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Summary

Multivariate meta-regression models are commonly used in settings where the response variable is
naturally multi-dimensional. Such settings are common in cardiovascular and diabetes studies
where the goal is to study cholesterol levels once a certain medication is given. In this setting, the
natural multivariate endpoint is Low Density Lipoprotein Cholesterol (LDL-C), High Density
Lipoprotein Cholesterol (HDL-C), and Triglycerides (TG) (LDL-C, HDL-C, TG). In this paper,
we examine study level (aggregate) multivariate meta-data from 26 Merck sponsored double-
blind, randomized, active or placebo-controlled clinical trials on adult patients with primary
hypercholesterolemia. Our goal is to develop a methodology for carrying out Bayesian inference
for multivariate meta-regression models with study level data when the within-study sample
covariance matrix S for the multivariate response data is partially observed. Specifically, the
proposed methodology is based on postulating a multivariate random effects regression model
with an unknown within-study covariance matrix % in which we treat the within-study sample
correlations as missing data, the standard deviations of the within-study sample covariance matrix
S are assumed observed, and given X, S follows a Wishart distribution. Thus, we treat the off-
diagonal elements of S as missing data, and these missing elements are sampled from the
appropriate full conditional distribution in a Markov chain Monte Carlo (MCMC) sampling
scheme via a novel transformation based on partial correlations. We further propose several
structures (models) for X, which allow for borrowing strength across different treatment arms and
trials. The proposed methodology is assessed using simulated as well as real data, and the results
are shown to be quite promising.
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1 Introduction

Multivariate responses in meta-regression models are commonly used when there is more
than one endpoint of interest across studies, such as multiple outcomes, multiple time points,
multiple treatments, and so forth. Such multiple outcomes are typically correlated and the
sample correlations among these multiple outcomes are not typically reported in most
published studies. One of the major challenges in multivariate meta-analysis with study level
data is to conduct inference on the parameters in the meta-regression model when the
within-study sample covariance (or correlation) matrix of these multiple outcomes is only
partially observed. With individual patient data (IPD), the within-study sample covariance
matrix is readily available since there is information in the data for computing this sample
covariance matrix. However, for study level meta-data, inference in multivariate meta-
regression with a partially observed within-study sample covariance matrix is a long-
standing and difficult problem, with no gold standard solutions.

There has been some literature addressing this problem both from a Bayesian and frequentist
perspective. When only the diagonal elements of the within-study sample covariance matrix
S are observed, one simple remedy is to impute the missing sample correlations over the
entire range of values (i.e., from -1 to 1) and then assess whether the conclusions depend on
the correlations that are imputed. This type of analysis has been used in a multivariate meta-
analysis of 44 trials which evaluated the effectiveness of injectable gold, auranofin and
placebo on three treatment outcomes (Berkey et al., 1996). Nam et al. (2003) propose and
evaluate three Bayesian multivariate meta-analysis models. In the case of bivariate
outcomes, they assume a uniform distribution on (-1, 1) for each within-study correlation.
For a bivariate random-effects meta-analysis, Riley et al. (2008) propose a model which
does not require knowing the within-study sample correlations. Their model includes only
one overall correlation parameter, which can be considered a hybrid measure of the within-
study and between-study correlations. Unless the overall correlation is very close to 1 or -1,
this alternative model has been shown to produce appropriate pooled estimates with little
bias. Wei and Higgins (2013a) examine a multivariate random effects meta-regression
model from a frequentist perspective, where they estimate the within-study covariance
matrix of the mean difference in the treatment effects and odds ratios assuming the within-
study correlations are known. Wei and Higgins (2013b) discuss Bayesian multivariate meta-
analysis with multiple outcomes with a known within-study covariance matrix, where they
decompose the between-study covariance matrix into a product of variances and correlations
as in Barnard et al. (2000), carry out a Cholesky decomposition of the between-study
correlation matrix, and specify uniform priors on the Cholesky elements while at the same
time ensuring positive definiteness. Ma and Mazumdar (2011) examine robust methods
based on U-statistics for a multivariate meta-analysis random effects model assuming that
the within-study sample covariance matrix is known. Hamza et al. (2009) examine
multivariate random effects meta-analysis models with applications to diagnostic tests,
where again, the within-study covariance matrix is assumed known. Hedges et al. (2010)
provide a robust estimator of the covariance matrix of the meta-regression coefficients in the
setting of clusters of internally correlated estimates. They only consider univariate aggregate
responses and then assume that these aggregate responses are correlated within the same
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cluster. Their paper does not examine the multivariate meta-regression setting nor does it
examine inference for the within-study covariance matrix based on aggregate data. Their
methodology and data structure are very different than the setting considered in this paper.
Jackson et al. (2011) and Riley (2009) give very nice overviews and detailed reviews of
multivariate meta-analysis methods and provide some practical guidance and
recommendations as to how to specify and/or estimate the within-study covariance matrix.
Both of these papers also have an exhaustive reference list on this topic.

In this paper, we present a fundamentally different approach than the aforementioned
literature. Our primary goal is to carry out inferences on the parameters in multivariate meta-
regression models with study level data in which the within-study sample covariance matrix
S is only partially observed. Towards this goal, we propose a Bayesian multivariate random
effects meta-regression model in which S follows a Wishart distribution, where the
parameter of the Wishart distribution is the unknown within-study covariance matrix . We
aim to recover the unobserved elements of the within-study sample covariance matrix by
modeling X and borrowing strength from different treatment arms across different trials.
Since only the diagonal elements of S are observed and reported in most published studies,
we derive the induced distribution of the off-diagonal elements of S via a decomposition of S
similar to that of Barnard et al. (2000). We then devise a novel Markov chain Monte Carlo
(MCMC) sampling algorithm for the sample correlation matrix R. Our approach has a flavor
similar to that discussed in Riley (2009) but is really quite different, since we do not specify
values of the sample correlation matrix R nor do we specify prior distributions on functions
of the elements of R. In our approach, the sampling distribution for R is induced from the
Wishart distribution that is imposed on S at the outset. By treating the off-diagonal elements
of S as missing data, we can write the complete data likelihood function of the multivariate
responses and S given X, specify the appropriate priors for X, and then carry out full
Bayesian inference via MCMC methods. Our approach is analogous and similar in flavor to
the one in the context of missing covariates in regression models as discussed in Ibrahim et
al. (2005). Specifically, S is viewed as the partially observed “covariate data” and therefore
is parametrically modeled, and inference on S is then carried out through the parameters (%)
of the distribution of S.

The rest of this paper is organized as follows. In Section 2, we give a description of the
cholesterol meta-data with three primary aggregate outcome variables from the 26 clinical
trials. In Section 3, we give the full development of the multivariate meta-regression random
effects model, the induced conditional distribution of the sample correlation matrix R given
the observed diagonal elements of the within-study sample covariance matrix, and the
complete data likelihood. In Section 4, we present a novel MCMC sampling algorithm based
on sampling the partial correlations from R. In Section 5, we examine specific types of
structures and models for the unknown within-study covariance matrix X that may be used
in practice, and Section 6 gives the general Bayesian computational development and
goodness-of-fit criterion for model comparisons. Section 7 presents an analysis of the
cholesterol meta-data discussed in Section 2. In Section 8, we carry out two detailed
simulation studies. We conclude the article with some discussion in Section 9.
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2 Cholesterol Data

Millions of Americans are struggling with high cholesterol which is well known to
contribute to heart disease and other cardiovascular disease. A great deal of effort has been
put forth in clinical trials studying cholesterol lowering drugs. Endpoints in such trials
typically focus on one or more of three primary endpoints, these being Low Density
Lipoprotein Cholesterol (LDL-C), High Density Lipoprotein Cholesterol (HDL-C), and
Triglycerides (TG) (LDL-C, HDL-C, TG). The multivariate aggregate meta-data come from
26 Merck sponsored double-blind, randomized, active or placebo-controlled clinical trials on
adult patients with primary hypercholesterolemia. The primary goal of these clinical trials
was to evaluate the effects of Ezetimibe (EZE) on LDL-C, HDL-C, and TG (which works in
the digestive tract) in combination with statin (which works in the liver) in comparison to
statin alone on treatment-naive patients at baseline (on a first line therapy) and those
continuing on statins at baseline (on a second line therapy). The citations of primary
published papers in clinical journals for the 26 trials considered in this paper can be found in
Leiter et al. (2011) and Chen et al. (2012). These trials were conducted between November
1999 to October 2008 and study durations ranged from 4 weeks to 24 weeks. Some trials
had longer durations with titration of doses but only the data prior to the first titration were
used in the analyses. The entry criteria for the patients in each of these studies are given in
Chen et al. (2012).

The primary endpoints in these trials are the mean percent changes in LDL-C, HDL-C, and
TG from their respective baseline values, denoted by (LDL-C, HDL-C, TG). The aggregate
covariates considered in our analysis include treatment (trt) (“statin” or “statin+Ezetimibe™)
on the first line therapy or on the second line therapy, baseline LDL-C (bl_ldIc), baseline
HDL-C (bl_hdic), and baseline TG (bl_tg), age in years, white (%), male (%), Diabetes
Mellitus (DM) (%), and Duration in weeks (Dur). The multivariate aggregate meta-data
including the aggregate covariates are given in Appendix A of the supplementary document.
Figures 1 and 2 show the forest plots of the aggregate meta-data for three primary outcome
variables for these 26 studies. In these two figures, each line corresponds to percent change
in each of LDL-C, HDL-C, and TG from baseline + one sample standard deviation. We note
that the reported means were model-based means. The lines based on the mean + one
standard deviation shown in Figures 1 and 2 are much longer than the lines constructed
based on 95% confidence intervals shown in the forest plot for LDL-C in Chen et al. (2012).
We further note the sample correlations of the three primary aggregate outcome variables
(LDL-C, HDL-C, TG) were not reported in published papers in the clinical journals for the
26 trials (Leiter et al., 2011). Thus, the aggregate meta-data from these 26 trials provide a
great motivation for developing a new methodology using Bayesian multivariate random
effects meta-regression models in the subsequent sections.
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3 Methods for Multivariate Meta-regression and Multi-Dimensional Random

Effects

3.1 The Multivariate Meta-regression Model

Consider K randomized trials, where each trial has T treatment arms. The sample size of the
tth treatment arm within the k" trial is ny fort =1, ..., Tand k=1, ..., K. Let Yju = (Yitk1,
..., Yitks) be the J-dimensional response of the it" patient in the ti treatment arm within the
kth study. Also let Xtj denote a pj-dimensional vector of treatment-within-trial level
covariates for the ji response corresponding to the fixed effects for the t!" treatment arm.
We further let zy; denote a gj-dimensional vector of treatment-within-trial level covariates
corresponding to the random effects for the t treatment arm in the k" trial.

The multivariate meta-regression model for yjy assumes

Yith=Pu+Eitks €= (Sithts-- - Emy) ~ N (l—"tkv Ztk) i=lni, (3

where Xy is the J x J covariance matrix, Py = (i1, ---» Hikg)’s and

#tk]':wtkjﬁj+ztky"ykj’ J=1...,J, (32

fort=1,..., Tandk=1, ..., K. In (3.1), we assume that the gq's are independent. In (3.2),
B =G - ﬂjpj)’ is the vector of fixed effects regression coefficients corresponding to the
pj covariates, and wj = (i1 -+ yquj)’ represents the vector of gj-dimensional random
effects for the j" response forj=1, ...,J,t=1, ..., T,and k = 1, ..., K. We further assume
that

Yi; ~ N (0,), 33)

where € is a gj x gj covariance matrix. The random effects y's, which are assumed to be
independent of the &g, capture heterogeneity across the K trials for the ji response.

— 1 Tois;
Letting y~tkj:n_szi:1 Yutkj for j =1, ..., J, the J-dimensional sample mean and J x J

sample covariance matrix are

Nk

g — 1; (Yitk — Y-tk) Ytk — Y-tk) (3.4)

Yu=Tohsr- -+ 7,,) and Sy=

fort=1,...,Tandk =1, ..., K. Then, we have the following result.

Result 3.1—The sample mean y. and sample covariance Sy are joint complete sufficient
statistics for (L, ). In addition, .« and Sy are independent. Consequently, we have
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— p— / ! —
Y.tk =Hthj +E-thi =T ;B + 24/ Vi HE-thj:  (3.5)

Nk

_ 1
where E'tkj:n_szizl Citkj, j=1, ... Jand

_ — — 1
E.tk:(e.th, ey €~ikj)/ ~ N (0, n—tkztk) , (3.6)

and

(ng — 1) Sy ~ W1 (Ztk) , (37)

where Wp,, - 1(2¢) denotes the Wishart distribution with ny — 1 degrees of freedom and
positive definite J x J scale matrix Y.

We briefly discuss the proof of Result 3.1 using Basu's Theorem (Lehmann and Casella,
1998). The joint pdf of y;y for i =1, ..., ny can be written as,
7 —n/2 1 gk
flyi, -, yntktlﬂm Ztk):[ (2) |Ztk:|] exp{—§ '21[

1=

_ 7 —1k/2 1 -1 ’ 1 51
=[(2m) X ul] exp —52 (Y2t Yith — 22k YitktHuw g Bog) (-

(Yitk — ) S Ytk — )]}

. . . ik ik / ..
Due to the properties of the exponential family, (Zizl Yitks Zi:l yitk;yitk) are the joint
complete sufficient statistics for py and Xy. Since j7. and Sy are one-to-one functions of

Nk ik

; Ytk and ; Yitk y”k, they are jointly complete and sufficient. Now for any fixed X, ik
is complete sufficient for py and Sy is ancillary for py. Then by Basu's Theorem, y.« and
Sik are independent. The results given in (3.6) and (3.7) immediately follow from (3.1) and

the independence assumption of the &'s.

The classical meta-regression model (e.g., Whitehead, 2002) often assumes

1
g4~ N (0, _Stk) . (38)
Nk

However, only y.4 and the diagonal elements of Sy are available in most published articles
in the literature. Therefore, the multivariate meta-regression model defined by (3.3), (3.5),
and (3.8) is not identifiable due to the missing values of the off-diagonal elements in Sg. In
the remainder of this paper, we assume that only the treatment-within-trial level response
Yk and the diagonal elements of Sy are available while the individual patient level
responses, Yit, as well as the off-diagonal elements of Sy are not available.
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Equations (3.6) and (3.7) can be viewed as a natural extension of Yao et al. (2011) for the
univariate meta-regression model. We use the Wishart distribution with parameter 2y in
(3.7) to help “recover” the missing off-diagonal elements of Sy and to facilitate the joint
estimation of 4, €, and . In addition, using (3.7), the probability density function (pdf) of
Sik given Xy can be written as

-1
J(J+1) (nye=1)J  J-1) J .
I e 1€ )

=1
ng—1 ng—J—2 1] 71
X[X ol ” T [k — 1) S| T 7T exp{—gtr((nuw — )X Sw) }-

3.9

Let Vi = diag(Sik11, ---» Stkyy) be the diagonal matrix that contains the diagonal elements of
Sik- Then, the sample correlation matrix is given by

_1 _1
Ry=V, 2SuV,. 2. (310)

Each diagonal element of Ry is equal to 1, while each off-diagonal element lies between -1
and 1. Prom the distribution of Sy in (3.7), the conditional distribution of Ry can be written
as

ny—1 ng=J=2

- 1 1
f (R“Mk’ztk) x ‘Ztk‘ ’ Vie BV,

Remark 3.1: In Result 3.1, we assume that Ly depends only on the trial-level covariates.
This assumption holds only when patients with the same characteristics are selected by a
trial. But for most clinical trials, values of the individual-level covariates may vary within
trial and treatment subgroups. This assumption can still be met for randomized trials in
which patient-specific covariates are randomized. For this case, the regression coefficients
capture the difference among trials, and i is affected only by the difference in
characteristics across trials. Therefore, Result 3.1 is applicable to meta-data from
randomized trials.

Remark 3.2: The aggregate response, .« = (71, ---» JikJ)'» and the diagonal matrix of the
sample covariance Sy, Vi = diag(Si11, ---» Stkgy), are observed fort=1, ..., Tandk=1, ...,
K. In Result 3.1, (3.5) allows us to model Xy and the distribution of the sample covariance
Sik in (3.6) yields the induced distribution (3.11) of the sample correlation matrix Ry given
Y and V. We note here that 7y is a vector of multivariate aggregate responses, which
does carry the information of the correlations among these multivariate responses. Once the
covariance matrix Xy is modeled appropriately, the information of the missing sample
correlation matrix Ry can be recovered via (3.6), especially when TK is large. By treating
the off-diagonal elements of S as missing data, (3.5) essentially specifies the distribution of
“response variable” while (3.6) induces the distribution of “missing covariates” in regression
models as discussed in Ibrahim et al. (2005). However, our approach differs from the
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standard missing covariates problem in the sense that (i) the missing sample correlation
matrix, treating as “missing coavriates”, does not directly enter the “response” model and
(ii) the “response” model and the “missing covariates” model are connected via the
unknown covariance matrix .

3.2 The Complete-data Likelihood Function

Due to the independence of y. and Sy shown in the last section, their joint density can be
written product of marginal densities as

_ _J T2 _ 1
f (y.tkastlJBjaZtkv'ij) =(2m)"> % exp{—"3* (Y. _'utk)lztk‘l @0 — pu)}
-1
J(J+1) (ny—1)J J(J 1) _ gl
X (ng — 1) {2 2 H (Pt J)} Sl

—J

X|(ng — 1) Sw|” 2 e exp [——tr{(nﬂ{ - I)ka ka}]

Let D¢ = {(Ftk Stk Nt Xekj» Zekj» M) t=1, ..., T,j=1,...,J, k=1, ..., K}. The complete-
data likelihood function for the model in (3.5) and (3.6) is thus given by

2|

Le(B,37De) x H H ( Py eXp{— G~ ) S G — B}

t=1k=1

XSl [k~ DS T exp [t {(nas >z;,;sm}]),

(3.12)

where ,32(,3/1,,,3 ) and X* = (211, ey 2Ty er 21K e ey ZTK)-

4 Sampling the Correlation Matrix R

The conditional distribution of the sample correlations in (3.11) is critical in recovering the
unobserved correlations for jointly modeling the multivariate aggregate responses. However,
it is difficult to sample directly from the conditional density in (3.11) due to the constraint of
positive definiteness for Ry. To relax the requirement of positive definiteness, we develop a
sampling algorithm for Ry via partial correlations using the techniques of Daniels and
Pourahmadi (2001) and Wang and Daniels (2013). For ease of presentation, we drop the
index “tk” in Ry Vi, and Xy in this section.

Let R = (rjj) be a J x J positive definite correlation matrix. Then, R can be parameterized in
terms of the correlations rjj.j fori =1, ..., J = 1 and the partial correlations r; jji+1,... j-1 for j
—i>2. To make the transformation of the correlations rj i+ to the partial correlations

j j+kj+1,... j+k-1, we define R[j : j+ K] =R[j : j + k, j : j + k] as the (k + 1) x (k + 1) sub-
matrix of R, which takes elements from the jt row to the (j + k)™ row and the jt column to
the (j + k)™ column. It can be partitioned as
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, 1 Tl(jv k) 7;]',]'+k
R[j:j+k]: LS (]a k) RQ (]7 k) T.S(ja k) ;41
Tivky  T3(d,k) 1

where r1(j,K) = (rj j+1, -+, Fjj+k-1) 130, K) = (Gak j+1, -0 Mk j+k-1), R2(, K) contains the
middle k — 1 rows and columns of R[j : j + k]. The partial correlations can be written
function of the marginal correlations,

Tij+k —T1 (.77 k)REI(% k)"‘; (Ja k)
[1—ri(j, k) Ry (G k) (7, )] [0 = ma(, k) Ry (, )y (. )

T4 g4kl 41,0 i +k—1= /2’

for2<k<J-j.

This also leads to a formula for rj .+, given by

7 k=r10j K)Ry (7, ) s (G, )47y ik, jrb—1 Ajes (43)

. 1. ro. 1/2 . 1. ro. 1/2
where Ajk:[l _TI(J’k)R21(Jvk)rl(jvk)] [1 _r3(]’k)R21(]ak)r:3(]7k)] :

One advantage of this reparameterization is that rjjj+1,... j+k-1 can vary independently in
(-1, 1) while maintaining positive definiteness of R. Hence to generate a random correlation
matrix, one may generate partial correlations independently and then transform back to rj j+k
for 2 <k <J - 1. Under Sylvester's criterion, a necessary and sufficient criterion for R to be
positive definite is that all of the leading principal minors must be positive. In other words,
all the following matrices have a positive determinant: (i) the upper left 1-by-1 corner of R;
(ii) the upper left 2-by-2 corner of R; (iii) the upper left 3-by-3 corner of R; ...; and (iv) R
itself. Joe (2006) proposed that the determinant of R can be calculated as

J—1 J-1J-k
det(R)=]] (1 - Tz‘z,iﬂ) <IT 11 (1 - Tj2',j+k|j+1,...,j+k—1> - (44
i=1 k=2 j=1

We can use this property to show that the determinants of R and all the leading principal
minors are positive when =1 <rjjy; <land =1 <rjjekjer,.. jek-1 <1lfori=1,..,J-1k=
2,..,J-1landj=1,...,J-k

For purposes of illustration, we consider a 3—dimensional correlation matrix

1 rg 73
R: 21 1 723
r31 T3z 1

J Am Stat Assoc. Author manuscript; available in PMC 2016 June 01.
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We now show how to generate the correlation matrix R through the use of partial
correlations where R has a conditional density specified in (3.11). It can be shown that the
determinant of the Jacobian for the transformation of (12, r23, r13) to (I, 23, rizp) is

(11— 7"%2)(1 - 7"33)]7
counterparts, we have

12 Writing the correlations in terms of their partial correlation

1 T2 T13(713)2)
R(ri32)= 12 1 T3 :
r13(r132) 723 1
2 \1/2 2 \1/2 . )
where 713(r1312)=r12r23+r13)2(1 — r12)"" (1 — r33) "". Thus, the density of the partial

correlations R(ry32) can be written as

Bl X o [T WV RV
xexp {~3tr((n — 1) R(p1g12) V3L V(1 - pho) (1 — p3s)] %,

We further make the Fisher's z transformation on each partial correlation, leading to

14712 1. 147 _ 1 17
=—1 213 2=5 log

1— 12’ 223 2 Ogl—’f'gs’and !

462z12 462223 462213\2

transformation is (e2z1211)2 (e22341)? (62213|2+1)2. Rewriting the correlation matrix

again in terms of functions of the Fisher's z values and letting z = (2, 223, 2132)’, We get

212——log 1— i The Jacobian for this

1 ri2(z) 713(2)
R(z)=| r2(2) 1 ro3(z) |
r13(2) 723(2) 1
e2z12 -1 62223 —1
where le(Z)ZTZlQH ,r23(2)= o211 and
82Z12 _1 62Z23 1 62213|2 -1 e2z12 -1 9 1/2 82z23 -1 2 1/2
7”13(z): il ePmgl + 62213|2—|—1 - { 221241 } ) (1 - e2z23 41 } ) . The

density of R(z) is therefore

n—J—2

g(zﬂf,z>o<|2|*"7‘l|v%R<z>w| e {—gir((n - HR(E) VIS V)

—1/2
1— (e2212 1) / 1— (e2~2371) 4e%712 4e2723 4e°71312
e??124+1 e??23+41 (2712 41)? (2223 +1)? (62113\2+1)2'

(4.6)

One may sample directly from (4.6) using the Adaptive Rejection Metropolis Sampling
(ARMS) algorithm. Alternatively, the Fisher's z's can be generated by a localized Metropolis
algorithm (Chen et al., 2000), which entails the following steps:
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Step1  Letz(MD pe the current value.
Step 2  Draw z* from N(Z7, 3;).

Step 3 Compute

a=min {g(z W, D){(zm D — 2y Yo (2m D) — 2)} 1}
g(zm=DV, 3) (2% — 2)/ Zz_l . ,

where ¢ is the standard normal density function.
Step4  Draw u from U(0, 1). Set 2™ = z* if u < a and 2™ = z(MD jf y > a.

Here, N(z", 33,) is the normal proposal density, where z” is the maximizer of the logarithm of
g(z|V, ¥), and X, is minus of the inverse of the second derivative of log g(z|V, X) evaluated
atz=1z*. Thatis,

271:62logg(z{v, >) ‘

z 0z0z' z=z%

5 Models for Zy

As we will show in Section 8.1, the missing off-diagonal elements of Sy can well be
recovered once Xy is correctly specified. Unlike Sy, >tk can be taken to have certain
structures (i.e., modeled) due to the availability of multiple meta-trials. In this section, we
consider several models for Xy.

Write S = (Stj9 and Ly = (Ztkj9). Since the sample variances Syj; for j=1, ..., Jare

observed, the Xy jj's are identifiable. Instead of (3.7), we consider

(e — 1) Stk gy

Dotk ji

2
~ Xny—15 (5.1)

forj=1,...,J. Then, we assume Xy j,= 0 for 1 <j < < J. This model, denoted by 2/,
assumes that the .1, ... Vg are independent. The simplest and perhaps most identifiable
model is

D= 62

This model, denoted by 24, assumes that all the within-study covariance matrices are the
same across treatment arms and trials.

The covariance matrix Xy can be decomposed to standard deviations and correlations as
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Ztk:diag<otk7117 s 7atk,1.1)ptkdiag(0tk,117 s 7Uf,}c,.].])’ (5.3

2
where Ztkhiy-:“tk,ji forj=1, ..., Jand py is aJ x J correlation matrix with diagonal
elements py jj = 1 for j = 1, ..., J. The third model for Xy, denoted by 2/, assumes that

Ptk=p; (5.4)

where p = (pj) is a correlation matrix with g; = 1 for j=1, ..., J. Model 2/ relaxes the
assumption of equal variances under model 244,. However, both models 24, and 243
assume that the correlations among the aggregate responses, y1, -.- J.tJ, are the same
across treatment arms and trials.

Finally, we consider a hierarchical model for >y denoted by 24,. This model assumes that

1 .
Ztk ~ Wishart , (v, (v —J —1) Z) (5.5)

In (5.5), Xy has prior expectation E [Zy]x] = (v=J - 1)1 (v-J-1)Z =S when v>J + 1.
The hierarchical model is attractive as it allows for “borrowing of strength” across treatment
arms and trials through the common second-level covariance matrix 3, and it also accounts
for the heterogeneity of the within-study covariance matrices between treatment arms as
well as among different trials at the same time. We see from (5.5) that the amount of
borrowing across treatment arms and trials is controlled by v. The larger the value of v, the
more the within-study covariance matrices borrow strength from different treatment arms
and trials. We consider a fixed vin this paper and the optimal value of vis determined by a
Bayesian model assessment criterion such as the Deviance Information Criterion (DIC)
(Spiegelhalter et al., 2002). One limitation of this hierarchical model for Xy is that a large
number (i.e., TK) of treatment arm and trial combinations is required in order to accurately
estimate the common second-level covariance matrix ..

6 Bayesian Inference

6.1 Priors and Posteriors

We assume that , €j, and Xy are independent a priori. We further assume £~ Ny(0, Co1lp),

J
where p=2j:1pj, and Qj*l ~ Wishartg; (doj, 20;) with do; degrees of freedom and a gj x
gj scale matrix €, i.e.,

dOijj —1

T (Q;lld(]j’ﬂoj) X ‘Q;l‘ exp [—%tr (QEJIQII)] (6.1)

forj=1, ..., J. Asin Section 5, for Xy, we assume
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, s 2 2 .
Uty . Ztk—dlag (Utk,n: e aUthJJ), where U?k,jj ~ Inverse Gamma (ag, by) with

—(ao+1)
density given by 7™ (Jtzk,]j’) x (Utzk,jj) exp (-bo/afk,jj), ap >0, and bg > 0;
Dty. Yy = 2, where X ~ Wishart; (vg, Xg) with vy degrees of freedom and J x J scale

matrix Xg;

. T = diag(dik 11, -+, Oik,13) £ diag(ik 11, ---» tk,12), Where 7{p) oc 1 subject to that
pis a positive definite correlation matrix and o jj ~ Inverse Gamma(ay, bo); and

-1 .
Dy, Ztk ~ Wishart, (Uv (U -J - 1) Z) and X ~ Wishart; (vp, Xo).

We note that cgq, dog, --., dog, Q015 ---» 03, 80, bo, vy, and Xq are prespecified
hyperparameters. In this paper, we used co; = 100,000, dgj = gj + 0.1 and Qg3 = 10Iqj forj=

. J,80=0.1,bg=0.1, g =J + 0.1, and X = 10l;, where Iqj is the gj x gj identity matrix
forj=1, ..., Jand I denotes the J x J identity matrix. We also note that in our computation
development in Section 6.2 as well as Appendix B of the supplementary document, we use
the sampling algorithm based on partial correlations in Section 4 to sample o under model
PI(3 to ensure that p is a positive definite correlation matrix.

To obtain the posterior distributions, we consider the hierarchical model (24). Let

Xp=diag(@y - x,,) Zg=diag(zy, - -, 2o ) W=V1s - :7,) s =015 -7, )W R
= (R11, ---, Rk), and ©Q = (2, ..., 23). We further let

Dobs:{(yqflm Ttk ‘/tka -tha Ztk)atzla e aTa kzla e 7K}

denote the observed aggregate meta-data, where the Vy's are defined in (3.10). Then, the
posterior distribution under model 24 is given by

T K 1 n _ —
a (ﬁ’ Z*a Zv Qa R”)iD()bs) X tl:IIk-l:I1|Ztk| 2exp [ M (y th — ka,B - Ztk:'Yk)l Ztkl (y~tk - th’ﬂ - Ztk’yk)]

-3 _ 1y 7l
Xkl;[1j1;[1|gj| ZeXp( 27k ’Y’fﬂ)

ny—J—2

1

1 1
2 72
Vi B Vi

o~

T K _ =t
XtHuH Do i exp [—%tr <<ntk )re Vthtk Vi)] 6.2)
=1k=1

xt§1kﬁ1|2|%|2tk|i%me}(p [—ltr <<U_ -1 sz’f )} X exp ( 'Bﬁ)

‘-01

vg—J d0j—g;—1

e [ (5505 ¢ T e [ (050957)].

The posterior distributions under the other three models can be derived in a similar fashion,
and therefore the expressions of these posteriors are omitted here for brevity.

6.2 Computational Development

We present the development of the MCMC sampling algorithm only for model 24 as the
other models have similar computational developments. Although the analytical evaluation
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of the posterior distribution of (8 X*, 3, Q, R, ) given in (6.2) is not possible, the proposed
model allows us to develop an efficient MCMC sampling algorithm to sample from (6.2).
The MCMC sampling algorithm requires sampling from the following conditional
distributions in turn: (i) [6 Y&*, X, Q, R, Dgpsl; (i) [QUB, ¥, Z*, 2, R, Dgpsl; (iii) [RIB, v, Z*,
%, Q, R, Dgpsl; and (iv) [Z*, 2|8, 7 ©, R, Dgps]. For (i), we apply the collapsed Gibbs
technique of Liu (1994) via the following identity

(80239 R, Do) = [48, 32,379 R, Dons| [AY.Y 59 B, Do | - 63

That is, we sample gafter collapsing out y. For (iv), we again apply the collapsed Gibbs
technique of Liu (1994) using the identity

D238 QR Don] = [ YB3 R, Dot [ 87,9 B D] - (6.0

That is, we sample X after collapsing out *. The technical details regarding these full
conditional distributions are given in Appendix B of the supplementary document.

6.3 Bayesian Model Comparison

To carry out Bayesian model comparison, we use the Deviance Information Criteria (DIC)
developed by Spiegelhalter et al. (2002). Due to the nature of the random effects, we first
derive the observed-data likelihood for the model given in (3.5) and (3.6). After integrating
out the random effects () from the complete-data likelihood function in (3.12), we have

1
’ 2
T |ZLk+ntk kaQZtk

K
Lo(ﬁa Z*aswobs): H

L _1
k=1t=1 (2m) 2 |ng| 2

N
Xexp {_%k (G.ox — XunB)' (Ztk‘f'”tk Z Ztk) Yo — thﬁ)} (6.5)

J(J+1) (=1 J(J=1)
X (ng,—1)" 2 AR

-1
J » _”k‘71 _nk—J—Z
il (—"f’aj)} Sl ™ o — 1) Sul 7

=1

X exp [—%tr{(ntk -1 Zt_kISHvH) .

Let 8= (B *, 2). We define the deviance function as

Dev(8)= — 2logLoy (B, Y, Wts)  (66)

where
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~1
2

/
) ’Zthr Ny Z 02

Loy (.Ba 2*7 gwobs) = lﬁl

==

P _1
1t (2m) 2 |ng| 2 (6.7)

;-1
X exp {—% (" — th:ﬂ)l(Ztk"“ntkzztk'gztk) (U — th:ﬂ)}) .

According to Spiegelhalter et al. (2002), DIC is given by

DIC=Dev(0)+2p,, (6.8)

where p, =Dev(8) — Dev(8), Dev(8)=E[Dev(8)D,»;] (the posterior mean of Dev(#)), and 6
= E[@Dgps] (the posterior mean of ). In DIC (6.8), the first term measures the goodness-of-
fit, and pp is the effective number of model parameters. The DIC in (6.8) is a Bayesian
measure of fit or adequacy with 2pp being the respective dimension penalty term. The

smaller the DIC value, the better the model fits the data.

We note here that when the with-study sample covariance matrix Sy is completely observed,
model (3.7) would not be needed as long as ny is large (Yao et al., 2011). Model (3.7) is
primarily used for deriving the joint distribution of the missing off-diagonal elements in Sg.
The DIC measure in (6.6) allows us to assess the impact of the model for >y on the
goodness-of-fit of the meta-regression model based on (6.7).

7 Analysis of the Cholesterol Data

For the multivariate aggregate meta-data discussed in Section 2, we have K = 26 trials, J = 3,
and T = 2 (two treatment arms, i.e., “Statin” or “Statin + EZE”). and patients in each trial
were either all on statin or all not on statin prior to the trial. The sample size of the tth
treatment group for the k! trial is ny. The values of the ny's are shown in Figures 1 and 2 as
well as in Tables Al and A2 in Appendix A of the supplementary document. Let y.y =
(Vik1, Yiko» Yika) be the 3-dimensional mean vector of responses for the ti treatment group
in the k™ trial, where ¥, s, and y.s denote the mean percent changes in LDL-C,
HDL-C, and TG from their baseline values, respectively. Also let trty = 1 if the it treatment
group received “Statin + EZE” and 0 if “Statin” alone, and onstating = 1 if the t treatment
group is on statin and 0 if not on statin prior to the trial. We further let xgj = ((1 -
onstating), trty x (1 — onstatingy), onstating, trty x onstating, (bl_ldIc)y;, (bl_hdlc);,
(bl_tg)tj, agej, Whitey;j, maleyj, DMy, Dury;)’ be the vector of covariates and 4 = (41, .-,
f4,12)" is the vector of corresponding regression coefficients for the jth response forj=1, 2,
3. Then, the multivariate meta-regression model, which is a special case of the model
defined in (3.5), can be written as

Ttk = 148 +[Yrjo+7ks 1trte] (1—onstating ) +[ yij2+7k strtg]onstating + €. (7.1)

We write % = (o, %j1» %j2» %43.)’» Which denotes the vector of random effects for the jih
response, and assume that €; takes the form
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Qioo Qjor 0 0

| Qo Yun 0 0 |_(% o0
L=1 0 0 Qm 9 | L0 ) @

0 0 Qo3 Qyas

For notational simplicity, we apply (6.1) only for Q} or Q? withgj=2forj=1,...,J.In
(7.2), Qjo0 and Q11 capture the variability of yjo and 1, and Qjo1 captures the correlation
between yjo and 1 among the trials in which patients were not on statin (the first line
therapy); and similarly, ©j2, and ;33 capture the variability of po and y3, and 23
captures the correlation between y, and 3 among the trials in which patients were on
statin (the second line therapy). The random effects y;, which are independent of € j,
capture the heterogeneity across the K trials for the ji response.

We fit the four models discussed in Sections 5 and 6.1 to the cholesterol data. We computed
the DICs defined in (6.8). The values of Dev(@,_ Pp, and DIC are reported in Table 1. The
results shown in Table 1 are quite interesting and intuitively appealing. First, the
independence model (i.e., 24;) has the largest DIC value (785.52), which implies that the
multivariate aggregate outcome variables are indeed dependent. Second, the DIC value
under the equal within-study covariance matrix model (i.e., 245) is smaller than the DIC
value under the independence model, but much larger than those under models 24 and 24,
which indicates that there is substantial heterogeneity in the within-study covariance
matrices across treatment arms and trials. Third, the DIC value under model 24 is similar
to those under 24, when v = 10. This result indicates that these two models fit the data
equally well. However, model 24 is more parsimonious than model 24,. Fourth, under
model 24, the DIC is roughly a “convex” function of v and the “best” DIC value is attained
at v=10. These results suggest that there is indeed a considerable amount of heterogeneity
in the within-study covariance matrices between treatment arms and across trials.

The posterior estimates, including the posterior means, posterior standard deviations (SDs),
and 95% highest posterior density (HPD) intervals of the parameters under models 24 to
U, with v =10 are reported in Tables 2 to 4. We see from Tables 2 and 3 that the posterior
estimates for (12, fra), (52, fo4) and (B32, Fa4) were similar under all four models and all
four models indicate that patients on “statin + EZE” had substantially higher percent
changes from baseline in LDL-C, HDL-C, and TG than those on statin alone in both first
and second line therapy studies (i.e., the 95% HPD intervals do not contain 0). The
respective 95% HPD intervals under these four models were (-14.43, -10.02), (-14.18,
-9.92), (-13.97, -9.94), and (-13.99, -9.87) for S, in the first line therapy and (-22.98,
-17.07), (-23.06, -17.81), (-22.70, -17.63), (-23.03, -17.81) for ;4 in the second line therapy
for the percent change from baseline in LDL-C; and (-6.91, -2.80), (-6.88, -2.79), (-6.63,
-2.81), and (-6.63, -2.74) for 35 in the first line therapy and (-10.60, -7.19), (-10.45, -6.92),
(-10.40, -7.33), (-10.46, -7.40) for S 34 in the second line therapy for the percent change
from baseline in TG. We also see substantial improvement in HDL-C from baseline for
patients on “statin + EZE” over those on statin alone in both the first and second line therapy
studies. The corresponding 95% HPD intervals were (1.17, 3.04), (1.17, 3.12), (1.13, 3.03),
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and (0.99, 2.98) for £, in the first line therapy and (0.74, 2.00), (0.64, 1.96), (0.73, 1.97),
and (0.71, 1.98) for /4 in the second line therapy, respectively, under models 24 — 94,.

Among these eight covariates, the trial duration regression coefficient had an HPD interval
not containing zero only for the outcome variable LDL-C, and there was a substantial
improvement in HDL-C from baseline for white (vs. black or hispanic) under all four
models. The 95% HPD intervals for £ 1, were (0.06, 2.00), (0.14, 2.22), (0.05, 1.92), and
(0.09, 2.07); and the HPD intervals for /g were (3.02, 8.12), (2.91, 8.44), (3.00, 8.19), and
(3.17, 8.27), respectively, under 24, — Pi,. The other important covariates, which were
only in TG, were gender (male versus female) under 2¢, — 2. The 95% HPD intervals for
.10 Were (0.51, 26.57), (1.48, 27.85), and (2.77, 29.66), respectively, under 2, — Py. We
also see from Table 4 that there was an important correlation p;3 between LDL-C and TG
under 2, — 24, and the corresponding 95% HPD intervals were (0.49, 0.54), (0.44, 0.98),
and (0.46, 0.86), respectively. The 95% HPD for p;3 under model 244 is wider than the
corresponding intervals under models 245, and 2/,. Overall, the posterior estimates under
models 24, — P4, were more similar but less similar to those of model 244. These results
further confirm that there is a need to model these three primary outcome variables jointly.

Finally, we carried out a sensitivity analysis on the specification of hyperparameters vy and
Yo for X under model 24,. Specifically, we specified (vp, Xg) = (3.01, 10013) and (wy, Xg) =
(3.0001, 1000013), which yield much more noninformative priors for 3 than the prior with
(vn, Xg) = (3.1, 1013) specified in Section 6.1. The posterior estimates under these two priors
are given in Table C1 of the supplementary document. Comparing the posterior estimates in
Table C1 to those in Tables 2 and 4, we see that these posterior estimates were very similar
and in particular, the posterior estimates of the correlation parameters were almost identical.
These results indicate that model 24 is identifiable although this model did not fit the data
as well as model 244;. In Appendix B of the supplementary document, Table C2 shows the
posterior estimates under model 24, for v=15 and v = 20. Comparing Table C2 to Tables 3
and 4, we see that the posterior estimates for those regression coefficients, whose 95% HPD
intervals do not contain 0, were quite similar while the posterior estimates of p, were more
similar than those of py3. Thus, the posterior estimates under model 24, were not as robust
to the specification of 1 as those under model 2/, to the specification of (vp, Xp). For this
reason, we used the DIC measure to determine the optimal value of vas discussed in Section
5.

In all of the posterior computations, we first generated 100,000 MCMC iterations with a
burn-in of 20,000 iterations, and we then used 20,000 iterations obtained from every 5th
iteration for computing all the posterior estimates as well as the DICs. The computer
programs were written in FORTRAN 95 using IMSL subroutines with double-precision
accuracy. The run-times for models 24, — 24, were about 10 minutes, 1 hour and 20
minutes, 2 hours and 50 minutes, and 1 hours and 30 minutes, respectively, on a Dell PC
with an Intel i5 processor, 2.40 GHz CPU, and 6 GB of memory. The convergence of the
MCMC sampling algorithm for all the parameters was checked following the
recommendations of Cowles and Carlin (1996). All trace plots and autocorrelation plots
showed good convergence and mixing of the MCMC sampling algorithm.
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8 Simulation Studies
8.1 Simulation Study |

We carry out a simulation study using the partial correlation algorithm developed in Section
4. Suppose that the true 3 x 3 covariance matrix X is known. The diagonal elements, which
are the true variances, are set to be 10 and 100. The pairwise correlations take values
between 0.1 and 0.9. Thus, the off diagonal elements of X take values between 10 and 90.
The number of patients, n, is set to be 50, 100, 500, or 1000. To initiate the simulation, we
first generate the sample covariance matrix S from the Wishart distribution given in (3.9).
The observed sample correlations, denoted by rjj-for 1 < j <j’< 3, are calculated from S.
Suppose for each sampled S = VY2RVY/2 only the diagonal elements are available. We
employ the partial correlation sampling algorithm at this step to draw samples from the
conditional density of R given V and X as in (3.11). The off-diagonal elements of R that are
sampled under this scenario are the so-called conditional means. We denote them by rj;-for
1<j>j’<3.

For each simulated dataset, we generated the first 5000 iterations as burn-in then examined
the convergence and performance of the partial correlation algorithm using 20,000
iterations. For illustrative purposes, we present two simulation studies here by their
graphical displays. For the first simulation study shown in Figure 3, the true correlations are
0.2, 0.5 and 0.8, respectively. For the second study shown in Figure 2, all three correlations
take the value of 0.9. Trace plots for both simulation studies show excellent convergence of
the proposed simulation algorithm. We can also see that the 20,000 iterations make up a
representative sample of the defined population with a symmetric density and a mode at the
true value. For each simulation study, we generated 10,000 datasets for a given sample size

and covariance matrix. Let 7" ¥ be the observed sample correlation (OSC) and also let 7" o be
the conditional mean (CM) from the bt simulated data set, where 1 <j<j’<3andb= 1,

B
(®
., B. The average of the observed sample correlations is calculated as AOSC= ; Vi
#(0)
and the average of the conditional means is calculated as ACM= Z 7'. We compare the

observed sample correlations to the conditional means to show the power and accuracy of
the sampling algorithm. The root of the average squared difference (RASD) is calculated
based on the difference between the observed and conditional means of each simulation, that

LB (o o2
is, RASD:{Eszl (7" o ’rjj’) } . We also compute the 95% confidence interval
( (b) ~( ) ® )

jj! Low’

)for each ;7. The 95% coverage conditional probability (CCP) of

<ri) <7

- #(b)
(r(b) (b) 70, where the indicator

®)
i Low’ Up) containing 7; 7‘ )is given by BZ {r 3 Low
function 1{A} =1when A i |s trueand 0 otherW|5e

Table 5 summarizes the results of the simulation studies with various combinations of
correlations (012, 023, P13), true variances, and sample sizes n. We used n = 50, 100, 500,
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and 1000. For each sample size, we considered three different values of the correlations,
which are (012, 23, p13) = (0.1, 0.1, 0.1) representing small correlations; (012, 023, 013) =
(0.2, 0.5, 0.8) representing moderate correlations; and (012, 23, £13) = (0.9, 0.9, 0.9)
representing large correlations, as well as true variances equal to 10 and 100. We can see
from Table 5 that the averages of the conditional means were very close to their average
observed counterparts for all 18 cases. Also, the realizations of both the Wishart distribution
in (3.7), which is measured by the averages of the observed sample correlations, and the
conditional density for the correlation matrix in (3.11), measured by the averages of the
conditional means, were close to the true correlations. All of these indicate that the sampling
algorithm based on partial correlations can accurately recover the missing elements in the
sample correlation matrix. The RASD calculated based on the errors between the observed
and sampled correlations also represents the degree of accuracy of the sampling algorithm.
We can see that when fixing the correlations (012, p23, £13), the RASD decreases as the
sample size n increases. For example, for true variances equal to 100, when (012, 023, 013) =
(0.1,0.1, 0.1), RASD = (0.139, 0.145, 0.143) for n = 50, RASD = (0.101, 0.101, 0.099) for n
=100; RASD = (0.043, 0.044, 0.044) for n = 500; and RASD = (0.032, 0.031, 0.031) forn =
1000. This is true regardless of the magnitude of the correlations. Finally, we see from Table
5 that all the values of the 95% CCP's were around 95%, indicating that the 95% confidence
interval for each simulated dataset contains the observed value about 95% of the time for the
10,000 simulated datasets. Finally, we note that we also considered the case in which the
true variances were set to be 1, and the results are given in Table D1 in Appendix D of the
supplementary document. From Table 5 and Table D1, we see that the results for the true
variances equal to 1 were very similar to those for the true variances equal to 10 or 100.

8.2 Simulation Study I

To examine the performance of the proposed method, we design a simulation study with K =
26 trials, J =3, and T = 2, which mimics the cholesterol data analyzed in Section 7. The
sample sizes (ny), onstating, trty, age in years, duration in weeks, and the true values of the
diagonal elements of 3y fort=1,2and k =1, ..., 26 are chosen to be the same as those in
the cholesterol data in Section 2 and analyzed in Section 7. We set xj = ((1 — onstating),
trtg x (1 — onstatingy), onstating, trty x onstating, agegj, Duryq) to be the vector of
covariates and let £ = (fa1, ..., )" be the vector of corresponding regression coefficients
for the jt response for j = 1, 2, 3. The aggregate responses, 7 = (Vik1, V2, Viika)s are
generated from (7.1) under model 245 with p = (012, P13, 223)’ = (-0.7, 0.7, 0Y, B = (-51,
-12.0, -11, -20, 1.5, 2.0Y, &, = (8.0, 2.0, 3.5, 1.5, -1.0, 1.0)’, and g3 = (-14.0, —4.5, 1.0,

~9.0,-1.0, 1.0)'. Also let = (21,03, 95, 03,0}, 03) where 0, ¢=1,2,j=1,2, 3, are
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defined in (7.2). Set, -08 1.2 . In our data generation, we also consider

three sets of values, namely, ©Q, /2, and /10, for the covariance matrix of the random
effects. Using each set of the above design values, we generated 400 simulated datasets. For
each simulated dataset, we fit model 24, model 24 with unknown Ry, and model 2/
with known Ry since the off-diagonal elements of Sy were known in the simulation setting.
Fitting model 243 with known Ry allows us to assess potential information loss due to
missing off-diagonal elements of S. In all of the posterior computations in this simulation
study, we generated 20,000 MCMC iterations after a burn-in of 5,000 iterations.

Table 6 shows the average of the posterior means (EST), the simulation error (SE), which is
computed as the root of the sample variance of 400 posterior means, the coverage
probability (CP) of 95% HPD intervals, and the root of the mean squared error (RMSE) for
each regression coefficient in £, j = 1, 2, 3, over the 400 simulated datasets. In addition, we
also report the mean and the interquartile range (IQR) of the 400 DIC values in the same
table. From Table 6, we see that (i) the SE's and RMSE's became smaller when the
covariances of the random effects were smaller for all three models we fit; (ii) the SE's and
RMSE's under model 2/ with known or unknown Ry's were either comparable to or
smaller than those under model 244; (iii) the CP's under model 243 with known or unknown
Rik's were closer to the desired credible level 95% than those under model 24, especially
for /2 and ©/10; and (iv) both the means and IQRs of the DIC values under model 2/,
were larger than those under 243 with known or unknown Ry's. Even with one zero
correlation and two moderate correlations, model 2/3 with known or unknown Ry's was
more favorable than model 24 both in terms of the model fit and the performance of the
posterior estimates of the regression coefficients. Quite interestingly, model 244 with
unknown Ry performed equally well as model 2/ with known Ry in fitting the y.y model
and estimating the regression coefficients 4. However, the EST's, SE's, and RMSE's under
model 243 with unknown Ry were -0.67, 0.11, and 0.11 for p1, 0.64, 0.13, and 0.14 for py3,
and 0.03, 0.16, and 0.16 for o3 when Q was used; -0.65, 0.13, 0.14 for py5, 0.65, 0.13, and
0.14 for p13, and 0.03, 0.16, and 0.16 for p,3 when ©/2 was used; and -0.64, 0.12, 0.13 for
p12, 0.62, 0.11, and 0.14 for p3, and 0.08, 0.16, and 0.18 for py3 when £/10 was used. These
EST's, SE's, and RMSE's under model 2443 with known Ry became -0.70, 0.0002, and
0.0002 for py, 0.70, 0.0002, and 0.0002 for p3, and 0.0002, 0.0004, and 0.0004 for py3
when Q was used; -0.70, 0.0002, 0.0002 for p;5, 0.70, 0.0002, and 0.0002 for p13, and
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0.0002, 0.0004, and 0.0004 for py3 when Q/2 was used; and -0.70, 0.0002, 0.0002 for py2,
0.70, 0.0002, and 0.0002 for py3, and 0.0001, 0.0004, and 0.0004 for po3 when £/10 was
used. Thus, when the sample covariance matrix Sy is known, the true correlations can be
very accurately recovered. These results indicate that the main information loss due to the
missing off-diagonal elements in Sy is in estimating p but there is not much information loss
in estimating 's. The additional results for the meta-data generated from model 2/ are
given in Appendix D of the supplementary document.

9 Discussion

In this paper, we have proposed a novel Bayesian methodology for estimating the within-
study covariance matrix in multivariate meta-regression. Our approach is based on the
notion that the diagonal elements of the within-study sample covariance matrix are observed
and the off-diagonal elements are treated as missing data. Then, using the Wishart
distribution for the within-study sample covariance matrix, we are able to write out the
complete data likelihood. Prior distributions are specified for all parameters, and a novel
MCMC sampling algorithm was developed to sample from the joint posterior distribution.
Our real data analyses and simulation studies were very promising. In Simulation Study I,
we showed that our proposed procedure recovers (estimates) the within study correlations
quite well and the MCMC algorithm converges nicely with moderate sample sizes. Our
model assessment procedure also worked well for identifying the true structure of the
within-study covariance matrix in terms of model fit, as shown in Simulation Study II. In the
real data analysis of the cholesterol data, although we do not know the ground truth, we
obtained very reasonable and interpretable results, the MCMC algorithm converged quickly
and the model assessment procedure identified a reasonable model.

The development we have proposed in this paper can also be carried out within a frequentist
framework using the Monte Carlo (MC) EM algorithm. An EM framework was developed
for meta-regression with univariate responses in Chen et al. (2012). Thus, an extension of
the methods of Chen et al. (2012) to the multivariate case is possible for the proposed
model. However, such a development would require an MCEM algorithm instead of an EM
algorithm. In addition, the estimated covariance matrix of the MLE's of the model
parameters under multivariate responses is much more difficult and challenging to compute
than the one for the univariate case. Furthermore, obtaining the MLEs of the variance
components in the M-step of the MCEM algorithm would be computationally intensive and
would require specialized optimization algorithms. It remains to be seen whether such a
frequentist approach is computationally feasible. A Bayesian approach for this multivariate
setting appears more tractable. The approach proposed in this paper for conducting
multivariate meta-regression of study-level data has applications in many areas besides
clinical trials. Future work in this area includes developing perhaps more general classes of
models for which the response may be discrete and/or longitudinal in nature as well as the
extension to the cases in which some of the aggregate responses or covariates are missing.

We implemented our methodology using the FORTRAN 95 software with double precision
and IMSL subroutines. The FORTRAN 95 code is available upon request. As a future
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project, we will develop a user-friendly R-interface of our already developed FORTRAN 95
software. We will make this R package available to practitioners once it is completed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Forest plots of multivariate aggregate outcome variables (LDL-C, HDL-C, TG) for patients

on first line therapy.
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Forest plots of multivariate aggregate outcome variables (LDL-C, HDL-C, TG) for patients

on second line therapy.
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Figure 3.

Trace plots and density plots for simulation study with n =500, ry» =0.147, ri» = 0.798, r13
=0.464, S11 = 106.4, Sy, = 97.1, and S33 = 110.7
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DIC Values for various models

Model v  Dev(6) Po DIC
Nty 696.50 44.51 785.52
Dty 692.41 4437 781.15
Dty 68526 42.89 771.04
N 5 693.60 41.59 776.77

10 68551 42.03 769.57
15 68729 4217 771.64
20 687.66 4212 77190
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Yao etal.

Posterior Estimates of Covariances and/or Correlations under Models 24, 2i3, and 24,

Table 4

Model Parameter  Mean SD  95% HPD interval
Uty PR 31964 310 (313.58, 325.77)
Covariance %), 181.59 1.75 (178.17, 185.00)
Y33 899.54 863 (882.80, 916.17)
Correlation  py» -0.66 0.01 (-0.69, -0.64)
O3 051 001 (0.49, 0.54)
23 0.04  0.06 (-0.07, 0.16)
Wy P12 -0.10  0.26 (-0.58, 0.41)
Correlation  p3 0.78 0.16 (0.44,0.98)
23 -0.11  0.16 (-0.42,0.21)
Dy, Y1 288.31 20.61 (248.56, 328.96)
Covariance %5, 190.07 1351 (164.01, 216.60)
Y33 885.86 60.73  (765.75, 1001.86)
Correlation  pyp -0.68  0.16 (-0.90, -0.41)
13 0.68  0.11 (0.46, 0.86)
23 -021  0.16 (-0.52, 0.10)
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