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Summary

Multivariate meta-regression models are commonly used in settings where the response variable is 

naturally multi-dimensional. Such settings are common in cardiovascular and diabetes studies 

where the goal is to study cholesterol levels once a certain medication is given. In this setting, the 

natural multivariate endpoint is Low Density Lipoprotein Cholesterol (LDL-C), High Density 

Lipoprotein Cholesterol (HDL-C), and Triglycerides (TG) (LDL-C, HDL-C, TG). In this paper, 

we examine study level (aggregate) multivariate meta-data from 26 Merck sponsored double-

blind, randomized, active or placebo-controlled clinical trials on adult patients with primary 

hypercholesterolemia. Our goal is to develop a methodology for carrying out Bayesian inference 

for multivariate meta-regression models with study level data when the within-study sample 

covariance matrix S for the multivariate response data is partially observed. Specifically, the 

proposed methodology is based on postulating a multivariate random effects regression model 

with an unknown within-study covariance matrix Σ in which we treat the within-study sample 

correlations as missing data, the standard deviations of the within-study sample covariance matrix 

S are assumed observed, and given Σ, S follows a Wishart distribution. Thus, we treat the off-

diagonal elements of S as missing data, and these missing elements are sampled from the 

appropriate full conditional distribution in a Markov chain Monte Carlo (MCMC) sampling 

scheme via a novel transformation based on partial correlations. We further propose several 

structures (models) for Σ, which allow for borrowing strength across different treatment arms and 

trials. The proposed methodology is assessed using simulated as well as real data, and the results 

are shown to be quite promising.
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1 Introduction

Multivariate responses in meta-regression models are commonly used when there is more 

than one endpoint of interest across studies, such as multiple outcomes, multiple time points, 

multiple treatments, and so forth. Such multiple outcomes are typically correlated and the 

sample correlations among these multiple outcomes are not typically reported in most 

published studies. One of the major challenges in multivariate meta-analysis with study level 

data is to conduct inference on the parameters in the meta-regression model when the 

within-study sample covariance (or correlation) matrix of these multiple outcomes is only 

partially observed. With individual patient data (IPD), the within-study sample covariance 

matrix is readily available since there is information in the data for computing this sample 

covariance matrix. However, for study level meta-data, inference in multivariate meta-

regression with a partially observed within-study sample covariance matrix is a long-

standing and difficult problem, with no gold standard solutions.

There has been some literature addressing this problem both from a Bayesian and frequentist 

perspective. When only the diagonal elements of the within-study sample covariance matrix 

S are observed, one simple remedy is to impute the missing sample correlations over the 

entire range of values (i.e., from -1 to 1) and then assess whether the conclusions depend on 

the correlations that are imputed. This type of analysis has been used in a multivariate meta-

analysis of 44 trials which evaluated the effectiveness of injectable gold, auranofin and 

placebo on three treatment outcomes (Berkey et al., 1996). Nam et al. (2003) propose and 

evaluate three Bayesian multivariate meta-analysis models. In the case of bivariate 

outcomes, they assume a uniform distribution on (−1, 1) for each within-study correlation. 

For a bivariate random-effects meta-analysis, Riley et al. (2008) propose a model which 

does not require knowing the within-study sample correlations. Their model includes only 

one overall correlation parameter, which can be considered a hybrid measure of the within-

study and between-study correlations. Unless the overall correlation is very close to 1 or −1, 

this alternative model has been shown to produce appropriate pooled estimates with little 

bias. Wei and Higgins (2013a) examine a multivariate random effects meta-regression 

model from a frequentist perspective, where they estimate the within-study covariance 

matrix of the mean difference in the treatment effects and odds ratios assuming the within-

study correlations are known. Wei and Higgins (2013b) discuss Bayesian multivariate meta-

analysis with multiple outcomes with a known within-study covariance matrix, where they 

decompose the between-study covariance matrix into a product of variances and correlations 

as in Barnard et al. (2000), carry out a Cholesky decomposition of the between-study 

correlation matrix, and specify uniform priors on the Cholesky elements while at the same 

time ensuring positive definiteness. Ma and Mazumdar (2011) examine robust methods 

based on U-statistics for a multivariate meta-analysis random effects model assuming that 

the within-study sample covariance matrix is known. Hamza et al. (2009) examine 

multivariate random effects meta-analysis models with applications to diagnostic tests, 

where again, the within-study covariance matrix is assumed known. Hedges et al. (2010) 

provide a robust estimator of the covariance matrix of the meta-regression coefficients in the 

setting of clusters of internally correlated estimates. They only consider univariate aggregate 

responses and then assume that these aggregate responses are correlated within the same 
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cluster. Their paper does not examine the multivariate meta-regression setting nor does it 

examine inference for the within-study covariance matrix based on aggregate data. Their 

methodology and data structure are very different than the setting considered in this paper. 

Jackson et al. (2011) and Riley (2009) give very nice overviews and detailed reviews of 

multivariate meta-analysis methods and provide some practical guidance and 

recommendations as to how to specify and/or estimate the within-study covariance matrix. 

Both of these papers also have an exhaustive reference list on this topic.

In this paper, we present a fundamentally different approach than the aforementioned 

literature. Our primary goal is to carry out inferences on the parameters in multivariate meta-

regression models with study level data in which the within-study sample covariance matrix 

S is only partially observed. Towards this goal, we propose a Bayesian multivariate random 

effects meta-regression model in which S follows a Wishart distribution, where the 

parameter of the Wishart distribution is the unknown within-study covariance matrix Σ. We 

aim to recover the unobserved elements of the within-study sample covariance matrix by 

modeling Σ and borrowing strength from different treatment arms across different trials. 

Since only the diagonal elements of S are observed and reported in most published studies, 

we derive the induced distribution of the off-diagonal elements of S via a decomposition of S 

similar to that of Barnard et al. (2000). We then devise a novel Markov chain Monte Carlo 

(MCMC) sampling algorithm for the sample correlation matrix R. Our approach has a flavor 

similar to that discussed in Riley (2009) but is really quite different, since we do not specify 

values of the sample correlation matrix R nor do we specify prior distributions on functions 

of the elements of R. In our approach, the sampling distribution for R is induced from the 

Wishart distribution that is imposed on S at the outset. By treating the off-diagonal elements 

of S as missing data, we can write the complete data likelihood function of the multivariate 

responses and S given Σ, specify the appropriate priors for Σ, and then carry out full 

Bayesian inference via MCMC methods. Our approach is analogous and similar in flavor to 

the one in the context of missing covariates in regression models as discussed in Ibrahim et 

al. (2005). Specifically, S is viewed as the partially observed “covariate data” and therefore 

is parametrically modeled, and inference on S is then carried out through the parameters (Σ) 

of the distribution of S.

The rest of this paper is organized as follows. In Section 2, we give a description of the 

cholesterol meta-data with three primary aggregate outcome variables from the 26 clinical 

trials. In Section 3, we give the full development of the multivariate meta-regression random 

effects model, the induced conditional distribution of the sample correlation matrix R given 

the observed diagonal elements of the within-study sample covariance matrix, and the 

complete data likelihood. In Section 4, we present a novel MCMC sampling algorithm based 

on sampling the partial correlations from R. In Section 5, we examine specific types of 

structures and models for the unknown within-study covariance matrix Σ that may be used 

in practice, and Section 6 gives the general Bayesian computational development and 

goodness-of-fit criterion for model comparisons. Section 7 presents an analysis of the 

cholesterol meta-data discussed in Section 2. In Section 8, we carry out two detailed 

simulation studies. We conclude the article with some discussion in Section 9.
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2 Cholesterol Data

Millions of Americans are struggling with high cholesterol which is well known to 

contribute to heart disease and other cardiovascular disease. A great deal of effort has been 

put forth in clinical trials studying cholesterol lowering drugs. Endpoints in such trials 

typically focus on one or more of three primary endpoints, these being Low Density 

Lipoprotein Cholesterol (LDL-C), High Density Lipoprotein Cholesterol (HDL-C), and 

Triglycerides (TG) (LDL-C, HDL-C, TG). The multivariate aggregate meta-data come from 

26 Merck sponsored double-blind, randomized, active or placebo-controlled clinical trials on 

adult patients with primary hypercholesterolemia. The primary goal of these clinical trials 

was to evaluate the effects of Ezetimibe (EZE) on LDL-C, HDL-C, and TG (which works in 

the digestive tract) in combination with statin (which works in the liver) in comparison to 

statin alone on treatment-naïve patients at baseline (on a first line therapy) and those 

continuing on statins at baseline (on a second line therapy). The citations of primary 

published papers in clinical journals for the 26 trials considered in this paper can be found in 

Leiter et al. (2011) and Chen et al. (2012). These trials were conducted between November 

1999 to October 2008 and study durations ranged from 4 weeks to 24 weeks. Some trials 

had longer durations with titration of doses but only the data prior to the first titration were 

used in the analyses. The entry criteria for the patients in each of these studies are given in 

Chen et al. (2012).

The primary endpoints in these trials are the mean percent changes in LDL-C, HDL-C, and 

TG from their respective baseline values, denoted by (LDL-C, HDL-C, TG). The aggregate 

covariates considered in our analysis include treatment (trt) (“statin” or “statin+Ezetimibe”) 

on the first line therapy or on the second line therapy, baseline LDL-C (bl_ldlc), baseline 

HDL-C (bl_hdlc), and baseline TG (bl_tg), age in years, white (%), male (%), Diabetes 

Mellitus (DM) (%), and Duration in weeks (Dur). The multivariate aggregate meta-data 

including the aggregate covariates are given in Appendix A of the supplementary document. 

Figures 1 and 2 show the forest plots of the aggregate meta-data for three primary outcome 

variables for these 26 studies. In these two figures, each line corresponds to percent change 

in each of LDL-C, HDL-C, and TG from baseline ± one sample standard deviation. We note 

that the reported means were model-based means. The lines based on the mean ± one 

standard deviation shown in Figures 1 and 2 are much longer than the lines constructed 

based on 95% confidence intervals shown in the forest plot for LDL-C in Chen et al. (2012). 

We further note the sample correlations of the three primary aggregate outcome variables 

(LDL-C, HDL-C, TG) were not reported in published papers in the clinical journals for the 

26 trials (Leiter et al., 2011). Thus, the aggregate meta-data from these 26 trials provide a 

great motivation for developing a new methodology using Bayesian multivariate random 

effects meta-regression models in the subsequent sections.
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3 Methods for Multivariate Meta-regression and Multi-Dimensional Random 

Effects

3.1 The Multivariate Meta-regression Model

Consider K randomized trials, where each trial has T treatment arms. The sample size of the 

tth treatment arm within the kth trial is ntk for t = 1, …, T and k = 1, …, K. Let yitk = (yitk1, 

…, yitkJ)′ be the J-dimensional response of the ith patient in the tth treatment arm within the 

kth study. Also let xtkj denote a pj-dimensional vector of treatment-within-trial level 

covariates for the jth response corresponding to the fixed effects for the tth treatment arm. 

We further let ztkj denote a qj-dimensional vector of treatment-within-trial level covariates 

corresponding to the random effects for the tth treatment arm in the kth trial.

The multivariate meta-regression model for yitk assumes

(3.1)

where Σtk is the J × J covariance matrix, μtk = (μtk1, …, μtkJ)′, and

(3.2)

for t = 1, …, T and k = 1, …, K. In (3.1), we assume that the εitk's are independent. In (3.2), 

βj = (βj1, …, βjpj)′ is the vector of fixed effects regression coefficients corresponding to the 

pj covariates, and γkj = (γkj1, …, γkjqj)′ represents the vector of qj-dimensional random 

effects for the jth response for j = 1, …, J, t = 1, …, T, and k = 1, …, K. We further assume 

that

(3.3)

where Ωj is a qj × qj covariance matrix. The random effects γkj's, which are assumed to be 

independent of the εitk, capture heterogeneity across the K trials for the jth response.

Letting  for j = 1, …, J, the J-dimensional sample mean and J × J 

sample covariance matrix are

(3.4)

for t = 1, …, T and k = 1, …, K. Then, we have the following result.

Result 3.1—The sample mean ȳ·tk and sample covariance Stk are joint complete sufficient 

statistics for (μtk, Σtk). In addition, ȳ·tk and Stk are independent. Consequently, we have
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(3.5)

where , j = 1, … J and

(3.6)

and

(3.7)

where Wntk − 1(Σtk) denotes the Wishart distribution with ntk − 1 degrees of freedom and 

positive definite J × J scale matrix Σtk.

We briefly discuss the proof of Result 3.1 using Basu's Theorem (Lehmann and Casella, 

1998). The joint pdf of yitk for i = 1, …, ntk can be written as,

Due to the properties of the exponential family,  are the joint 

complete sufficient statistics for μtk and Σtk. Since ȳ·tk and Stk are one-to-one functions of 

 and , they are jointly complete and sufficient. Now for any fixed Σtk, ȳ·tk 

is complete sufficient for μtk and Stk is ancillary for μtk. Then by Basu's Theorem, ȳ·tk and 

Stk are independent. The results given in (3.6) and (3.7) immediately follow from (3.1) and 

the independence assumption of the εitk's.

The classical meta-regression model (e.g., Whitehead, 2002) often assumes

(3.8)

However, only ȳ·tk and the diagonal elements of Stk are available in most published articles 

in the literature. Therefore, the multivariate meta-regression model defined by (3.3), (3.5), 

and (3.8) is not identifiable due to the missing values of the off-diagonal elements in Stk. In 

the remainder of this paper, we assume that only the treatment-within-trial level response 

ȳ·tk and the diagonal elements of Stk are available while the individual patient level 

responses, yitk, as well as the off-diagonal elements of Stk are not available.
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Equations (3.6) and (3.7) can be viewed as a natural extension of Yao et al. (2011) for the 

univariate meta-regression model. We use the Wishart distribution with parameter Σtk in 

(3.7) to help “recover” the missing off-diagonal elements of Stk and to facilitate the joint 

estimation of βj, Ωj, and Σtk. In addition, using (3.7), the probability density function (pdf) of 

Stk given Σtk can be written as

(3.9)

Let Vtk = diag(Stk11, …, StkJJ) be the diagonal matrix that contains the diagonal elements of 

Stk. Then, the sample correlation matrix is given by

(3.10)

Each diagonal element of Rtk is equal to 1, while each off-diagonal element lies between −1 

and 1. Prom the distribution of Stk in (3.7), the conditional distribution of Rtk can be written 

as

(3.11)

Remark 3.1: In Result 3.1, we assume that μtkj depends only on the trial-level covariates. 

This assumption holds only when patients with the same characteristics are selected by a 

trial. But for most clinical trials, values of the individual-level covariates may vary within 

trial and treatment subgroups. This assumption can still be met for randomized trials in 

which patient-specific covariates are randomized. For this case, the regression coefficients 

capture the difference among trials, and μtkj is affected only by the difference in 

characteristics across trials. Therefore, Result 3.1 is applicable to meta-data from 

randomized trials.

Remark 3.2: The aggregate response, ȳ·tk = (ȳ·tk1, …, ȳ·tkJ)′, and the diagonal matrix of the 

sample covariance Stk, Vtk = diag(Stk11, …, StkJJ), are observed for t = 1, …, T and k = 1, …, 

K. In Result 3.1, (3.5) allows us to model Σtk and the distribution of the sample covariance 

Stk in (3.6) yields the induced distribution (3.11) of the sample correlation matrix Rtk given 

Σtk and Vtk. We note here that ȳ·tk is a vector of multivariate aggregate responses, which 

does carry the information of the correlations among these multivariate responses. Once the 

covariance matrix Σtk is modeled appropriately, the information of the missing sample 

correlation matrix Rtk can be recovered via (3.6), especially when TK is large. By treating 

the off-diagonal elements of S as missing data, (3.5) essentially specifies the distribution of 

“response variable” while (3.6) induces the distribution of “missing covariates” in regression 

models as discussed in Ibrahim et al. (2005). However, our approach differs from the 
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standard missing covariates problem in the sense that (i) the missing sample correlation 

matrix, treating as “missing coavriates”, does not directly enter the “response” model and 

(ii) the “response” model and the “missing covariates” model are connected via the 

unknown covariance matrix Σtk.

3.2 The Complete-data Likelihood Function

Due to the independence of ȳ·tk and Stk shown in the last section, their joint density can be 

written product of marginal densities as

Let Dc = {(ȳ·tk, Stk, ntk, xtkj, ztkj, γkj), t = 1, …, T, j = 1, …, J, k = 1, …, K}. The complete-

data likelihood function for the model in (3.5) and (3.6) is thus given by

(3.12)

where  and Σ* = (Σ11, …, ΣT1, …, Σ1K, …, ΣTK).

4 Sampling the Correlation Matrix R

The conditional distribution of the sample correlations in (3.11) is critical in recovering the 

unobserved correlations for jointly modeling the multivariate aggregate responses. However, 

it is difficult to sample directly from the conditional density in (3.11) due to the constraint of 

positive definiteness for Rtk. To relax the requirement of positive definiteness, we develop a 

sampling algorithm for Rtk via partial correlations using the techniques of Daniels and 

Pourahmadi (2001) and Wang and Daniels (2013). For ease of presentation, we drop the 

index “tk” in Rtk Vtk, and Σtk in this section.

Let R = (rij) be a J × J positive definite correlation matrix. Then, R can be parameterized in 

terms of the correlations ri,i+j for i = 1, …, J − 1 and the partial correlations ri,j|i+1,…,j−1 for j 

− i ≥ 2. To make the transformation of the correlations rj,j+k to the partial correlations 

rj,j+k|j+1,…,j+k−1, we define R[j : j + k] = R[j : j + k, j : j + k] as the (k + 1) × (k + 1) sub-

matrix of R, which takes elements from the jth row to the (j + k)th row and the jth column to 

the (j + k)th column. It can be partitioned as
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(4.1)

where r1(j,k) = (rj,j+1, …, rj,j+k−1), r3(j, k) = (rj+k,j+1, …, rj+k,j+k−1), R2(j, k) contains the 

middle k − 1 rows and columns of R[j : j + k]. The partial correlations can be written 

function of the marginal correlations,

(4.2)

for 2 ≤ k ≤ J − j.

This also leads to a formula for rj,j+k, given by

(4.3)

where .

One advantage of this reparameterization is that rj,k|j+1,…,j+k−1 can vary independently in 

(−1, 1) while maintaining positive definiteness of R. Hence to generate a random correlation 

matrix, one may generate partial correlations independently and then transform back to rj,j+k 

for 2 ≤ k ≤ J − 1. Under Sylvester's criterion, a necessary and sufficient criterion for R to be 

positive definite is that all of the leading principal minors must be positive. In other words, 

all the following matrices have a positive determinant: (i) the upper left 1-by-1 corner of R; 

(ii) the upper left 2-by-2 corner of R; (iii) the upper left 3-by-3 corner of R; …; and (iv) R 

itself. Joe (2006) proposed that the determinant of R can be calculated as

(4.4)

We can use this property to show that the determinants of R and all the leading principal 

minors are positive when −1 < ri,i+1 < 1 and −1 < rj,j+k|j+1,…,j+k−1 < 1 for i = 1, …, J − 1, k = 

2, …, J − 1, and j = 1, …, J − k.

For purposes of illustration, we consider a 3–dimensional correlation matrix
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We now show how to generate the correlation matrix R through the use of partial 

correlations where R has a conditional density specified in (3.11). It can be shown that the 

determinant of the Jacobian for the transformation of (r12, r23, r13) to (r12, r23, r13|2) is 

. Writing the correlations in terms of their partial correlation 

counterparts, we have

where . Thus, the density of the partial 

correlations R(r13|2) can be written as

(4.5)

We further make the Fisher's z transformation on each partial correlation, leading to 

, , and . The Jacobian for this 

transformation is . Rewriting the correlation matrix 

again in terms of functions of the Fisher's z values and letting z = (z12, z23, z13|2)′, we get

where , , and 

. The 

density of R(z) is therefore

(4.6)

One may sample directly from (4.6) using the Adaptive Rejection Metropolis Sampling 

(ARMS) algorithm. Alternatively, the Fisher's z's can be generated by a localized Metropolis 

algorithm (Chen et al., 2000), which entails the following steps:
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Step 1 Let z(m−1) be the current value.

Step 2 Draw z* from N(zˆ, Σz).

Step 3 Compute

where ϕ is the standard normal density function.

Step 4 Draw u from U(0, 1). Set z(m) = z* if u ≤ a and z(m) = z(m−1) if u > a.

Here, N(zˆ, Σz) is the normal proposal density, where zˆ is the maximizer of the logarithm of 

g(z|V, Σ), and Σz is minus of the inverse of the second derivative of log g(z|V, Σ) evaluated 

at z = z*. That is,

5 Models for Σtk

As we will show in Section 8.1, the missing off-diagonal elements of Stk can well be 

recovered once Σtk is correctly specified. Unlike Stk, Σtk can be taken to have certain 

structures (i.e., modeled) due to the availability of multiple meta-trials. In this section, we 

consider several models for Σtk.

Write Stk = (Stk,jℓ) and Σtk = (Σtk,jℓ). Since the sample variances Stk,jj for j = 1, …, J are 

observed, the Σtk,jj's are identifiable. Instead of (3.7), we consider

(5.1)

for j = 1, …, J. Then, we assume Σtk,jℓ = 0 for 1 ≤ j < ℓ ≤ J. This model, denoted by ℳ1, 

assumes that the ȳ·tk1, … ȳ·tkJ are independent. The simplest and perhaps most identifiable 

model is

(5.2)

This model, denoted by ℳ2, assumes that all the within-study covariance matrices are the 

same across treatment arms and trials.

The covariance matrix Σtk can be decomposed to standard deviations and correlations as
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(5.3)

where  for j = 1, …, J and ρtk is a J × J correlation matrix with diagonal 

elements ρtk,jj = 1 for j = 1, …, J. The third model for Σtk, denoted by ℳ3, assumes that

(5.4)

where ρ = (ρjℓ) is a correlation matrix with ρjj = 1 for j = 1, …, J. Model ℳ3 relaxes the 

assumption of equal variances under model ℳ2. However, both models ℳ2 and ℳ3 

assume that the correlations among the aggregate responses, ȳ·tk1, … ȳ·tkJ, are the same 

across treatment arms and trials.

Finally, we consider a hierarchical model for Σtk denoted by ℳ4. This model assumes that

(5.5)

In (5.5), Σtk has prior expectation E [Σtk|Σ] = (ν − J − 1)−1 (υ − J − 1)Σ = Σ when υ > J + 1. 

The hierarchical model is attractive as it allows for “borrowing of strength” across treatment 

arms and trials through the common second-level covariance matrix Σ, and it also accounts 

for the heterogeneity of the within-study covariance matrices between treatment arms as 

well as among different trials at the same time. We see from (5.5) that the amount of 

borrowing across treatment arms and trials is controlled by ν. The larger the value of ν, the 

more the within-study covariance matrices borrow strength from different treatment arms 

and trials. We consider a fixed ν in this paper and the optimal value of ν is determined by a 

Bayesian model assessment criterion such as the Deviance Information Criterion (DIC) 

(Spiegelhalter et al., 2002). One limitation of this hierarchical model for Σtk is that a large 

number (i.e., TK) of treatment arm and trial combinations is required in order to accurately 

estimate the common second-level covariance matrix Σ.

6 Bayesian Inference

6.1 Priors and Posteriors

We assume that β, Ωj, and Σtk are independent a priori. We further assume β ∼ Np(0, c01Ip), 

where , and  with d0j degrees of freedom and a qj × 

qj scale matrix Ω0j, i.e.,

(6.1)

for j = 1, …, J. As in Section 5, for Σtk, we assume

Yao et al. Page 12

J Am Stat Assoc. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ℳ1. , where  with 

density given by , a0 > 0, and b0 > 0;

ℳ2. Σtk = Σ, where Σ ∼ WishartJ (υ0, Σ0) with υ0 degrees of freedom and J × J scale 

matrix Σ0;

ℳ3. Σtk = diag(σtk,11, …, σtk,JJ) ρ diag(σtk,11, …, σtk,JJ), where π(ρ) ∝ 1 subject to that 

ρ is a positive definite correlation matrix and σtk,jj ∼ Inverse Gamma(a0, b0); and

ℳ4.  and Σ ∼ WishartJ (υ0, Σ0).

We note that c01, d01, …, d0J, Ω01, …, Ω0J, a0, b0, υ0, and Σ0 are prespecified 

hyperparameters. In this paper, we used c01 = 100,000, d0j = qj + 0.1 and Ω0J = 10Iqj for j = 

1, …, J, a0 = 0.1, b0 = 0.1, υ0 = J + 0.1, and Σ0 = 10IJ, where Iqj is the qj × qj identity matrix 

for j = 1, …, J and IJ denotes the J × J identity matrix. We also note that in our computation 

development in Section 6.2 as well as Appendix B of the supplementary document, we use 

the sampling algorithm based on partial correlations in Section 4 to sample ρ under model 

ℳ3 to ensure that ρ is a positive definite correlation matrix.

To obtain the posterior distributions, we consider the hierarchical model (ℳ4). Let 

, , , , R 

= (R11, …, RKT), and Ω = (Ω1, …, ΩJ). We further let

denote the observed aggregate meta-data, where the Vtk's are defined in (3.10). Then, the 

posterior distribution under model ℳ4 is given by

(6.2)

The posterior distributions under the other three models can be derived in a similar fashion, 

and therefore the expressions of these posteriors are omitted here for brevity.

6.2 Computational Development

We present the development of the MCMC sampling algorithm only for model ℳ4 as the 

other models have similar computational developments. Although the analytical evaluation 
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of the posterior distribution of (β, Σ*, Σ, Ω, R, γ) given in (6.2) is not possible, the proposed 

model allows us to develop an efficient MCMC sampling algorithm to sample from (6.2). 

The MCMC sampling algorithm requires sampling from the following conditional 

distributions in turn: (i) [β, γ|Σ*, Σ, Ω, R, Dobs]; (ii) [Ω|β, γ, Σ*, Σ, R, Dobs]; (iii) [R|β, γ, Σ*, 

Σ, Ω, R, Dobs]; and (iv) [Σ*, Σ|β, γ, Ω, R, Dobs]. For (i), we apply the collapsed Gibbs 

technique of Liu (1994) via the following identity

(6.3)

That is, we sample β after collapsing out γ. For (iv), we again apply the collapsed Gibbs 

technique of Liu (1994) using the identity

(6.4)

That is, we sample Σ after collapsing out Σ*. The technical details regarding these full 

conditional distributions are given in Appendix B of the supplementary document.

6.3 Bayesian Model Comparison

To carry out Bayesian model comparison, we use the Deviance Information Criteria (DIC) 

developed by Spiegelhalter et al. (2002). Due to the nature of the random effects, we first 

derive the observed-data likelihood for the model given in (3.5) and (3.6). After integrating 

out the random effects (γk) from the complete-data likelihood function in (3.12), we have

(6.5)

Let θ = (β, Σ*, Ω). We define the deviance function as

(6.6)

where
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(6.7)

According to Spiegelhalter et al. (2002), DIC is given by

(6.8)

where ,  (the posterior mean of Dev(θ)), and θ̄ 

= E[θ|Dobs] (the posterior mean of θ). In DIC (6.8), the first term measures the goodness-of-

fit, and pD is the effective number of model parameters. The DIC in (6.8) is a Bayesian 

measure of fit or adequacy with 2pD being the respective dimension penalty term. The 

smaller the DIC value, the better the model fits the data.

We note here that when the with-study sample covariance matrix Stk is completely observed, 

model (3.7) would not be needed as long as ntk is large (Yao et al., 2011). Model (3.7) is 

primarily used for deriving the joint distribution of the missing off-diagonal elements in Stk. 

The DIC measure in (6.6) allows us to assess the impact of the model for Σtk on the 

goodness-of-fit of the meta-regression model based on (6.7).

7 Analysis of the Cholesterol Data

For the multivariate aggregate meta-data discussed in Section 2, we have K = 26 trials, J = 3, 

and T = 2 (two treatment arms, i.e., “Statin” or “Statin + EZE”). and patients in each trial 

were either all on statin or all not on statin prior to the trial. The sample size of the tth 

treatment group for the kth trial is ntk. The values of the ntk's are shown in Figures 1 and 2 as 

well as in Tables A1 and A2 in Appendix A of the supplementary document. Let ȳ·tk = 

(ȳ·tk1, ȳ·tk2, ȳ·tk3)′ be the 3-dimensional mean vector of responses for the tth treatment group 

in the kth trial, where ȳ·tk1, ȳ·tk3, and ȳ·tk3 denote the mean percent changes in LDL-C, 

HDL-C, and TG from their baseline values, respectively. Also let trttk = 1 if the ith treatment 

group received “Statin + EZE” and 0 if “Statin” alone, and onstatintk = 1 if the tth treatment 

group is on statin and 0 if not on statin prior to the trial. We further let xtkj = ((1 − 

onstatintk), trttk × (1 − onstatintk), onstatintk, trttk × onstatintk, (bl_ldlc)tkj, (bl_hdlc)tkj, 

(bl_tg)tkj, agetkj, whitetkj, maletkj, DMtkj, Durtkj)′ be the vector of covariates and βj = (βj1, …, 

βj,12)′ is the vector of corresponding regression coefficients for the jth response for j = 1, 2, 

3. Then, the multivariate meta-regression model, which is a special case of the model 

defined in (3.5), can be written as

(7.1)

We write γkj = (γkj0, γkj1, γkj2, γkj3,)′, which denotes the vector of random effects for the jth 

response, and assume that Ωj takes the form
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(7.2)

For notational simplicity, we apply (6.1) only for  or  with qj = 2 for j = 1, …, J. In 

(7.2), Ωj00 and Ωj11 capture the variability of γkj0 and γkj1, and Ωj01 captures the correlation 

between γkj0 and γkj1 among the trials in which patients were not on statin (the first line 

therapy); and similarly, Ωj22 and Ωj33 capture the variability of γkj2 and γkj3, and Ωj23 

captures the correlation between γkj2 and γkj3 among the trials in which patients were on 

statin (the second line therapy). The random effects γkj, which are independent of ∈̄
·tkj, 

capture the heterogeneity across the K trials for the jth response.

We fit the four models discussed in Sections 5 and 6.1 to the cholesterol data. We computed 

the DICs defined in (6.8). The values of Dev(θ̄), pD, and DIC are reported in Table 1. The 

results shown in Table 1 are quite interesting and intuitively appealing. First, the 

independence model (i.e., ℳ1) has the largest DIC value (785.52), which implies that the 

multivariate aggregate outcome variables are indeed dependent. Second, the DIC value 

under the equal within-study covariance matrix model (i.e., ℳ2) is smaller than the DIC 

value under the independence model, but much larger than those under models ℳ3 and ℳ4, 

which indicates that there is substantial heterogeneity in the within-study covariance 

matrices across treatment arms and trials. Third, the DIC value under model ℳ3 is similar 

to those under ℳ4 when υ ≥ 10. This result indicates that these two models fit the data 

equally well. However, model ℳ3 is more parsimonious than model ℳ4. Fourth, under 

model ℳ4, the DIC is roughly a “convex” function of υ and the “best” DIC value is attained 

at υ = 10. These results suggest that there is indeed a considerable amount of heterogeneity 

in the within-study covariance matrices between treatment arms and across trials.

The posterior estimates, including the posterior means, posterior standard deviations (SDs), 

and 95% highest posterior density (HPD) intervals of the parameters under models ℳ1 to 

ℳ4 with υ = 10 are reported in Tables 2 to 4. We see from Tables 2 and 3 that the posterior 

estimates for (β12, β14), (β22, β24) and (β32, β34) were similar under all four models and all 

four models indicate that patients on “statin + EZE” had substantially higher percent 

changes from baseline in LDL-C, HDL-C, and TG than those on statin alone in both first 

and second line therapy studies (i.e., the 95% HPD intervals do not contain 0). The 

respective 95% HPD intervals under these four models were (-14.43, -10.02), (-14.18, 

-9.92), (-13.97, -9.94), and (-13.99, -9.87) for β12 in the first line therapy and (-22.98, 

-17.07), (-23.06, -17.81), (-22.70, -17.63), (-23.03, -17.81) for β14 in the second line therapy 

for the percent change from baseline in LDL-C; and (-6.91, -2.80), (-6.88, -2.79), (-6.63, 

-2.81), and (-6.63, -2.74) for β32 in the first line therapy and (-10.60, -7.19), (-10.45, -6.92), 

(-10.40, -7.33), (-10.46, -7.40) for β 34 in the second line therapy for the percent change 

from baseline in TG. We also see substantial improvement in HDL-C from baseline for 

patients on “statin + EZE” over those on statin alone in both the first and second line therapy 

studies. The corresponding 95% HPD intervals were (1.17, 3.04), (1.17, 3.12), (1.13, 3.03), 

Yao et al. Page 16

J Am Stat Assoc. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and (0.99, 2.98) for β22 in the first line therapy and (0.74, 2.00), (0.64, 1.96), (0.73, 1.97), 

and (0.71, 1.98) for β24 in the second line therapy, respectively, under models ℳ1 − ℳ4.

Among these eight covariates, the trial duration regression coefficient had an HPD interval 

not containing zero only for the outcome variable LDL-C, and there was a substantial 

improvement in HDL-C from baseline for white (vs. black or hispanic) under all four 

models. The 95% HPD intervals for β1,12 were (0.06, 2.00), (0.14, 2.22), (0.05, 1.92), and 

(0.09, 2.07); and the HPD intervals for β29 were (3.02, 8.12), (2.91, 8.44), (3.00, 8.19), and 

(3.17, 8.27), respectively, under ℳ1 − ℳ4. The other important covariates, which were 

only in TG, were gender (male versus female) under ℳ1 − ℳ4. The 95% HPD intervals for 

β3,10 were (0.51, 26.57), (1.48, 27.85), and (2.77, 29.66), respectively, under ℳ2 − ℳ4. We 

also see from Table 4 that there was an important correlation ρ13 between LDL-C and TG 

under ℳ2 − ℳ4 and the corresponding 95% HPD intervals were (0.49, 0.54), (0.44, 0.98), 

and (0.46, 0.86), respectively. The 95% HPD for ρ13 under model ℳ3 is wider than the 

corresponding intervals under models ℳ2 and ℳ4. Overall, the posterior estimates under 

models ℳ2 − ℳ4 were more similar but less similar to those of model ℳ1. These results 

further confirm that there is a need to model these three primary outcome variables jointly.

Finally, we carried out a sensitivity analysis on the specification of hyperparameters υ0 and 

Σ0 for Σ under model ℳ2. Specifically, we specified (υ0, Σ0) = (3.01, 100I3) and (υ0, Σ0) = 

(3.0001, 10000I3), which yield much more noninformative priors for Σ than the prior with 

(υ0, Σ0) = (3.1, 10I3) specified in Section 6.1. The posterior estimates under these two priors 

are given in Table C1 of the supplementary document. Comparing the posterior estimates in 

Table C1 to those in Tables 2 and 4, we see that these posterior estimates were very similar 

and in particular, the posterior estimates of the correlation parameters were almost identical. 

These results indicate that model ℳ2 is identifiable although this model did not fit the data 

as well as model ℳ3. In Appendix B of the supplementary document, Table C2 shows the 

posterior estimates under model ℳ4 for ν = 15 and ν = 20. Comparing Table C2 to Tables 3 

and 4, we see that the posterior estimates for those regression coefficients, whose 95% HPD 

intervals do not contain 0, were quite similar while the posterior estimates of ρ12 were more 

similar than those of ρ13. Thus, the posterior estimates under model ℳ4 were not as robust 

to the specification of ν as those under model ℳ2 to the specification of (υ0, Σ0). For this 

reason, we used the DIC measure to determine the optimal value of ν as discussed in Section 

5.

In all of the posterior computations, we first generated 100,000 MCMC iterations with a 

burn-in of 20,000 iterations, and we then used 20,000 iterations obtained from every 5th 

iteration for computing all the posterior estimates as well as the DICs. The computer 

programs were written in FORTRAN 95 using IMSL subroutines with double-precision 

accuracy. The run-times for models ℳ1 − ℳ4 were about 10 minutes, 1 hour and 20 

minutes, 2 hours and 50 minutes, and 1 hours and 30 minutes, respectively, on a Dell PC 

with an Intel i5 processor, 2.40 GHz CPU, and 6 GB of memory. The convergence of the 

MCMC sampling algorithm for all the parameters was checked following the 

recommendations of Cowles and Carlin (1996). All trace plots and autocorrelation plots 

showed good convergence and mixing of the MCMC sampling algorithm.

Yao et al. Page 17

J Am Stat Assoc. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



8 Simulation Studies

8.1 Simulation Study I

We carry out a simulation study using the partial correlation algorithm developed in Section 

4. Suppose that the true 3 × 3 covariance matrix Σ is known. The diagonal elements, which 

are the true variances, are set to be 10 and 100. The pairwise correlations take values 

between 0.1 and 0.9. Thus, the off diagonal elements of Σ take values between 10 and 90. 

The number of patients, n, is set to be 50, 100, 500, or 1000. To initiate the simulation, we 

first generate the sample covariance matrix S from the Wishart distribution given in (3.9). 

The observed sample correlations, denoted by rjj′ for 1 ≤ j < j′ ≤ 3, are calculated from S. 

Suppose for each sampled S = V1/2RV1/2, only the diagonal elements are available. We 

employ the partial correlation sampling algorithm at this step to draw samples from the 

conditional density of R given V and Σ as in (3.11). The off-diagonal elements of R that are 

sampled under this scenario are the so-called conditional means. We denote them by r̃jj′ for 

1 ≤ j > j′ ≤ 3.

For each simulated dataset, we generated the first 5000 iterations as burn-in then examined 

the convergence and performance of the partial correlation algorithm using 20,000 

iterations. For illustrative purposes, we present two simulation studies here by their 

graphical displays. For the first simulation study shown in Figure 3, the true correlations are 

0.2, 0.5 and 0.8, respectively. For the second study shown in Figure 2, all three correlations 

take the value of 0.9. Trace plots for both simulation studies show excellent convergence of 

the proposed simulation algorithm. We can also see that the 20,000 iterations make up a 

representative sample of the defined population with a symmetric density and a mode at the 

true value. For each simulation study, we generated 10,000 datasets for a given sample size 

and covariance matrix. Let  be the observed sample correlation (OSC) and also let  be 

the conditional mean (CM) from the bth simulated data set, where 1 ≤ j ≤ j′ ≤ 3 and b = 1, 

…, B. The average of the observed sample correlations is calculated as , 

and the average of the conditional means is calculated as . We compare the 

observed sample correlations to the conditional means to show the power and accuracy of 

the sampling algorithm. The root of the average squared difference (RASD) is calculated 

based on the difference between the observed and conditional means of each simulation, that 

is, . We also compute the 95% confidence interval 

 for each . The 95% coverage conditional probability (CCP) of 

 containing  is given by , where the indicator 

function 1{A} = 1 when A is true and 0 otherwise.

Table 5 summarizes the results of the simulation studies with various combinations of 

correlations (ρ12, ρ23, ρ13), true variances, and sample sizes n. We used n = 50, 100, 500, 
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and 1000. For each sample size, we considered three different values of the correlations, 

which are (ρ12, ρ23, ρ13) = (0.1, 0.1, 0.1) representing small correlations; (ρ12, ρ23, ρ13) = 

(0.2, 0.5, 0.8) representing moderate correlations; and (ρ12, ρ23, ρ13) = (0.9, 0.9, 0.9) 

representing large correlations, as well as true variances equal to 10 and 100. We can see 

from Table 5 that the averages of the conditional means were very close to their average 

observed counterparts for all 18 cases. Also, the realizations of both the Wishart distribution 

in (3.7), which is measured by the averages of the observed sample correlations, and the 

conditional density for the correlation matrix in (3.11), measured by the averages of the 

conditional means, were close to the true correlations. All of these indicate that the sampling 

algorithm based on partial correlations can accurately recover the missing elements in the 

sample correlation matrix. The RASD calculated based on the errors between the observed 

and sampled correlations also represents the degree of accuracy of the sampling algorithm. 

We can see that when fixing the correlations (ρ12, ρ23, ρ13), the RASD decreases as the 

sample size n increases. For example, for true variances equal to 100, when (ρ12, ρ23, ρ13) = 

(0.1, 0.1, 0.1), RASD = (0.139, 0.145, 0.143) for n = 50, RASD = (0.101, 0.101, 0.099) for n 

= 100; RASD = (0.043, 0.044, 0.044) for n = 500; and RASD = (0.032, 0.031, 0.031) for n = 

1000. This is true regardless of the magnitude of the correlations. Finally, we see from Table 

5 that all the values of the 95% CCP's were around 95%, indicating that the 95% confidence 

interval for each simulated dataset contains the observed value about 95% of the time for the 

10,000 simulated datasets. Finally, we note that we also considered the case in which the 

true variances were set to be 1, and the results are given in Table D1 in Appendix D of the 

supplementary document. From Table 5 and Table D1, we see that the results for the true 

variances equal to 1 were very similar to those for the true variances equal to 10 or 100.

8.2 Simulation Study II

To examine the performance of the proposed method, we design a simulation study with K = 

26 trials, J = 3, and T = 2, which mimics the cholesterol data analyzed in Section 7. The 

sample sizes (ntk), onstatintk, trttk, age in years, duration in weeks, and the true values of the 

diagonal elements of Σtk for t = 1, 2 and k = 1, …, 26 are chosen to be the same as those in 

the cholesterol data in Section 2 and analyzed in Section 7. We set xtkj = ((1 − onstatintk), 

trttk × (1 − onstatintk), onstatintk, trttk × onstatintk, agetkj, Durtkj) to be the vector of 

covariates and let βj = (βj1, …, βj6)′ be the vector of corresponding regression coefficients 

for the jth response for j = 1, 2, 3. The aggregate responses, ȳ·tk = (ȳ·tk1, ȳ·tk2, ȳ·tk3)′, are 

generated from (7.1) under model ℳ3 with ρ = (ρ12, ρ13, ρ23)′ = (−0.7, 0.7, 0)′, β1 = (−51, 

−12.0, −11, −20, 1.5, 2.0)′, β2 = (8.0, 2.0, 3.5, 1.5, −1.0, 1.0)′, and β3 = (−14.0, −4.5, 1.0, 

−9.0, −1.0, 1.0)′. Also let , where , ℓ = 1, 2, j = 1, 2, 3, are 
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defined in (7.2). Set, . In our data generation, we also consider 

three sets of values, namely, Ω, Ω/2, and Ω/10, for the covariance matrix of the random 

effects. Using each set of the above design values, we generated 400 simulated datasets. For 

each simulated dataset, we fit model ℳ1, model ℳ3 with unknown Rtk, and model ℳ3 

with known Rtk since the off-diagonal elements of Stk were known in the simulation setting. 

Fitting model ℳ3 with known Rtk allows us to assess potential information loss due to 

missing off-diagonal elements of Stk. In all of the posterior computations in this simulation 

study, we generated 20,000 MCMC iterations after a burn-in of 5,000 iterations.

Table 6 shows the average of the posterior means (EST), the simulation error (SE), which is 

computed as the root of the sample variance of 400 posterior means, the coverage 

probability (CP) of 95% HPD intervals, and the root of the mean squared error (RMSE) for 

each regression coefficient in βj, j = 1, 2, 3, over the 400 simulated datasets. In addition, we 

also report the mean and the interquartile range (IQR) of the 400 DIC values in the same 

table. From Table 6, we see that (i) the SE's and RMSE's became smaller when the 

covariances of the random effects were smaller for all three models we fit; (ii) the SE's and 

RMSE's under model ℳ3 with known or unknown Rtk's were either comparable to or 

smaller than those under model ℳ1; (iii) the CP's under model ℳ3 with known or unknown 

Rtk's were closer to the desired credible level 95% than those under model ℳ1, especially 

for Ω/2 and Ω/10; and (iv) both the means and IQRs of the DIC values under model ℳ1 

were larger than those under ℳ3 with known or unknown Rtk's. Even with one zero 

correlation and two moderate correlations, model ℳ3 with known or unknown Rtk's was 

more favorable than model ℳ1 both in terms of the model fit and the performance of the 

posterior estimates of the regression coefficients. Quite interestingly, model ℳ3 with 

unknown Rtk performed equally well as model ℳ3 with known Rtk in fitting the ȳ·tk model 

and estimating the regression coefficients βj. However, the EST's, SE's, and RMSE's under 

model ℳ3 with unknown Rtk were -0.67, 0.11, and 0.11 for ρ12, 0.64, 0.13, and 0.14 for ρ13, 

and 0.03, 0.16, and 0.16 for ρ23 when Ω was used; -0.65, 0.13, 0.14 for ρ12, 0.65, 0.13, and 

0.14 for p13, and 0.03, 0.16, and 0.16 for p23 when Ω/2 was used; and -0.64, 0.12, 0.13 for 

p12, 0.62, 0.11, and 0.14 for pl3, and 0.08, 0.16, and 0.18 for ρ23 when Ω/10 was used. These 

EST's, SE's, and RMSE's under model ℳ3 with known Rtk became -0.70, 0.0002, and 

0.0002 for ρ12, 0.70, 0.0002, and 0.0002 for ρ13, and 0.0002, 0.0004, and 0.0004 for ρ23 

when Ω was used; -0.70, 0.0002, 0.0002 for ρ12, 0.70, 0.0002, and 0.0002 for ρ13, and 
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0.0002, 0.0004, and 0.0004 for ρ23 when Ω/2 was used; and -0.70, 0.0002, 0.0002 for ρ12, 

0.70, 0.0002, and 0.0002 for ρ13, and 0.0001, 0.0004, and 0.0004 for ρ23 when Ω/10 was 

used. Thus, when the sample covariance matrix Stk is known, the true correlations can be 

very accurately recovered. These results indicate that the main information loss due to the 

missing off-diagonal elements in Stk is in estimating ρ but there is not much information loss 

in estimating βj's. The additional results for the meta-data generated from model ℳ1 are 

given in Appendix D of the supplementary document.

9 Discussion

In this paper, we have proposed a novel Bayesian methodology for estimating the within-

study covariance matrix in multivariate meta-regression. Our approach is based on the 

notion that the diagonal elements of the within-study sample covariance matrix are observed 

and the off-diagonal elements are treated as missing data. Then, using the Wishart 

distribution for the within-study sample covariance matrix, we are able to write out the 

complete data likelihood. Prior distributions are specified for all parameters, and a novel 

MCMC sampling algorithm was developed to sample from the joint posterior distribution. 

Our real data analyses and simulation studies were very promising. In Simulation Study I, 

we showed that our proposed procedure recovers (estimates) the within study correlations 

quite well and the MCMC algorithm converges nicely with moderate sample sizes. Our 

model assessment procedure also worked well for identifying the true structure of the 

within-study covariance matrix in terms of model fit, as shown in Simulation Study II. In the 

real data analysis of the cholesterol data, although we do not know the ground truth, we 

obtained very reasonable and interpretable results, the MCMC algorithm converged quickly 

and the model assessment procedure identified a reasonable model.

The development we have proposed in this paper can also be carried out within a frequentist 

framework using the Monte Carlo (MC) EM algorithm. An EM framework was developed 

for meta-regression with univariate responses in Chen et al. (2012). Thus, an extension of 

the methods of Chen et al. (2012) to the multivariate case is possible for the proposed 

model. However, such a development would require an MCEM algorithm instead of an EM 

algorithm. In addition, the estimated covariance matrix of the MLE's of the model 

parameters under multivariate responses is much more difficult and challenging to compute 

than the one for the univariate case. Furthermore, obtaining the MLEs of the variance 

components in the M-step of the MCEM algorithm would be computationally intensive and 

would require specialized optimization algorithms. It remains to be seen whether such a 

frequentist approach is computationally feasible. A Bayesian approach for this multivariate 

setting appears more tractable. The approach proposed in this paper for conducting 

multivariate meta-regression of study-level data has applications in many areas besides 

clinical trials. Future work in this area includes developing perhaps more general classes of 

models for which the response may be discrete and/or longitudinal in nature as well as the 

extension to the cases in which some of the aggregate responses or covariates are missing.

We implemented our methodology using the FORTRAN 95 software with double precision 

and IMSL subroutines. The FORTRAN 95 code is available upon request. As a future 
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project, we will develop a user-friendly R-interface of our already developed FORTRAN 95 

software. We will make this R package available to practitioners once it is completed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Forest plots of multivariate aggregate outcome variables (LDL-C, HDL-C, TG) for patients 

on first line therapy.
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Figure 2. 
Forest plots of multivariate aggregate outcome variables (LDL-C, HDL-C, TG) for patients 

on second line therapy.
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Figure 3. 
Trace plots and density plots for simulation study with n = 500, r12 = 0.147, r12 = 0.798, r13 

= 0.464, S11 = 106.4, S22 = 97.1, and S33 = 110.7
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Table 1

DIC Values for various models

Model υ Dev(θ) pD DIC

ℳ1 696.50 44.51 785.52

ℳ2 692.41 44.37 781.15

ℳ3 685.26 42.89 771.04

ℳ4 5 693.60 41.59 776.77

10 685.51 42.03 769.57

15 687.29 42.17 771.64

20 687.66 42.12 771.90
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Table 4

Posterior Estimates of Covariances and/or Correlations under Models ℳ2, ℳ3, and ℳ4

Model Parameter Mean SD 95% HPD interval

ℳ2 Σ11 319.64 3.10 (313.58, 325.77)

Covariance Σ22 181.59 1.75 (178.17, 185.00)

Σ33 899.54 8.63 (882.80, 916.17)

Correlation ρ12 -0.66 0.01 (-0.69, -0.64)

ρl3 0.51 0.01 (0.49, 0.54)

ρ23 0.04 0.06 (-0.07, 0.16)

ℳ3 ρ12 -0.10 0.26 (-0.58, 0.41)

Correlation ρl3 0.78 0.16 (0.44, 0.98)

ρ23 -0.11 0.16 (-0.42, 0.21)

ℳ4 Σ11 288.31 20.61 (248.56, 328.96)

Covariance Σ22 190.07 13.51 (164.01, 216.60)

Σ33 885.86 60.73 (765.75, 1001.86)

Correlation ρ12 -0.68 0.16 (-0.90, -0.41)

ρ13 0.68 0.11 (0.46, 0.86)

ρ23 -0.21 0.16 (-0.52, 0.10)
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