .25;
however, while not particularly large, this value still illustrates the substantial bias that can
occur using various GEE approaches.

The true drop-out mechanism is assumed to depend on (Yijt, Yikt) at the previous times and on
the group membership, with subjects dropping out at times 2 or 3. We define the indicator
random variable Rit which equals 1 if (Yijt, Yikt) is observed and 0 if (Yijt, Yikt) is unobserved,
for t = 2, 3, and we define the dropout probability to equal

(14)

(t = 2, 3). In (14), the probability of being missing (or observed) at time t, given that the subject
is observed at the previous occasions (Ri1 = ... = Ri,t−1 = 1), depends on the previous responses
and on group membership. Note, if γy1 = γy2 = γGy1 = Gy2 = 0, then the data are MCAR.

Next, we consider the derivation of the asymptotic bias of . First, suppose that the missing
data are MCAR, then  from any of the GEE methods described in Section 3 is consistent, i.e.,

. However, if the data are MAR, then , where β* is not necessarily equal to β.
The goal is to assess (β* − β), the asymptotic bias of . Following Rotnitzky & Wypij
(1994), the asymptotic bias of  can be ascertained by solving the expected value of an
estimating equation u(β)

(15)

for β*, where the expectation is taken with respect to the discrete distribution of (Yi,
xi,Ri2,Ri3). Basically, the expectation in (15) is a weighted sum, where the weights are the
probability of the given realization of (Yi,xi,Ri2,Ri3). Since there are 26 possible values of Yi,
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and two possible values for each of xi, Ri2, and Ri3, then the multinomial distribution for (Yi,
xi, Ri2, Ri3) will have J = 29 probabilities. In particular, E[u(β*)] in (15) equals

where u(β; Yi, xi, Ri2, Ri3) denotes u(β) as a function of (Yi, xi, Ri2, Ri3), and the sum is over
all J = 29 patterns of (Yi, xi, Ri2, Ri3). We can solve for β* using any GEE program, where the
‘data’ consist of J = 29 ‘observations’, each with weights pr[Yi = y, xi = x, Ri2 = r2, Ri3 = r3].

Our main concern is with the bias in estimating β when missing data follow a MAR drop-out
process. We consider the following approaches, all of which give asymptotically unbiased
estimates under MCAR: 1)IND=estimation under the naive assumption of independence, i.e.,
ρi,js,kt = 0 for all j, k, s, t; 2) sep-standard-GEE=GEE using “all-available-pairs” separately for
each outcome; 3) sep-mod-GEE=the modified GEE approach, separately for each outcome; 4)
joint-standard-GEE=GEE with joint estimation using “all-available-pairs”; 5) joint-mod-
GEE=our proposed modified GEE with joint estimation of the correlation for all outcomes.
Since all estimates are unbiased under an MCAR dropout mechanism, any possible bias results
only from the fact that the missing data are not MCAR.

Table 5 gives the asymptotic bias of the various GEE approaches for different values of (γ0,
γG, γy1, γy2, γGy1, γGy2), corresponding to drop-out rates of approximately 15%, 30%, 50%.
We specified three sets of γ's. In the first set, missingness depends on both outcomes at the
prior time, and all of the GEE approaches use the correct exchangeable correlation model. In
the second set, missingness depends on only the first outcome variable (Yi1t) at the prior time
(γy2 = γGy2 = 0), and all of the GEE approaches use the correct exchangeable correlation model.
In this case, we might expect bias in the estimates of the parameters for outcome 2 for the GEE
approaches with separate estimation for outcomes 1 and 2 over time, since this is akin to non-
ignorable missingess for outcome 2 (dropout depends on Yi1,t−1, which is not in the estimation
procedure for Yi2t). In the third set, missingness depends on both outcomes at the prior time,
and all of the GEE approaches use the wrong correlation model (AR1 instead of the true
exchangeable model).. This will provide insight into how the various GEE approaches perform
when the mean is correctly specified but the correlation model is incorrect.

Examining the results in Table 5, we see that the estimates under the naive assumption of
independence have the largest bias; this approach should not be used when there is dropout.
The sep-standard-GEE has the next largest bias. Even with only 15 % dropout, the sep-
standard-GEE can have as much as 15 % relative bias. With 30 % dropout, the relative bias of
the sep-standard-GEE can be as high as 33 %, and with 50 % dropout, the relative bias can be
as high as 47 %. The relative bias of the sep-standard-GEE seems to be similar regardless of
whether dropout depends on first outcome or both of the previous outcomes. Using sep-mod-
GEE reduces the relative bias of the sep-standard-GEE for all configurations. Finally, joint-
standard-GEE tends to have a similar magnitude of bias as sep-mod-GEE. In general, when
dropout depends on both outcomes at prior times, using sep-mod-GEE for the outcomes or
joint-standard-GEE reduces the relative bias of the sep-standard-GEE by approximately 33 %;
however, the relative bias of sep-mod-GEE can still be substantial (as high as 23 %), as can
the bias of joint-standard-GEE (as high as 21 %). When dropout depends only on the first
outcome at the prior time, sep-mod-GEE is unbiased for the regression parameters of this first
outcome; this is to be expected since this is the exact case considered by Lipsitz et al. (2000).
However, in this case, the relative bias of sep-mod-GEE for the outcomes can be high for the
regression parameters of the second outcome, as high as 44 %; further, for the second outcome,
the sep-standard-GEE and sep-mod-GEE perform very similarly. The joint-standard-GEE
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tends to have smaller bias for the second outcome than the sep-standard-GEE, but has very
high bias for the first outcome (as high as 36 %). Our proposed approach (joint-mod-GEE) is
asymptotically unbiased in all configurations when dropout depends on both outcomes at prior
times, and the correlation model is correctly specified as exchangeable.

Finally, from Table 5, we see that when dropout depends on both outcomes at prior times, and
the correlation structure is incorrectly specified as AR1, the bias tends to be 2% larger in
absolute value for any GEE approach when compared to correctly specifying the correlation.
In particular, the joint-mod-GEE tends to have approximately 2% bias; thus, joint-mod-GEE,
at least for this configuration, appears to be robust to mis-specification of the correlation model.

When the four GEE approaches are considered, the results in Table 5 indicate that the sep-
standard-GEE can have quite appreciable bias. Although it reduces the bias over sep-standard-
GEE, sep-mod-GEE can still have substantial bias. Although tending to reduce the bias over
sep-standard-GEE, the joint-standard-GEE still has appreciable bias. Not surprisingly, the
magnitude of the bias in estimating increases with increasing drop-out rates and increasing
correlation. It is worth emphasizing that the overall pattern of results reported in Table 5 have
been replicated in many other configurations that were considered but not reported here;
because of the complexity of specifying a joint distribution for multivariate longitudinal binary
data, all of these configurations had two binary outcomes at each of 3 times points.

Next, the findings from this asymptotic study of bias can be put in the context of the results
from the example in Section 4. In the example, the missingness mechanism (Table 3) appears
to depend on all outcomes except Contractility. In this case, as in the second set of asymptotic
calculations in which missigness does not depend on all outcome variables at the previous time,
we see (Table 4) the largest relative differences in the GEE estimates (versus joint modified
GEE) for the parameters of Contractility. When using the GEE approaches with separate
estimation for the outcomes over time, the missingness mechanism for Contractility can be
considered non-ignorable missingess (in Table 3, dropout depends the other outcomes, which
are not in the estimation procedure for Contractility), and can lead to considerable bias. For
the other three outcomes, as in the first set of asymptotic calculations in which missigness
depends on all outcome variables at the previous time, there can still be substantial relative
differences in the GEE parameter estimates (versus joint modified GEE). Finally, in general,
as in the asymptotic study, sep-standard-GEE tends to produce the largest bias, with sep-mod-
GEE having the next largest bias. The joint-standard-GEE tends to have the least bias, although
as in the second set of asymptotic studies for βGτ,1, we see that joint-standard-GEE has a larger
relative difference than sep-standard-GEE for the Gestational Age effect for the Fractional
Shortening outcome.

6 Discussion
In this paper we consider mutlivariate binary data measured longitudinally. We have shown
that joint estimation with all outcomes using a modified GEE for handling missing at random
response data yields regression parameter estimates with less bias than the standard GEE or a
modified GEE separately for each outcome, as well as joint estimation with standard GEE. The
proposed modified GEE uses an EM-type algorithm, where the EM-type algorithm is based
on the multivariate normal distribution. Use of a multivariate normal distribution in the EM-
type algorithm avoids having to completely specify the full joint distribution of the vector of
mutlivariate longitudinal binary responses.

The results of the asymptotic study suggest that joint estimation using the modified GEE, with
a correctly specified model for the correlation, has negligible bias. Note that if the “working”
correlation is misspecified, some bias can arise using this approach. We found that the joint
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modified GEE had minimal (2%) bias when the true correlation was exchangeable, and we
estimated an AR1 correlation. At one extreme end of a misspecified correlation model, using
the modified GEE separately for each outcome can be considered a special case of our proposed
method in which the working correlation between different outcome variables is set to 0.
Therefore, the proposed modified GEE approach must incorporate careful modelling of the
correlations, which can be considered a potentially unattractive feature of the approach.
However, most alternative approaches, including maximum likelihood and multiple
imputation, also require correct specification of the correlations with MAR missing data. The
only approach with MAR missing data that does not require correct specification of the
correlations is weighted estimating equations (WEE), which requires specification and
estimation of the missing data mechanism. The downside to WEE in this setting are two-fold.
First, it is less suitable for non-monotone missing data patterns such as ours, and second, the
estimation of the missing data mechanism can involve many more additional nuisance
parameters than the joint modified GEE.

The configurations used in the asymptotic study of bias were somewhat simpler than the
scenario actually encountered in the example. Despite this, the pattern of results from the
asymptotic study suggest what methods are more suitable for the data from this example.
Because of the broad range of possible data configurations and underlying probability
distributions generating the data, it is difficult to draw definitive conclusions from the
asymptotic studies. Nonetheless, in terms of bias, in the asymptotic study reported here, the
joint estimation using the modified GEE appears to perform discernibly better than the standard
GEE (joint or separate estimation) and modified GEE separately across outcomes. In this paper,
we are mainly concerned with bias. In the example, the estimated standard errors are very
similar using all approaches; however, in simulations for univariate longitudinal data, Lipsitz
(2000) found that the modified GEE estimate in some cases could have substantially smaller
variances than the standard (all available pairs) GEE estimate. We would expect this
relationship to hold for joint GEE estimation, but this is a topic for future exploration.

Since the proposed method is computationally feasible, we can recommend that it replace the
standard GEE in cases where there are missing data. Thus, when estimating the marginal
regression parameters for multivariate, longitudinal binary data, to protect against missingness
that could depend on any or all of the outcomes, we suggest the use of our proposed method
to jointly estimate the regression parameters. Even in settings where there is interest only in
the marginal regression model for a single outcome variable over time, the proposed method
has the potential to protect against biases that might arise when missingness depends on other
outcome variables. Finally, although not explored here, the approach can be easily extended
to handle the case when there are partially observed data at each time point.
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Table 1

Frequncy distribution of the number of echocardiograms for children in the (P2C2) longitudinal study

Number of echocardiograms Number of Subjects Percent

1 148 37.66

2 105 26.72

3 56 14.25

4 45 11.45

5 30 7.63

6 8 2.04

7 1 0.25

 

Total 393 100.00

J R Stat Soc Ser A Stat Soc. Author manuscript; available in PMC 2010 June 21.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

LIPSITZ et al. Page 18

Table 2

Number of subject seen at each occasion

Age at visit (years) Number of Subjects Percent (out of n = 393)

birth 262 66.67

1 260 66.16

2 149 37.91

3 116 29.52

4 80 20.36

5 37 9.41

6 7 1.78
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Table 3

Parameter Estimates for missingness model pr(Rit = 1|Ri,t−1 = 1, Yi1,t−1, Yi2,t−1, Yi3,t−1, Yi4,t−1, xi, γ)

Effect β̂ SE Z-statistic P-value

Intercept 0.280 1.072 0.26 0.794

Age -0.278 0.051 -5.42 0.000

HIV 0.602 0.165 3.66 0.000

Gest. Age 0.011 0.028 0.40 0.688

Mom Smoked -0.087 0.152 -0.57 0.567

Low Birth Wt -0.016 0.163 -0.10 0.920

BPi,t–1 -1.769 0.584 -3.03 0.003

HRi,t–1 -5.983 3.273 -1.83 0.068

FSi,t–1 -0.246 0.175 -1.40 0.160

Conti,t–1 -0.163 0.182 -0.90 0.369

Age*BPi,t–1 0.649 0.205 3.17 0.002

Gest. Age*HRi,t–1 0.155 0.086 1.81 0.070

BPi,t–1*FSi,t–1 0.873 0.505 1.73 0.084

BP=Blood pressure, HR=Heart Rate,

FS =Fractional Shortening, Cont=Contractility
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