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Abstract

An important goal in image analysis is to cluster and recognize objects of interest according to the 

shapes of their boundaries. Clustering such objects faces at least four major challenges including a 

curved shape space, a high-dimensional feature space, a complex spatial correlation structure, and 

shape variation associated with some covariates (e.g., age or gender). The aim of this paper is to 

develop a penalized model-based clustering framework to cluster landmark-based planar shape 

data, while explicitly addressing these challenges. Specifically, a mixture of offset-normal shape 

factor analyzers (MOSFA) is proposed with mixing proportions defined through a regression 

model (e.g., logistic) and an offset-normal shape distribution in each component for data in the 

curved shape space. A latent factor analysis model is introduced to explicitly model the complex 

spatial correlation. A penalized likelihood approach with both adaptive pairwise fusion Lasso 

penalty function and L2 penalty function is used to automatically realize variable selection via 

thresholding and deliver a sparse solution. Our real data analysis has confirmed the excellent 

finite-sample performance of MOSFA in revealing meaningful clusters in the corpus callosum 

shape data obtained from the Attention Deficit Hyperactivity Disorder-200 (ADHD-200) study.
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1 Introduction

Shape analysis has been an important research topic with various applications in computer 

vision, object recognition, and medical imaging for last several decades (Bookstein, 1991; 

Cootes et al., 1995; Dryden and Mardia, 1998; Younes, 2010; Srivastava et al., 2005). An 

important goal in shape analysis is to classify and recognize objects of interest according to 

the shapes of their boundaries. The majority of earlier work on shape analysis has focused 
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on landmark-based analysis, where shapes are represented by a coarse, discrete sampling of 

the object contours (Bookstein, 1991; Cootes et al., 1995; Dryden and Mardia, 1998; 

Rajpoot and Arif, 2008). As an illustration, Figure 1 shows the automatic corpus callosum 

(CC) segmentations of four randomly selected subjects by using the CCSeg package1 

(Vachet et al., 2012). The CC contour (red) is represented by 100 landmarks, spacing along 

the contour about 0.75 mm. These landmarks determine the important features of 

geometrical configuration represented by a matrix of coordinates (Small, 1996; Dryden and 

Mardia, 1998). Our motivating example is to use the CC shape data to unsupervisely cluster 

all 647 subjects from the ADHD-200 study into biologically meaningful subpopulations. 

Scientifically, we are interested in whether the CC shape information is a promising 

biomarker for the diagnosis of attention deficit hyperactivity disorder (ADHD) and may 

provide a clue to the topographical spread of ADHD disease.

Clustering landmark-based planar shape data raises four major challenges. First, planar 

shape data reside in a curved shape space, which is invariant under a similarity 

transformation including rigid rotation and translation, and non-rigid uniform scaling 

(Bookstein, 1991; Cootes et al., 1995; Dryden and Mardia, 1998; Younes, 2010). Therefore, 

most clustering methods (e.g., K-means) proposed for Euclidean data cannot be used to 

cluster data in the curved shape space (Srivastava et al., 2005; Amaral et al., 2010). Second, 

it is a standard high-dimensional-low-sample-size problem, since shape dimension, which is 

proportional to the number of landmark points, can be much larger than the sample size. 

Moreover, there may be significant amounts of noise in many of the landmark points, which 

is either associated with the complexity of the studied shapes or is caused by certain 

preprocessing steps such as image filtering and edge detection. Third, the landmark points 

along the boundaries of objects are inherently and spatially correlated with each other. 

Fourth, shape variation is commonly associated with some explanatory attributes (e.g., age, 

gender or disease status). As shown in simulations and real data analysis, ignoring such 

complex spatial correlation and explanatory attributes can introduce substantial errors in 

both clustering and classification results.

Little has been done on the development of methods for clustering high-dimensional 

landmark-based planar shape data. Most existing methods for shape data primarily extend 

standard clustering algorithms, such as K-means or mean-shift algorithm, by replacing the 

Euclidean metric by the metric of the curved shape space (Srivastava et al., 2005; Subbarao 

and Meer, 2009; Amaral et al., 2010). Furthermore, Kume and Welling (2010) developed a 

mixture model of offset-normal distributions, which explicitly models the spatial covariance 

matrix of all landmarks in each cluster. All these methods, however, do not address the 

noisy data in the high-dimensional feature space, the high-dimensional spatial correlation 

matrix, and the shape variation associated with explanatory attributes. When there are a 

large number of variables, they can mask underlying clustering structures and the spatial 

correlation matrix is not invertible. For instance, for the CC contours with 100 landmarks in 

Figure 1, there are about 4950 (100×99/2) unknown parameters in a single spatial 

covariance matrix.

1http://www.nitrc.org/projects/ccseg/
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The aim of this paper is to propose a mixture of offset-normal shape factor analyzers 

(MOSFA) model to address the four challenges. We use the offset-normal shape distribution 

(Dryden and Mardia, 1991; Kume and Welling, 2010) to characterize the variability of shape 

data in the curved shape space. To handle high dimensionality, we use a penalized clustering 

framework as an effective and powerful method to perform both variable selection and 

clustering (Pan and Shen, 2007; Guo et al., 2010). We integrate a latent factor analysis 

model to approximate the complex spatial correlation of shape data (McLachlan and Peel, 

2004; Xie et al., 2010). We use a logistic regression model to build an association between 

mixing proportions and covariates of interest. We propose an expectation-maximization 

(EM) algorithm and establish its convergence property. We establish the asymptotic 

properties of penalized estimator obtained from the EM algorithm. Finally, we will develop 

companion software for MOSFA and release it to the public through http://www.nitrc.org/ 

and http://www.bias.unc.edu/.

In Section 2, we review the offset-normal shape distribution and introduce the MOSFA 

model. Moreover, we derive an EM algorithm to maximize the penalized likelihood function 

of the MOSFA model. The convergence properties of the proposed EM algorithm and the 

asymptotic properties of penalized estimator are also investigated. In Section 3, we use some 

simulations to examine the finite sample performance of our MOSFA model. In Section 4, 

we also apply the MOSFA model to the ADHD-200 CC shape data set. Our clustering 

results remarkably reveal an intrinsic subpopulation structure in the mixed population with 

controls and subjects with ADHD.

2 Methodology

2.1 Offset-normal shape distribution

We first review the Bookstein’s shape variables of planar data. For a specific planar 

configuration X† with k not-all-coincident landmarks, its coordinates can be written as a k × 

2 matrix as follows:

Let 1k−1 and Ik−1 be, respectively, a (k − 1) × 1 vector with all components being one and a 

(k − 1) × (k − 1) identity matrix. By left multiplying X† with a matrix L = (−1k−1, Ik−1), X† is 

translated such that the first landmark of X† is mapped to the origin (0, 0)T. We call X = LX† 

as the preform of configuration X† and write it as

Then, if , then the rotation and scale information can be removed via
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(1)

Since the landmarks in X† are not-all-coincident, we can choose another pair of landmarks 

instead if the first two landmarks are coincident. Since the first two landmarks are sent to (0, 

0)T and (1, 0)T, respectively, the shape coordinates in u = (u3, …, uk, v3, …, vk)T are called 

the Bookstein’s shape variables (Dryden and Mardia, 1998).

We introduce the offset-normal shape distribution of u as follows. It is assumed that the 

model for the landmarks in X† is vec(X†) ~ N2k(vec(μ†), Σ†), where vec(·) denotes the 

vectorization of a matrix. Since X = LX†, vec(X) is distributed as Np(vec(μ), Σ), where p = 

2k − 2, μ = Lμ†, and Σ = (I2 ⊗ L)Σ†(I2 ⊗ LT), in which ⊗ denotes the matrix Kronecker 

product. We define

(2)

and then we have vec(X) = Wh. Following Dryden and Mardia (1991), the distribution of 

shape variables u can be obtained by integrating out h from the distribution of vec(X) and u 
follows the offset-normal shape probability density function given by

(3)

where Γ = (WTΣ−1W)−1, g = vec(μ)TΣ−1vec(μ) − νTΓ−1ν, ν = ΓWTΣ−1vec(μ), and (ξx, ξy)T = 

ΨTν, in which Ψ is the eigenvector matrix of Γ such that Γ = ΨDΨT and . 

Moreover, E(lr|ξ, σ2) denotes the rth moment of N(ξ, σ2) and can be calculated based on the 

recursion relation (Willink, 2005), which is given by

(4)

2.2 Mixtures of offset-normal shape factor analyzers

We consider finite mixture models of offset-normal shape factor analyzers. It is assumed 

that  are independently and identically distributed (i.i.d.) random planar 

configurations. Equivalently, , i = 1, …, n are independently generated from a 

mixture model of M normal distributions given by , 

where πm ≥ 0, , and ϕ(·) is the density function of multivariate normal 

distribution. Based on the results in Section 2.1, the induced probability density function of 

vec(x) is given by
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(5)

where , and θ consists of all unknown parameters 

in {πm,μm,Σm}m≤M.

We consider a factor analysis model of Σm in order to characterize the spatial correlation of 

high-dimensional shape data. Factor analysis is commonly used to uncover the latent 

structure (dimensions) of shape variables and allows us to extract a feature space from a 

high-dimensional shape space to a low-dimensional latent factor space. In the context of 

mixture modelling (McLachlan et al., 2003), it is assumed that xi is modeled as follows:

(6)

for i = 1, …, n, where Λm is a p×q factor loading matrix and bmi ~ Nq(0, Iq) are independent 

of emi ~ Np(0,Ω), in which Ω is a diagonal matrix. In this case,  and the 

number of parameters in Σm reduces from p(p − 1)/2 to p(q + 1).

Let  be 1 or 0 according to whether ui comes from the mth component or not. We 

consider a regression model of mixing proportions . Since , m = 1, 

…, M, indicate the group membership of ui, a good candidate is the widely used logistic 

regression model (Fokoué, 2005). Specifically, given the covariates in zi ∈ ℝd, the mixing 

proportions are defined through the logistic model given by

(7)

in which zi = (1, zi,1, …, zi,d−1)T, βm = (βm,0, βm,1, …, βm,d−1)T, β = (β1, …, βM−1), and βM is 

set to 0 for identifiability. Under models (6) and (7), the shape variables ui follow the 

MOSFA model given by

(8)

where θ consists of the unknown elements of μm, Λm, Ω, and β.

2.3 EM Algorithm for the MOSFA Model

Following Kume and Welling (2010), we first develop the Expectation-Maximization (EM) 

algorithm (Dempster et al., 1977) to calculate the maximum likelihood estimate (MLE) of θ, 

denoted by θ̃, for low-dimensional shape data, that is, p ≪ n. The key idea of the EM 

algorithm is to introduce missing data and then maximize the conditional expectation of the 

complete-data log-likelihood function, called Q function. For the MOSFA model, we 
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introduce , bmi, and hi for i = 1, …, n and m = 1, …, M as missing data. Then, the 

complete-data log-likelihood function is given by

(9)

In the E-step, given θ(̃r) at the rth iteration, the Q-function is given by

(10)

where  and the calculation of expectations in 

(10) involves (i) the calculation of EB(bmi|{ui}i≤n, θ) and  and (ii) the 

calculation of Ex[vec(xi)|{ui}i≤n, θ] and Ex[vec(xi)vec(xi)T|{ui}i≤n, θ]. The explicit 

expressions of these expectations are given in the supplementary document.

In the E-step, given the current estimate θ̃(r), we update θ̃(r+1) by maximizing the Q-function 

with respect to θ. For β, we define an objective function Q(β) given by

(11)

where , and . Then, we 

update β̃(r+1) according to the Newton-Raphson algorithm. Let β̃(s)(r+1) be the value of β̃(r+1) 

at the s–th iteration of the Newton-Raphson algorithm and β̃(0)(r+1) = β̃(r). We update β̃

(s)(r+1) as follows:

(12)

where πi(β) = (π1i(β), …, π(M−1)i(β))T and Ci(β) = diag(πi(β)) − πi(β)πi(β)T. We update β̃(s

+1)(r+1) according to (12) until a pre-specified tolerance is reached and then set β̃(s + 1)(r+1) 

from the last iteration as β̃(r+1).

We have much simpler formula to update μm, Λm, and zm as follows. For μm, we have

(13)

For Γm, we have
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(14)

For zm, we have

(15)

The E-step and M-step are repeated until the difference between log L(θ(̃r+1)) and log L(θ̃(r)) 

is smaller than a pre-specified number, say 10−4.

2.4 EM Algorithm for Penalized MOSFA Clustering

It can be very challenging to directly use θ̃ to cluster high-dimensional shape data in the 

presence of a large number of noisy landmarks, since these ‘non-informative’ variables can 

impede uncovering the underlying clustering structure of interest. Thus, it is critically 

important to remove such ‘non-informative’ variables to enhance interpretability. For high-

dimensional Euclidean data, several authors (Pan and Shen, 2007; Zhou et al., 2009; Xie et 

al., 2010) have shown that it is necessary to perform variable selection to reduce such noisy 

variables during the clustering procedure. To achieve variable selection in MOSFA, we 

develop a penalized MOSFA clustering framework below.

To realize variable selection in MOSFA, we consider a penalized log-likelihood function, 

denoted as log Lp(θ), which is given by

(16)

where μmj is the jth element of vec(μm),  are pre-specified weights, Γmj is the jth row of 

the factor loading Γm, and ||·||2 denotes the L2 norm. In the second term of (16), the adaptive 

pairwise fusion Lasso penalization introduced on μm is to shrink the difference between 

every pair of cluster centers for each component j (Guo et al., 2010). If μ̂
mj = μ̂

m′j, then the 

corresponding variable is considered to be non-informative for separating cluster m from 

cluster m′. Furthermore, if all cluster means for one variable are shrunken to the same value, 

it indicates that such variable is non-informative for all clusters, and thus it can be removed 

from MOSFA. In the third term of (16), the L2 penalty introduced on Γm is to shrink small 

Γmj to be exactly zero (Xie et al., 2010).
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We set the weights , where  is the estimate of the jth diagonal 

element of Ω as M = 1 and Γm = 0, and μmj is the estimates of μmj in MOSFA without any 

penalization. By adding the weights , we slightly penalize the difference between μmj 

and μm′j when the jth variable is informative for separating clusters m and m′. Otherwise, we 

heavily penalize the difference between μmj and μm′j if the weight  is large.

We also develop an EM algorithm to calculate the maximum penalized likelihood estimate 

(MPLE), which is denoted as θ̂. For simplicity, we only highlight several key differences 

between the EM algorithm for MLE and that for MPLE. Similar to (10), the penalized Q-

function, denoted by Qp(θ|θ̂(r)), is given by

(17)

Since the penalty functions do not depend on πmi and Ω, the updating formulas of τmi, β and 

Ω are the same as those given in Section 2.3.

We update μm and Γm by decomposing (17) into p different functions as follows. Let μ(j) = 

(μ1j, … , μMj)T, K = diag(K1, ··· , KM), H = diag(H1, ··· , HM), and Γ(j) = (Γ1j, … , ΓMj). We 

solve a subproblem given by

(18)

where 

, 

g0(·) = λ1|| · ||1, and gm(·) = λ2|| · ||2. The explicit expressions of all the matrices in (18) are 

given in the supplementary document.

To compute MPLE, we propose an efficient iterative algorithm based on the alternating 

direction method of multipliers (ADMM) (Glowinski and Marroco, 1975; Gabay and 

Mercier, 1976). ADMM is an algorithm that is intended to blend the decomposability of 

dual ascent with the superior convergence properties of the method of multipliers. Since all 

of the M+2 functions in (18) are convex, ADMM is ideal for solving subproblem (18). In the 

ADMM form, subproblem (18) can be written as

(19)

where {v0, ⋯, vM} is a set of augmented variables. The augmented Lagrangian can be 

written as
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(20)

where , y is the Lagrangian 

multiplier, ρ > 0 is called the step-size parameter, and A(j) is a block diagonal matrix, i.e., 

. Let  be the soft thresholding operator, which is interpreted 

elementwise, while  is a vector soft thresholding operator defined as

We obtain the ADMM algorithm for (19) as follows.

Algorithm 1

ADMM for solving subproblem (19)

For t = 0, 1, …, do

•

,

•
,

•
.

For m = 1, …, M do

•

,

•
,

•
.

 End for

End for

2.5 Convergence Properties and Asymptotic Properties

In this section, we first prove the convergence result of ADMM for the optimization 

problem (19). Technical conditions and proofs of Theorem 1 are provided in the 

supplementary document.

Theorem 1 (ADMM Convergence Properties)—Under Assumptions (A1) and (A2) in 

the supplementary document, we have the following results for Algorithm 1:

•
the residual  converges to 0 as k → ∞
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•
the objective function  converges to the optimal value p* as k → ∞, 

where p* = infθ̆(j),v{f0(θ̆(j) + g(v)|A(j)θ̆
(j) − v = 0};

• the dual variable yk → y* as k → ∞, where y* is the optimal value of the dual 

problem

Second, we prove the identifiability of MOSFA and the consistency of MPLE. A standard 

mixture model is not identified without any constraint, since different sets of parameters can 

parameterize the same distribution and therefore they are equivalent. The identifiability of 

finite mixture models has received a lot of attention in the literature (Yakowitz and Spragins, 

1968; McLachlan and Peel, 2004; Holzmann et al., 2006; Teicher, 1963). For instance, Kent 

(1983) has systematically investigated the identifiability of finite mixtures of various 

directional distributions. By extending the existing results for identifiability, we are able to 

prove the identifiability property of MOSFA and present it in Proposition 1.

Proposition 1 (Identifiability)—Consider the proposed MOSFA model given by

(21)

where fu(·) is the offset-normal shape probability density function defined in (3). If the 

number of factors q in (6) satisfies , where B(p) is the 

Ledermann bound (Ledermann, 1937), and the design matrix Z = (z1, …, zn) is full row 

rank, then gu(ui; zi, θ) is generically identifiable in Θ up to a permutation of the components 

of MOSFA.

Based on the identifiability, we can further establish the convergence rate of MPLE for fixed 

(q, M) (Khalili and Chen, 2007) when the number of parameters dim(θ), denoted as pn, tends 

to infinity as n → ∞ (Fan et al., 2004; Städler et al., 2010). Proofs of Proposition 1 and 

Theorem 2 are also provided in the supplementary document.

Theorem 2 (Consistency)—Let (zi, ui), i = 1, 2,…, n, be a random sample drawn from 

gu(u|z, θ0)p(z). If the penalty parameters satisfy  for j = 1, 2, , and the 

initial estimates σ̌
j μ̃

mj, and μ̃
m′j in the weights  are -consistent, then there exists a 

local maximizer θn̂ of the penalized log-likelihood function log Lp(θ) in (16) such that

(22)

where ||·||2 represents the Euclidean norm.
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2.6 Model Selection & Computational Complexity

We use the 2-fold cross predictive log-likelihood method as our model selection criterion to 

select the number of factors q, the number of components M, and the penalty parameters λ1 

and λ2 through an exhaustive search. Specifically, in the 2-fold cross predictive log-

likelihood method, the original dataset is randomly partitioned into 2 equal size sub-datasets, 

where one sub-dataset is retained as the testing dataset, and the other is used as the training 

dataset. For any given (q, M, λ1, λ2), we estimate the MPLE θ̂ based on the training dataset, 

and calculate the predictive log-likelihood function log L(θ̂) based on the testing dataset. 

Then we estimate MPLE θ̂ based on the testing dataset and calculate the predictive log-

likelihood function log L(θ̂) based on the training dataset. Consequently, these two 

predictive log-likelihood function values can be averaged, and the optimal (q̂, M̂, λ̂
1, λ̂

2) is 

chosen based on the largest average predictive log-likelihood value.

Besides the tuning parameters in the proposed model, there is one more tuning parameter in 

Algorithm 1, the step-size parameter ρ. According to the results in Boyd et al. (2011) and 

Theorem 1 in this paper, our proposed method can be shown to converge for all values of 

the parameter ρ. In this paper, the parameter ρ is fixed as 1.0 in both simulation studies and 

real data analysis. However, as discussed in Ghadimi et al. (2013), ρ has a direct impact on 

the convergence factor of the algorithm, and inadequate tuning of this parameter can render 

the method slow. In this case, following the reviewers’ comments, we have double checked 

the number of iterations in both simulation studies and real data analysis, it is found out that 

the iterates converge in all the cases, and the number ranges from 21 to 95, which is 

acceptable in terms of the high dimension settings and the big dataset.

We use the random EM algorithm to compute MPLE, since the EM algorithm is an iterative 

procedure and its performance strongly depends on its starting points. For MOSFA, a good 

initialization is crucial for calculating MPLE due to the presence of multiple local maxima 

of the penalized likelihood function. Specifically, for any given value of (q, M, λ1, λ2), 

multiple starting points are chosen and the relevant log-likelihood functions are calculated. 

The initial values that have the highest log-likelihood function are used as the starting point 

of the EM algorithm. In simulation studies and real data analysis, the K-means method is 

used for initializing mean parameter μm, while the principal component analysis method is 

used to initialize the factor loading matrices Λm and the common covariance matrix Ω.

When generating the Bookstein shape coordinates, if the first two baseline landmarks are 

highly variable, then all the shape coordinates can be also noisy. Thus, it is critical to 

appropriately choose these baseline landmarks in order to cluster the shape data. To address 

this issue, we suggest to choose them near the midline of symmetrical or nearly symmetrical 

shapes, whereas we suggest to keep them far from the region with the greatest variation for 

non-symmetrical shapes (Bookstein, 1991). In this paper, we choose the two baseline 

landmarks based on the variability of all landmarks across all the subjects. Specifically, each 

landmark is initially set as the first baseline landmark and the related preform of 

configuration X = LX† is then calculated. The total variance across both the entries in the 

preform matrix X and the subjects is calculated as the loss function for such landmark. 

Finally, we choose the landmark with the smallest value of loss function as the first baseline 

Huang et al. Page 11

J Am Stat Assoc. Author manuscript; available in PMC 2016 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



landmark and clockwisely reorder the rest of landmarks. Subsequently, given the first 

baseline landmark, we calculate the variance at each landmark in preform matrix X across 

all subjects and choose the second landmark that has the smallest variance among the rest of 

landmarks.

Finally, we analyze the computational complexity of the EM algorithm for both MOSFA 

and penalized MOSFA. The computational complexity is calculated per-iteration for two 

parts: E-step and M-step. First, in E-step, the EM algorithm for MOSFA has the same 

computational complexity, O(Mn), as that for penalized MOSFA. In M-step, the 

computational complexity of updating β and Ω is O(d(M−1) + np) for both models. For 

updating μm and Λm, however, its computational complexity is O(Mp(q + 1)) for MOSFA 

and O(k̃Mp(q + 1)) for penalized MOSFA, where k̃ is the number of iterations in the ADMM 

algorithm. Then, the computational complexity of the whole procedure for MOSFA is O(nI 

nM nqr̃(d(M − 1) + np + nM + Mp(q + 1))), where nI is the number of initial values, r̃ is the 

number of iterations for the EM algorithm, and nM and nq are, respectively, the number of 

the alternative values for M and that for q. Due to the additional variable selection 

procedure, the computational complexity of penalized MOSFA is 

, where  and  are, respectively, the 

number of the alternative values for λ1 and that forλ2. In the next section, we will show the 

running time of each simulation in seconds under different settings.

3 Simulation Studies

We conducted a set of Monte Carlo simulations to evaluate the finite sample performance 

MOSFA and compared it with the mixtures of offset-normal shape (MOS) model (Kume 

and Welling, 2010). We simulated CC shape data according to MOSFA as follows. We set n 

= 100, k = 50, and M = 2. We randomly chose the CC contours of a normal control and a 

diseased patient from the ADHD-200 data set as the mean shapes of two different clusters. 

Figure 2 presents the CC contours and their corresponding landmarks from the two selected 

subjects.

In each cluster, the landmark configuration of each subject was set as the true value of the 

parameter μm for m = 1, 2. We set zi = (1, zi,1) in the logistic model of mixing proportions, in 

which zi,1 were independently generated from uniform U (−1, 1). We also set β1 = (1, 2)T 

and β2 = (−1, 1)T, respectively. For the spatial correlation structure, we considered three 

different cases as follows:

• Case 1: simple diagonal matrix: , m = 1, 2;

• Case 2: cyclic Markov covariance:

(23)

where , 1 ≤ j′, j ≤ k and 0 ≤ γm < 1;

•
Case 3: latent factor analysis model in (6): , m = 1, 2.

Huang et al. Page 12

J Am Stat Assoc. Author manuscript; available in PMC 2016 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The scale parameters σm, m = 1, 2 in Cases 1 and 2 were generated from U (0.5, 0.6) and 

U(0.8, 1), respectively. In Case 2, we set γ1 = 0.2 and γ2 = 0.5. In Case 3, the number of 

loading factors was set as q = 2. The latent variable bmi was generated from N (0, I2), while 

the error terms emi, independently of bmi, were generated from N (0, Ω), where Ω= diag ([σ̄
1, 

…, σ̄
2(k−1)], in which we simulated σ̄

l ~ U (1, 2) for all l ≤ 2(k−1). For the loading matrices 

Λm, m = 1, 2, the elements of the first ℓ0 rows of each matrix were independently generated 

from N(c1, 2) and N (c2, 1), respectively, while the elements in the rest of rows were set as 

zero. In each case, we simulated N = 200 data sets.

We fitted MOS, MOSFA, and penalized MOSFA to each simulated data set. For Cases 1 

and 2, we considered two MOS models with the true correlation structure and an unspecified 

correlation structure. In Case 3, we only considered one MOS model with the unspecified 

correlation structure, while we considered two set-ups with different values of the 

parameters ℓ0, c1, and c2. For each data set, we randomly chose 10 sets of initial values in 

the random EM algorithm and then used the 2-fold cross predictive log-likelihood method to 

determine M in MOS, (q, M) in MOSFA, and (q, M, λ1, λ2) in penalized MOSFA. For all the 

models, the baseline landmarks were chosen based on the method described in Section 2.6. 

The Rand index (RI) (Rand, 1971) and adjusted Rand index (aRI) (Hubert and Arabie, 1985) 

were used to compare the clustering results with the ground truth and to evaluate the finite 

sample performance of all the three models.

Table 1 presents the simulation results for Cases 1 and 2. All the four models show excellent 

clustering performance, while MOS with the true correlation structure and penalized 

MOSFA outperform the other two models. Moreover, although the correlation structure is 

misspecified for MOSFA and penalized MOSFA, penalized MOSFA performs as well as 

MOS with the true correlation structure. Therefore, our proposed model is robust to the 

misspecification of correlation structure.

Table 2 presents the simulation results corresponding to different values of (ℓ0, c1, c2) for 

Case 3. Table 2 shows that MOSFA and penalized MOSFA outperform MOS. Furthermore, 

penalized MOSFA has the smallest Rand index and adjusted Rand index being larger than 

0.85 for all values of ℓ0 in the two set-ups. In contrast, MOS performs well for ℓ0 = 30 and 

60 in Set-up 1 with the indices larger than 0.9, whereas it performs very bad for ℓ0 = 90 in 

Set-up 1 and ℓ0 ≥ 60 in Set-up 2.

We investigated the effect of baseline landmark selection on penalized MOSFA for the two 

set-ups in Case 3 and chose the baseline landmarks by either using the method in Section 2.6 

or randomly choosing one. Table 3 presents the clustering results. When the loading matrix 

is sparse, penalized MOSFA is robust to the two choices of baseline landmarks. However, 

for more complex correlation structures, i.e, ℓ0 = 90 in Set-up 1 and ℓ0 = 40, 60 in Set-up 2, 

the penalized MOSFA model can perform poorly for the randomly selected baseline 

landmarks. These results may be caused by the fact that for more complex correlation 

structure, the variability in the baseline landmarks can be transferred to all the rest of 

landmarks, and thus all the shape coordinates can be very noisy. It may indicate that it is 

critical to choose baseline landmarks. Moreover, the results in Tables 1 and 2 indicate that 
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the proposed method is effective and enhances the clustering performance of penalized 

MOSFA.

Table 4 includes the computation time of MOSFA and penalized MOSFA for different 

values of n and numbers of landmarks k in Cases 1–3. All computations were done in 

Matlab2013a on a server with a single core in a CPU, 4GB memory, and 2.93 GHz Intel 

processor. In Case 3, m = 30 and 40 are considered in Set-ups 1 and 2, respectively. For each 

model, its computation time is consistent with its computational complexity calculated in 

Section 2.6.

4 ADHD-200 Corpus Callosum Shape Data

Attention Deficit Hyperactivity Disorder (ADHD) is one of the most commonly diagnosed 

childhood behavioral disorders. It affects at least 5% of school-age children, causing them to 

be difficult to control their behaviors or focus their attentions. Despite a voluminous 

empirical literature, the scientific community remains without a comprehensive model of the 

pathophysiology of ADHD.

The corpus callosum (CC), the largest white matter structure in the brain, has been a 

structure of high interest in many neuroimaging studies of neuro-developmental pathology. 

It contains homotopic and heterotopic interhemispheric connections and is essential for 

communication between the two cerebral hemispheres. Individual differences in CC, and 

their possible implications regarding interhemispheric connectivity, have been investigated 

in last several decades (Witelson, 1989; Paul et al., 2007). There is a large body of work 

suggesting that CC plays an important role in attentional control in neurologically intact 

individuals and its integrity in clinical populations that suffer from ADHD is of particular 

interest (Lyoo et al., 1996; Hill et al., 2003; Hutchinson et al., 2007).

We consider the CC contour data of ADHD-200 Dataset2. The ADHD-200 sample contains 

both anatomical and resting-state functional MRI data of 776 labeled subjects across 8 

independent imaging sites, 491 of which were obtained from typically developing 

individuals and 285 in children and adolescents with ADHD (ages: 7–21 years old). We 

processed the CC shape data for each subject in ADHD-200 Dataset as follows. We used 

FreeSurfer package3 (Dale et al., 1999) to process each T1-weighted MRI, including motion 

correction, non-parametric non-uniform intensity normalization, affine transform to the 

MNI305 atlas, intensity normalization, skullstripping, and automatic subcortical 

segmentation. Some quality control procedures were done on each output image data. The 

intracranial volume (ICV) information was calculated from the output of FreeSurfer 

package. Subsequently, the midsagittal CC area was calculated in the CCseg package, which 

is measured by using subdivisions in Witelson (1989) motivated by neuro-histological 

studies (see Figure 3). Then, each T1-weighted MRI image and tissue segmentation 

calculated from FreeSurfer were used as the input files of CCSeg package to extract the 

planar CC shape data on the midsagittal slice, which contains 50 landmarks. The CCseg 

framework (Székely et al., 1996; Vachet et al., 2012) entails three main steps: (i) automatic 

2http://fcon1000.projects.nitrc.org/indi/adhd200/
3http://surfer.nmr.mgh.harvard.edu/
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initialization of the corpus callosum model, (ii) multi-step automatic (and potentially 

interactive) segmentation via constrained elastic deformation of a flexible Fourier contour 

model, and (iii) lobar area computation using a probabilistic subdivision model. After 

quality control, we obtained 647 CC shape data out of 776 subjects. The demographic 

information of the processed CC shape data set is presented in Table 5.

The area of CC is an important morphologic feature, which changes throughout infancy 

(Garel et al., 2011). Here, before we considered the CC shape information, we examined the 

association between the midsagittal CC area and some covariates of interest, such as gender 

or diagnosis status (Lyoo et al., 1996; Jäncke et al., 1997; Hill et al., 2003). We fitted a log-

tranformed linear regression as follows:

(24)

where yi is the midsagittal CC area of the ith subject, xi1=1(the ith subject is a diseased 

patient) is a dummy variable indicating the diagnosis status of the ith subject, xi2 and xi3 are 

gender and age, respectively, xi4 = xi1xi3 is the diagnosis by age interaction term, and xi5 is 

the intracranial volume (ICV) of the ith subject. Moreover, we considered 5 different 

responses yi: (i) the total midsagittal CC area; (ii) the area of prefrontal subdivision in CC; 

(iii) the area of frontal subdivision in CC; (iv) the area of parietal subdivision in CC; and (v) 

the area of occipito-temporal subdivision in CC. Table 6 presents the regression analysis 

results for all five responses. We observe that there is no significant gender difference in 

neither total CC area nor CC subareas, whereas the diagnosis by age interaction term is 

statistically significant, indicating that the midsagittal CC area and its subareas significantly 

change across groups as age varies.

Besides the CC volume data, the CC shape data is of great interest in many neuroimaging 

studies of neuro-developmental pathology. Many neurological studies indicate that the shape 

of CC for healthy young adults is associated with gender, age, cognitive performance, and 

neuro-degenerative diseases, among other factors (Farag et al., 2010; Joshi et al., 2013; 

Martín-Loeches et al., 2013). In Martín-Loeches et al. (2013), the CC shape variation was 

shown to be consistent and have significant correlations with attentional control, which is 

the core deficit in ADHD. Here we are more interested in whether the CC shape information 

is a promising biomarker for the diagnosis of ADHD and may provide a clue to the 

topographical spread of ADHD disease. We applied MOSFA to the CC shape data set to 

explore the relationship between CC shape data and ADHD diagnosis information. The 2-

fold cross predictive log-likelihood method was adopted to select the tuning parameters and 

calculate the estimates. The cluster memberships of subjects in the testing data set were 

determined according to the fitted models.

We first applied the MOS model of Kume and Welling (2010), where the covariance matrix 

of each component is a diagonal matrix. The mean shape of all these shape data is presented 

in Figure 4(a). Meanwhile, the first two landmarks are also highlighted in Figure 4(a). Based 

on the 2-fold cross predictive log-likelihood method, the MOS model was fitted, but it 

selects only one cluster.
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As a comparison, the proposed penalized MOSFA model was used to cluster the training 

dataset. The first two landmarks were the same as those used in MOS. In MOSFA, we set z 
=(1, Gender, Age). We calculated MPLE by using the EM algorithm and then the final 

MOSFA model was able to detect 4 clusters with 239, 98, 64, and 246 subjects, respectively. 

The first three clusters contain 391 normal controls and 10 ADHD patients, whereas the 

fourth cluster includes 13 normal controls and 233 ADHD patients. Thus, the first three 

clusters contain almost all the normal controls, whereas most diseased subjects fall into the 

last cluster. The mean shape of the CC shape data in each cluster is presented in Figure 4(b). 

The mean shapes of the first three are similar to each other, whereas they are different from 

the mean shape of cluster four. We randomly chose 10 subjects from each cluster and 

presented their shape data in Figure 5.

To check the stability of our clustering results, we applied the leave-one-out method via 

removing one of these four clusters and reapplying penalized MOSFA to the rest subjects. 

We treated the original clustering result as the ground truth and calculated the Rand index 

and adjusted Rand index based on the clustering result for each reduced dataset. The 

stability performance is presented in Table 7. Based on the estimated number of clusters and 

the two indices, the clustering results show stable performance when each of the first three 

clusters is removed from the whole dataset. However, the clustering result becomes unstable 

when the last cluster is removed. It may indicate that the features in shape space among the 

first three clusters are not significantly different from each other. We will further investigate 

this issue below.

We are also interested in the estimated loading matrices for all the four clusters. The 

estimated number of factors in each cluster is 2. To extract the shape features of each 

cluster, we plotted each column in loading matrices for all the clusters in Figure 6. The 

columns of the loading matrices from the first three clusters have similar tendency, whereas 

they are different from those from the last cluster. It is consistent with the diagnosis 

information: most normal controls are in the first three clusters, whereas most ADHD 

patients are in the last cluster.

Then, we randomly chose subjects from each cluster and applied the ClosedCurves2D3D 

software4 to compute a pair-wise geodesic path among the four clusters under the elastic 

Riemannian metric (Srivastava et al., 2011). For subjects in the same cluster and in different 

clusters, their shapes placed equidistant along the geodesic paths are plotted in Figure 7, and 

the geodesic distance between each pair of shapes is presented in Table 8. Figure 7 and 

Table 8 show that the geodesic distance between subjects in the same cluster is smaller than 

that between subjects in different clusters. Furthermore, the geodesic distance between 

subjects in the first three clusters is much smaller than the geodesic distance between 

subjects in the first three clusters and those in the fourth cluster.

We tested the mean shape difference among different clusters by using a bootstrap 

hypothesis testing approach (Amaral et al., 2007) and its related R package shapes5. The 

4http://ssamg.stat.fsu.edu/software
5http://cran.r-project.org/web/packages/shapes/index.html
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number of bootstrapping iterations was set as 500. The Hoteling T 2 test statistic and the 

related p-value (in brackets) are summarized in Table 9. It shows that the p-values of the two 

sample test for the first three clusters are not significant, while the p-values show a 

statistically significant mean shape difference between the first three clusters and the fourth 

one.

According to the data analysis results above, it seems that there is no statistical significant 

mean shape difference among the first three clusters. Therefore, we combined the first three 

clusters into group 1 and treated the fourth cluster as group 2. By using this information as 

the ground truth, we calculated the Rand index and adjusted Rand index to be RI = 0.9311 

and aRI = 0.8622, respectively. This may indicate that the use of the planar CC shape leads 

to two meaningful and robust clusters in the ADHD-200 data set. Following the reviewers’ 

comments, besides gender and age, we also took the disease status as the covariate, zi,3 = 1 

for normal controls and 0 for ADHD patients. We reran our clustering method and 4 clusters 

were shown up. The Rand index and adjusted Rand index were also calculated to be RI = 

0.9347 and aRI = 0.8672, respectively. It may indicate that there is only a small 

improvement by adding the disease status into MOSFA. Finally, based on the clustering 

results discussed above, the planar CC shape data may be a powerful biomarker for 

distinguishing ADHD patients from normal controls.

5 Conclusion

We have developed a penalized MOSFA clustering framework for clustering high-

dimensional planar shape data. MOSFA is developed to specifically address four major 

challenges including the curved shape space, a high-dimensional feature space, complex 

spatial correlation, and shape variation associated with covariates (e.g., age or gender). We 

have developed an efficient EM algorithm coupled with the ADMM algorithm to calculate 

the MPLE of θ. Our simulations have confirmed the excellent clustering performance of 

MOSFA in different scenarios. Our ADHD-200 data analysis has shown that penalized 

MOSFA can undercover meaningful clusters of the CC planar shape data.

Several important issues need to be addressed in future research. First, the shape space here 

are actually shapes of closed planar curves, and the two-dimensional (2D) shape data is 

modelled by the offset-normal shape distribution, which is the marginal distribution of the 

directional component of a multivariate normal distribution. It is meaningful to generalize 

the proposed model from a geometric and topological viewpoints for data from Rimennain 

symmetric space, which is of great importance for neuroimaging studies (Goh and Vidal, 

2008; Shi et al., 2012; Joshi et al., 2013). Developing general methods for simultaneously 

performing variable selection and clustering on the data from Rimennain symmetric space 

faces up with many new challenges both computationally and theoretically. Second, the 

proposed MOSFA model can be treated as a landmark-based analysis, where shapes are 

represented by a coarse, discrete sampling of the object contours. However, this approach is 

limited in that automatic detection of landmarks is not straightforward and the ensuing shape 

analysis depends heavily on the choice of landmarks (Srivastava et al., 2005). An alternative 

approach of shape representation and analysis is the continuous framework, where a shape is 

represented by mappings (diffeomorphism) or functions (level sets), which are able to 
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handle topological changes such as merging and splitting of connected component (Krim 

and Yezzi, 2006). It is much more interesting to extend this landmark-based shape analysis 

work to the continuous shape framework, and more research is needed for formulating the 

continuous shape data clustering method. Finally, the methodology proposed here can be 

extended to shape classification by using 2D landmark-based shape data, which will be 

investigated in our future research.
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Figure 1. 
Automatic corpus callosum segmentation of four randomly selected subjects from the 

ADHD-200 study.
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Figure 2. 
Contours and landmarks of a normal control and an ADHD subject.
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Figure 3. 
Subdivisions of corpus callosum in Witelson (1989) approach (left), its neuro-histological 

motivation (Vachet et al. (2012), middle), and schematic visualization of the probability 

computation (Vachet et al. (2012), right): prefrontal subdivision (blue); frontal subdivision 

(red); parietal (yellow); and occipito-temporal subdivision (green).
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Figure 4. 
ADHD-200 data analysis: (a) Mean shape of all CC shape data and the first two landmarks 

chosen based on the variation of landmarks; (b) Mean shape of CC shape data in four 

clusters.
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Figure 5. 
ADHD-200 data analysis: landmarks of subjects in four clusters.
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Figure 6. 
ADHD-200 data analysis: columns in loading matrices from the four clusters.
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Figure 7. 
ADHD-200 data analysis: shapes placed equidistant along the geodesic paths in four 

clusters.
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Huang et al. Page 28

Table 1

Performance of MOS with the true correlation structure (MOS-true), MOS with the general correlation 

structure (MOS-general), MOSFA and penalized MOSFA models in Case 1 and Case 2. RI and aRI denote the 

average of the Rand index and adjusted Rand index, respectively. For each case, 200 simulated data sets were 

used.

Case 1

Cluster M̂ MOS-true MOS-general MOSFA penalized MOSFA

1 2 6 3 1

2 198 190 191 197

3 0 4 6 2

RI(aRI) 0.99(0.98) 0.94(0.90) 0.95(0.91) 0.99(0.98)

Case 2

Cluster M̂ MOS-true MOS-general MOSFA penalized MOSFA

1 9 13 3 2

2 190 176 180 188

3 1 11 17 10

RI(aRI) 0.99(0.98) 0.86(0.77) 0.90(0.84) 1(0.99)
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Huang et al. Page 32

Table 5

Demographic information about processed ADHD-200 CC shape dataset, including disease status, age, and 

gender.

Disease status NO. Range of age in years (mean) Gender (female/male)

Typically Developing Children 404 7.09–21.83 (12.43) 179/225

ADHD-Combined 150 7.17–20.15 (10.96) 39/111

ADHD-Hyperactive/Impulsive 8 9.22–20.89 (14.69) 1/7

ADHD-Inattentive 85 7.43–17.61 (12.23) 18/67

All data 647 7.09–21.83(12.09) 237/410
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Huang et al. Page 35

Table 7

ADHD-200 data analysis: stability analysis of clustering results by leave-one-out method.

Cluster ID removed

Cluster 1 Cluster 2 Cluster 3 Cluster 4

M● 3 3 3 2

RI 0.8213 0.8827 0.8789 0.7163

aRI 0.7164 0.8091 0.8002 0.5035
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Huang et al. Page 36

Table 8

ADHD-200 data analysis: geodesic distance between each pair of shapes.

Distance Cluster 1 Cluster 2 Cluster 3 Cluster 4

Cluster 1 0.0801 0.0824 0.0843 0.1168

Cluster 2 - 0.0418 0.0812 0.1295

Cluster 3 - - 0.0510 0.1496

Cluster 4 - - - 0.0989
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Huang et al. Page 37

Table 9

DHD-200 data analysis: mean shape difference test statistics and their associated p–values in the parentheses 

among different clusters.

Cluster 2 Cluster 3 Cluster 4

Cluster 1 0.0552 (0.3284) 0.0881 (0.1343) 0.6431 (0.0050)

Cluster 2 - 0.0044 (0.5808) 0.0474 (0.0040)

Cluster 3 - - 0.0218 (0.0349)
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