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Abstract

High-throughput DNA sequencing allows for the genotyping of common and rare variants for 

genetic association studies. At the present time and for the foreseeable future, it is not 

economically feasible to sequence all individuals in a large cohort. A cost-effective strategy is to 

sequence those individuals with extreme values of a quantitative trait. We consider the design 

under which the sampling depends on multiple quantitative traits. Under such trait-dependent 

sampling, standard linear regression analysis can result in bias of parameter estimation, inflation 

of type I error, and loss of power. We construct a likelihood function that properly reflects the 

sampling mechanism and utilizes all available data. We implement a computationally efficient EM 

algorithm and establish the theoretical properties of the resulting maximum likelihood estimators. 

Our methods can be used to perform separate inference on each trait or simultaneous inference on 

multiple traits. We pay special attention to gene-level association tests for rare variants. We 

demonstrate the superiority of the proposed methods over standard linear regression through 

extensive simulation studies. We provide applications to the Cohorts for Heart and Aging 

Research in Genomic Epidemiology Targeted Sequencing Study and the National Heart, Lung, 

and Blood Institute Exome Sequencing Project.
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1. INTRODUCTION

The past few years have seen progressive advances in high-throughput sequencing 

technologies that allow the sequencing of genomic regions for association studies. However, 
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the cost of performing high-throughput sequencing on a large number of individuals is still 

high and will likely remain so in the near future. If a quantitative trait is of primary interest, 

then a cost-effective strategy is to sequence individuals with the extreme trait values. This 

trait-dependent sampling (TDS) strategy can substantially increase statistical power when 

compared to a random sample of the same size (Allison 1997; Page and Amos 1999; Slatkin 

1999; Chen et al. 2005; Huang and Lin 2007; Lin et al. 2013).

Many sequencing studies are derived from large, population-based cohorts, such as the 

Atherosclerosis Risk in Communities (ARIC) study (The ARIC Investigators 1989), 

Cardiovascular Health Study (CHS) (Fried et al. 1991), and Framingham Heart Study (FHS) 

(Dawber et al. 1951). In these cohorts, hundreds of traits are measured at baseline and 

follow-up visits. Investigators are often interested in multiple (potentially correlated) 

quantitative traits. One may select an equal number of individuals from the upper and lower 

tails of each trait distribution or select individuals from one tail of each trait distribution and 

use a random sample as a common comparison group. The former design was adopted by 

the National Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing Project (ESP) 

(Lin et al. 2013). The latter design was recently used in the Cohorts for Heart and Aging 

Research in Genomic Epidemiology Targeted Sequencing Study (CHARGE-TSS) (Lin et al. 

2014).

The NHLBI ESP European American (EA) sample consists of 2538 individuals who were 

selected for sequencing from six cohorts: ARIC, CHS, FHS, Coronary Artery Risk 

Development in Young Adults (CARDIA) study (Friedman et al. 1988), Multi-Ethnic Study 

of Atherosclerosis (MESA) (Bild et al. 2002), and Women’s Health Initiative (WHI) (The 

Women’s Health Initiative Study Group 1998). The project contains several studies, each of 

which was focused on a particular trait and some of which selected individuals with extreme 

values of quantitative traits, including low-density lipoprotein (LDL) and blood pressure 

(BP). The CHARGE-TSS involves three cohorts, ARIC, CHS and FHS, in which ~200 

individuals with extreme values from each of 14 traits, as well as a random sample of ~2000 

individuals, were selected for sequencing at a total of 77 genomic loci that had been 

identified by genome-wide association studies (GWAS) to be associated with one or more 

traits (Lin et al. 2014).

Standard linear regression analysis based on least squares (LS) estimation only uses the 

sequenced individuals and treats them as if they were randomly selected from the whole 

cohorts. Thus, the multivariate TDS design is ignored with this approach. If the genetic 

variant of interest is independent of all the traits used in the sampling, then the LS method 

has correct type I error. If the genetic variant affects certain traits used in the sampling, 

however, then the LS method yields biased estimates of the genetic effects. The type I error 

for testing the genetic effect on one trait may also be inflated if other traits that are used in 

sampling are affected by the genetic variant.

Analysis methods for the univariate TDS design, such as that of Lin et al. (2013), may be 

applied to the multivariate TDS design. Lin et al. (2013) analyzed the LDL data in the 

NHLBI ESP by performing separate analysis in each study and combining the summary 

statistics. This approach may not preserve the type I error because it cannot properly handle 
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sequenced individuals with extreme values in multiple traits, as elaborated in Section 2. In 

the CHARGE-TSS, the selection of individuals with the extreme values of the pulmonary 

function was based on both the forced expiratory volume in the first second (FEV1) and the 

ratio of FEV1 to forced vital capacity (FEV1/FVC) (Lin et al. 2014). The univariate 

approach is not applicable to this case because it does not allow the selection of an 

individual to depend on multiple traits. Another limitation of the univariate approach is that 

it cannot perform simultaneous inference on multiple traits.

In this paper, we develop a valid and efficient likelihood-based approach to making 

inferences about genetic effects under multivariate TDS. In our formulation, the sampling 

can depend on multiple quantitative traits in any manner. Quantitative traits are related to 

genetic variants and covariates through a multivariate linear regression model while the 

distributions of genetic variants and covariates are unspecified. We derive the likelihood that 

accounts for the TDS and utilizes all available data. The computation is challenging due to 

the presence of missing trait values with arbitrary patterns, the multivariate nature of the 

model, and a potentially infinite-dimensional covariate distribution. We develop a novel 

expectation-maximization (EM) algorithm (Dempster et al. 1977) to maximize the 

likelihood. We establish the consistency, asymptotic normality, and asymptotic efficiency of 

the resulting estimators by using novel arguments to deal with the challenging issue of 

partially missing trait values. We construct single-variant and gene-level association tests 

(Li and Leal 2008; Madsen and Browning 2009; Price et al. 2010; Lin and Tang 2011; Wu 

et al. 2011) for assessing the marginal genetic effects on each trait or the joint effects on any 

subset of traits. We demonstrate the superiority of the proposed methods over the univariate 

approach and standard linear regression through extensive simulation studies. Finally, we 

provide applications to the CHARGE-TSS and NHLBI ESP data.

2. METHODS

Let Y ≡ (Y1, …, YK)T be a K × 1 vector of quantitative traits, G be a d × 1 vector of genetic 

variables, and Z be a p × 1 vector of covariates (including the unit component). We relate Y 
to G and Z through the multivariate linear model:

(1)

where β is a K × d matrix of regression parameters for the genetic effects, γ is a K × p matrix 

of regression parameters for the covariate effects, and ε is a K-variate normal random vector 

with mean 0 and covariance matrix Σ. In single-variant analysis, d = 1, and G is a scalar that 

codes the number of minor alleles the individual carries at the variant site under the additive 

model or indicates whether the individual carries any minor allele (or two minor alleles) at 

that site under the dominant (or recessive) model. In gene-level analysis for rare variants, G 
is a (weighted) sum of the numbers of mutations across multiple variant sites within a gene 

or the vector of genotypes for individual variants.

Under the multivariate TDS design, Y is measured on all the N individuals in the cohort 

(with potential missing values), and G is only collected for a sub-sample of size n. The 

selection may depend on observed Y in an arbitrary manner. Under the “one-tail” design 
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used in the CHARGE-TSS, the sequenced individuals include those with extreme values of 

each quantitative trait of interest plus a random sample. Under the “two-tail” design used in 

the NHLBI ESP, the sequenced individuals have the largest or smallest trait values. If Z 
contains demographic/environmental variables and ancestry information, such as the 

percentage of African ancestry or the principal components (PCs) for ancestry, which is 

estimated from the GWAS marker data, then Z may potentially be available for all N 

individuals. If the ancestry information is obtained from the sequence data, then Z is 

available only for the n sequenced individuals. Because it is often difficult to retrieve 

covariate information for nonsequenced individuals, especially when multiple cohorts are 

involved, we require Z to be available only for the n sequenced individuals.

We arrange the records such that the first n individuals are the sequenced ones and the 

remaining (N − n) are the nonsequenced ones. Then the data consist of ( , Zi, Gi) for i = 

1, …, n and  for i = n + 1, …, N, where  is the observed part of Yi. We include all 

the individuals with at least one nonmissing trait — the largest possible sample — in the 

analysis. We assume that the observations on Y are missing at random. We require Z to be 

completely observed for all sequenced individuals, which is the case in both the CHARGE-

TSS and NHLBI ESP.

We represent β, γ, and Σ by θ. We show in Appendix A.1 that the observed-data likelihood 

takes the form

(2)

where fθ(·|z, g) is the joint density of Yobs conditional on (Z, G) = (z, g), f(·, ·) is the joint 

density of (Z, G), and F(·, ·) is the distribution function of f(·, ·). Note that we do not assume 

a specific form for f(·, ·) in (2). Thus, f(·, ·) is infinite-dimensional when Z contains 

continuous covariates. We estimate f(·, ·) by the discrete probabilities at the observed distinct 

values of (Zi, Gi), i = 1, …, n, denoted by (z1, g1), …, (zm, gm), m ≤ n, and maximize the 

above function over other parameters. Denote the point mass at (zj, gj) as qj, j = 1, …, m. 

The objective function to be maximized is equivalent to

(3)

where I(·) is the indicator function.

We present in Appendix A.2 a novel EM algorithm for maximizing (3) that is 

computationally efficient and numerically stable. In addition, we prove in Appendix A.3 that 

the resulting maximum likelihood estimators (MLEs) are consistent, asymptotically normal, 

and asymptotically efficient. Thus, the corresponding association tests have correct type I 

error and are the most powerful of all valid tests.
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Inferences about the genetic effects on the traits of interest are flexible under our likelihood 

framework, as detailed in Appendix A.4. For single-variant analysis, G is a scalar, and β 

reduces to a K × 1 vector. We can use the Wald, score, or likelihood ratio statistics to test 

any subset of β. The Wald tests are the most efficient computationally because we only need 

to fit the model once no matter how many and what kind of hypotheses we are interested in; 

to perform the score or likelihood ratio tests, we need to obtain the restricted MLEs under 

each null hypothesis. For variants with moderate minor allele frequencies (MAFs), the three 

types of tests give similar results.

To perform a burden test for rare variants, we define G as the total number of mutations 

among variants whose MAFs are below a pre-specified threshold, such as 1% or 5%, with 

the corresponding tests denoted by T1 and T5, respectively; alternatively, we define G as a 

weighted sum of the mutation counts, using weights such as those defined by Madsen and 

Browning (2009) to reflect each variant’s MAF, with the corresponding test denoted by MB. 

For detecting variants with opposite effects on the traits, we extend the sequence kernel 

association test (SKAT) (Wu et al. 2011) to the multivariate TDS setting. We can test the 

null hypothesis that there is no genetic effect on a particular trait or the “global” null 

hypothesis that there is no genetic effect on any trait. All our gene-level tests are based on 

the score statistics, which are statistically more accurate and numerically more stable than 

the Wald statistics for rare variants (Lin and Tang 2011).

Lin et al. (2013) proposed a likelihood-based approach for the univariate TDS design. They 

derived efficient estimators for both the primary trait, which is used for sampling, and the 

secondary trait, which is not used for sampling. Suppose that we wish to make inference on 

the first trait under a multivariate TDS design with K traits. We can analyze the first trait as 

the primary trait by treating the individuals with extreme values of the first trait as 

sequenced individuals and all others as nonsequenced individuals. We can also analyze the 

first trait as a secondary trait with each of the remaining (K −1) traits as the primary trait. 

We can then combine the summary statistics of the K analyses. This meta-analysis is not 

valid because it does not account for the correlations of the K statistics caused by 

overlapping individuals. To avoid overlaps of sequenced individuals, we let each individual 

be considered “sequenced” in only one analysis. This strategy, however, will introduce bias 

into the univariate analysis because the “selection” for one trait depends on other traits. We 

label these two methods as (a) and (b), respectively.

For the design that contains a random sample, such as the one-tail design adopted by the 

CHARGE-TSS, each individual in the cohort has a positive probability of being selected. 

Then the inverse probability weighting (IPW) method commonly used in survey sampling 

can be adopted. The IPW method avoids the joint modeling of the traits and thus can handle 

quantitative, binary, and censored traits simultaneously. It yields unbiased effect estimation 

and correct type I error. Such weighting methods, however, are substantially less efficient 

than the LS method (T. Lumley, personal communication, April 19, 2012). Efficiency is a 

major concern in association studies since many genetic effects are small and the correction 

for multiple comparisons is extremely severe for tens of thousands of variants. In addition, 

IPW is not applicable to the design that does not contain a random sample.
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3. RESULTS

3.1 Simulation Studies

We evaluated the performance of the MLE and LS methods in extensive simulation studies. 

The ARIC data in the CHARGE-TSS are more complex than the NHLBI ESP data because 

the former contain more sampling traits and more sequenced individuals with extreme trait 

values than the latter. Thus, we designed our simulation studies to mimic the ARIC data in 

the CHARGE-TSS.

We generated 11 traits from the multivariate linear model given in (1) in which G is the 

number of minor alleles for a SNP with MAF of 0.1, Z is a normally distributed confounder 

(representing a PC for ancestry or some other genetically related variable) with mean G and 

unit variance, and the error terms are multivariate normal with mean 0, variances 1, and 

correlations r under compound symmetry. (The Pearson correlation between G and Z is 

~0.17.) We generated a cohort of 9000 individuals and selected individuals for sequencing 

as follows: we first selected a random sample of 1000 individuals; we then selected 100 

individuals with the largest values of Y1 from the remaining 8000 individuals; and we 

continued to select 100 individuals with the largest values of Y2 from the remaining 7900 

individuals, and so on, until we reached a “sequenced” sample of 2100 individuals. We set 

β1 = 0 and considered two cases of non-zero effects for the other 10 traits: Case 1. five traits 

with the same effect, i.e., β2 = ··· = β6 = 0.2, β7 = ··· = β11 = 0; and Case 2. six traits with 

opposite effects, i.e., β2 = β4 = β6 = 0.2, β3 = β5 = β7 = −0.2, β8 = ··· = β11 = 0. The value of 

0.2 for β corresponds to R2 of 0.7% and 4.0% under γ = 0 and 0.3, respectively; the value of 

−0.2 corresponds to R2 of 0.7% and 0.2% under γ = 0 and 0.3, respectively. We assessed the 

bias, type I error, and power of the MLE and LS methods. The nominal significance level α 

was set to 0.001. All results are based on 100,000 replicates.

Table 1 shows the results for trait 1 (null effect) and trait 2 (positive effect) in Case 1. The 

MLE method provides unbiased estimation of genetic effects and correct type I error. The 

LS method is approximately unbiased for β1 when the confounder has no effect and the traits 

are strongly correlated, and it has a negative bias for β1 when there is confounding or the 

traits are weakly correlated or independent. When the confounder has no effect, the LS 

method substantially overestimates β2. The bias is larger when the correlations are lower. 

When there is confounding, the bias decreases as the correlations increase. When the traits 

are weakly correlated or independent, the LS method yields highly inflated type I error, 

whether or not the confounder has an effect. The type I error is also inflated when the traits 

are strongly correlated and the confounder has an effect. The MLE method is more powerful 

than the LS method because its standardized test statistic tends to be larger. The largest 

power difference is 0.188 under γ= 0.3 and r = 0.5. The MLE method always yields smaller 

root mean squared error (RMSE) than the LS method (see Table S1 of the Supplementary 

Material).

Table 2 shows the results for trait 1 (null effect), trait 2 (positive effect), and trait 3 (negative 

effect) in Case 2. The MLE method continues to provide unbiased estimation of genetic 

effects and correct type I error. The LS method tends to overestimate the effect on trait 2 and 

underestimate the effect on trait 3, and the bias can be as high as 26%, which is higher than 
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in Case 1. The LS method also has inflated type I error (as high as 80%) when there is 

confounding. When the confounder has no effect, the LS method generally has correct type I 

error, although it is not as powerful as the MLE method; the power differences are larger 

when the correlations are higher, which is opposite to what we find in Case 1. The MLE 

method always yields smaller root mean squared error (RMSE) than the LS method (see 

Table S1). For both Case 1 and Case 2, we conducted other simulations with larger genetic 

effects and lower MAFs or with 10% random missingness in all traits. The results are 

similar to those of Tables 1 and 2 and thus not shown.

Due to the presence of a random sample, it was possible to evaluate the IPW method. We set 

the weights for individuals with extreme trait values at 1 and set the weights for individuals 

in the random sample at 9. These weights are not exactly equal to the inverse selection 

probabilities, which are difficult to calculate under the sequential selection mechanism, but 

the approximations are good enough for our illustration. The results for Case 1 and Case 2 

are summarized in Table S2. Comparing Table S2 with Tables 1 and 2, we observe that 

although the IPW method preserves the type I error, it is substantially less powerful than the 

MLE and LS methods.

We also conducted simulation studies under the two-tail design. Specifically, we generated 

the cohort in the same manner as in the previous simulation studies but sequentially selected 

95 individuals from the upper and lower tails of each trait distribution to reach a 

“sequenced” sample of 2090 individuals. The results that are analogous to those shown in 

Tables 1 and 2 are summarized in Tables S3 and S4. The MLE method continues to perform 

well. Because the two-tail sampling is more extreme than the one-tail sampling used in the 

previous simulation studies, the LS method tends to yield more bias. The loss of power by 

the LS method compared to the MLE method tends to be more severe under the two-tail 

design than under the one-tail design (with maximal differences of 0.583 vs. 0.188). In 

addition, the MLE method is generally more powerful under the two-tail design than under 

the one-tail design (with the power difference being as high as 0.184).

We conducted additional simulation studies under simple random sampling. We generated 

the cohort in the same manner as before but selected a simple random sample of 2100 

individuals. The LS method is valid in this setting. The power is approximately 0.61 for all 

traits with non-zero effects (positive or negative) in both Case 1 and Case 2 with any 

combination of γ and r. When comparing with the power estimates for trait 2 in Tables 1 and 

S3 and traits 2 and 3 in Tables 2 and S4, we see that the two multivariate TDS designs are 

much more efficient than simple random sampling.

To assess the robustness to the normality assumption, we simulated data in the setup of Case 

1 under the one-tail design but let ε follow a multivariate t distribution tν(0, Σ), where Σ is 

the scale matrix, and ν is the degrees of freedom. We set γ = 0.3 and r = 0.05. We added a 

variation of the MLE method that applies the inverse normal transformation to the trait 

values, which is referred to as MLE-INV. The results are summarized in Table S5. The 

MLE method has appreciable bias and inflated type I error for trait 1 (null effect) when ν is 

small but performs reasonably well when ν is moderate or large. The MLE-INV method has 
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better control of the type I error than the MLE method when ν is small. The LS method is 

biased and its performance worsens as ν increases.

To compare our multivariate approach with the univariate approach of Lin et al. (2013), we 

simulated a cohort of 10,000 individuals with two traits. We set the genetic variable to be 

the number of minor alleles for a SNP with MAF of 0.1, the effect sizes at 0.2 and 0 for the 

two traits; we did not include any confounder in the model. We adopted the two-tail design 

by sequentially selecting 250 individuals from the upper and lower tails of the two trait 

distributions. We used score tests for both approaches. We set the nominal significance level 

at 0.001 and varied the correlation between the two traits and the proportion of random 

missingness for each trait. As shown in Table S6, the univariate approach has inflated type I 

error, which is caused by the underestimation of the variance in method (a) and the bias in 

method (b). The inflation increases as the correlation between the two traits becomes 

stronger. There is power loss in (b) as compared to the multivariate approach, which is 

caused by the larger variances of the test statistics. The power difference is larger when the 

correlation is higher and is not affected much by the level of missingness.

3.2 CHARGE-TSS ARIC Data

We considered the ARIC data in the CHARGE-TSS. As described, a random sample plus 

individuals with extreme values for 11 traits were selected from ~9000 ARIC whites who 

provided informed consent for use of their genetic data and had sufficient DNA for 

sequencing. The selected individuals were sequenced for 77 genomic loci that had 

previously been found to be associated with one or more of 14 traits. (Three traits were not 

used for sampling in the ARIC data.) After quality control (QC), the genotype data included 

31,813 SNPs and 2003 individuals. Details for the design, sample selection criteria, 

genotype QC, and annotation can be found in Lin et al. (2014).

We removed individuals without PCs (calculated from GWAS data) and obtained 9103 

individuals, among whom 1927 were sequenced. Table 3 shows the number of individuals 

with nonmissing trait values in the cohort, the specific sampling strategy, and the achieved 

number of extreme cases for sequencing, as well as that number after QC for each of the 11 

traits. (Note that the numbers of extreme cases for all traits may add up to be greater than n 

since some individuals may have extreme values for multiple traits.) Of the 11 traits used for 

sampling, stroke is an age-at-onset trait that cannot be incorporated into our model. We 

treated the 60 individuals who were selected solely due to stroke as nonsequenced 

individuals. As noted before, the pulmonary function trait comprised two traits — FEV1 and 

FEV1/FVC — such that the total number of traits entering into the analysis remained at 11. 

C-reactive protein (CRP) and retinal venule diameter have about 20% missingness in the 

whole cohort, while all the other traits have less than 5% missingness.

In the CHARGE-TSS, the selections for certain traits were based on the residuals of the 

original values adjusted for various covariates. For those traits, we used the residuals in the 

analysis. Most of the traits are positively correlated, and there is no pairwise correlation less 

than −0.15. The correlations are 0.56 between fast insulin and body mass index (BMI), 0.49 

between the two pulmonary function traits, 0.30 between BMI and CRP, and 0.22 between 

fast insulin and hematocrit, as well as between fast insulin and CRP. All the other positive 
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correlations are well below 0.2, and many of them are essentially 0 (see Table S7). We 

included age, gender, study centers, and the top five PCs as covariates.

We focused on BMI. We restricted the single-variant analysis to SNPs with MAFs larger 

than 5% and ended up with 2971 SNPs. We chose the additive genetic model. Table 4 shows 

the top 10 SNPs for the MLE method and the corresponding LS results. The LS method 

consistently yields larger effect estimates for SNPs with positive effects and smaller effect 

estimates for SNPs with negative effects. This is similar to what we find in most scenarios 

under Case 2 in the simulation studies. As shown in Figure S1 of the Supplemental Material, 

the p-values for the MLE and LS methods are similar.

In gene-level analysis of rare variants, we considered “functional coding” variants, i.e., non-

synonymous, splicing, and stop-gain variants, and ended up with a total of 2360 variants. 

We removed any targeted region with minor allele count (MAC) — the number of 

individuals with at least one mutation — less than five. For MB and SKAT tests, we only 

included variants with MAFs less than 5%. Table S8 shows the results for the top five 

targeted regions in each of the four types of tests based on the MLE method. We also 

performed gene-level tests of the global null hypothesis that there is no genetic effect on any 

trait. Table S9 shows the results for the top five targeted regions in each of the four types of 

tests. It would be worthwhile to follow up the regions identified in Tables S8 and S9 in 

larger samples.

3.3 NHLBI ESP EA Data

The NHLBI ESP EA data consist of the six cohorts mentioned previously and include four 

types of study designs. The first study is a TDS study consisting of 872 individuals who 

were selected from the upper and lower tails of the LDL and BP distributions. The second 

study is a random sample of 721 individuals with measurements on a common set of 

phenotypes; this study is referred to as the deeply phenotyped reference (DPR). The third 

study is a case-control study of early myocardial infarction (MI) consisting of 220 cases and 

390 controls. The fourth study is a case-only study of stroke consisting of 335 individuals 

with ischemic stroke. Exome sequencing was performed on the selected individuals at the 

University of Washington and the Broad Institute. We implemented the genotype QC steps 

described by Lin et al. (2013) and obtained 1,281,645 variants.

In the TDS study, we excluded individuals (either sequenced or nonsequenced) who were 

not eligible for either the LDL or BP selection. In the FHS, which contains related 

individuals, we removed one individual from each pair of first- or second-degree relatives. 

The actual sample selections for LDL and BP were based on the residuals rather than the 

original values. We used the LDL residuals (log-transformed LDL values adjusted for age, 

age-squared, gender, and lipid medication) and BP residuals (mean of the residuals for 

diastolic and systolic BPs adjusted for age, gender, BMI, and anti-hypertensive medication) 

as the trait values in the analysis. We considered LDL as the trait of interest and removed 

individuals with missing LDL values in the DPR, MI, and stroke studies. Note that 

individuals with missing LDL or BP values (but not both) were still included in the analysis 

of the TDS study. Table 5 summarizes the sample sizes of the four studies in each cohort 

after QC.
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In the TDS study, we used both the MLE and LS methods to analyze LDL. For case-control 

and case-only studies with rare diseases, standard linear regression analysis of secondary 

quantitative traits conditional on the disease status yields approximately correct results (Lin 

and Zeng 2009). Because early MI and ischemic stroke are relatively rare, we performed 

standard linear regression in the MI (adjusted for the MI status), stroke, and DPR studies. 

We included cohorts and sequencing centers/targets as covariates. We performed meta-

analysis of the four studies using software MASS (Tang and Lin 2013).

We restricted the single-variant analysis to SNPs with MACs ≥5 and ended up with 109,607 

SNPs. We chose the additive model and used score statistics to ensure numerical accuracy 

for SNPs with low MACs. Figure 1 shows the quantile-quantile plots using the MLE and LS 

methods in the TDS study only and in all four studies. Although the trends in the quantile-

quantile plots of the TDS study appear to be similar between the MLE and LS methods, the 

MLE method clearly produces more significant results than the LS method in the meta-

analysis. Table 6 lists the top 10 SNPs for the MLE method in the meta-analysis. For the 

MLE method, the top SNP (chr19:45397229) in the meta-analysis is also the top SNP in the 

TDS study, with the p-value in the meta-analysis being much more significant (2.08×10−10 

vs. 2.64×10−7). For the LS method, although the top SNP remains the same, its p-value in 

the meta-analysis is less significant than that in the TDS study (1.17 × 10−6 vs. 4.29 × 10−7).

The forest plots shown in Figure S2 help to explain the results in Figure 1 and Table 6. The 

MLE estimates in the TDS study are very similar to the estimates in the DPR, MI, and stroke 

studies. (The estimates in the stroke study tend to have large standard errors due to its small 

sample size.) Thus, the MLE estimates from the meta-analysis are similar to the MLE 

estimates in the TDS study but with smaller standard errors. Because of its bias, the LS 

method yields larger effect estimates as well as (proportionately) larger standard errors than 

the MLE method in the TDS study, such that the two methods have similar standardized test 

statistics in the TDS study. Because the LS estimates in the TDS study are much larger than 

the LS estimates in the other three studies, meta-analysis of the LS estimates from the four 

studies yields less significant results than the MLE meta-analysis.

We also performed single-variant analysis in the TDS study using the univariate approach of 

Lin et al. (2013). Figure S3 compares the p-values for the multivariate and univariate 

methods. The two methods yield similar results for most SNPs. This is because the 

correlation between LDL and BP among individuals in the TDS study is only 0.01. Note that 

the multivariate approach produces a more significant p-value for the top SNP 

(chr19:45397229) than the univariate approach does (2.64 × 10−7 vs. 1.24 × 10−5).

In gene-level analysis for rare variants, we considered variants that are nonsynonymous, 

stop-gain, stop-loss, or splicing mutations. Other steps were the same as in the analysis of 

the CHARGE-TSS ARIC data. The results are displayed in Figures S4–S7 and in Tables 

S10–S13. The conclusions regarding the performance of the MLE and LS methods are 

similar to those of the single-variant analysis. Again, the MLE method yields more 

significant results than the LS method. We also performed gene-level tests of the global null 

hypothesis. The results are displayed in Figure S8 and in Tables S14–S16. The strongest 

signals appear in the T1 tests.
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4. DISCUSSION

Multivariate TDS is a useful and cost-effective design when investigators are interested in 

multiple quantitative traits but cannot afford to sequence all cohort members. The 

CHARGE-TSS and NHLBI ESP are two recent examples of this design. It is not hard to 

envision that many large-scale whole-exome and whole-genome sequencing projects will 

adopt similar multivariate TDS designs. As demonstrated in the simulation studies and in the 

two real examples, standard linear regression without regard to the sampling design can 

result in estimation bias, type I error inflation, and power loss, and the existing methods for 

univariate TDS have important limitations.

In this paper, we propose for the first time a valid and efficient likelihood-based approach to 

making inferences under multivariate TDS, paying special attention to gene-level tests for 

rare variants. The methodology is very general and can be applied to both genetic and non-

genetic studies. The proposed EM algorithm is stable and the software is available on our 

website.

Our approach is scalable to whole-exome and whole-genome sequencing studies. In our 

single-variant analysis of the NHLBI ESP EA data, it took ~5 seconds on an IBM HS21 

machine to perform one association analysis. The computation time increases as the number 

of traits or the percentage of missing data increases. When there are no covariates or 

covariates are categorical (i.e. when m is small), the computation is fast. When there are 

continuous covariates, we recommend splitting the genome and using multiple CPUs.

As shown in the simulation studies, the MLE method has appreciable bias and inflated type I 

error when the normality assumption on ε is severely violated. In practice, one should 

inspect the trait distributions and explore parametric transformations, such as the log 

transformation, or the rank-based inverse normal transformation. In genome-wide studies, a 

well-behaved quantile-quantile plot for the association tests would imply that non-normality 

has no undue influence on the type I error.

For single-variant analysis, we compared the MLE method with the univariate LS method. It 

is also possible to consider the multivariate LS method. If one is only interested in the 

marginal genetic effects on each trait and the traits are completely observed for all 

sequenced individuals, then univariate and multivariate LS methods yield the same results. 

If there is a small proportion of missingness, then the two methods should still yield similar 

results. If one is interested in the joint genetic effects on multiple traits, then a multivariate 

model is necessary. We adopt a multivariate model in our MLE approach primarily because 

the sampling scheme involves multiple traits. Our model is more elaborate than a univariate 

model, but it is the only approach that provides valid and efficient inferences for the 

multivariate TDS design.

In both the simulation studies and the real examples, all traits in the model are used in the 

sampling process. In practice, investigators may be interested in secondary quantitative traits 

which are not directly used for sampling but are correlated with the primary traits. (Note that 

standard linear regression is valid only when a secondary trait is independent of all primary 

traits, which is an unlikely scenario.) It is straightforward to analyze secondary traits with 
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our MLE method. Using a multivariate normal distribution for the primary and secondary 

traits, one can include each secondary trait of interest as an additional “primary” trait and 

use our MLE method with these (K + 1) traits.

Our approach does not require Z for nonsequenced individuals. In the NHLBI ESP, part of Z 
(sequencing centers/targets) is not available for nonsequencd individuals. In the CHARGE-

TSS, Z is available for all individuals. Incorporating Z of nonsequenced individuals into the 

analysis has two advantages. First, it allows the selection of individuals for sequencing to 

depend on Z. Second, it improves the efficiency of estimation. Then the likelihood involves 

the conditional distribution of G given Z(1), which is the part of Z that is correlated with G. 

We plan to incorporate kernel smoothing into the likelihood to handle continuous 

components in Z(1). Table S17 shows the estimated distribution of (Z, G) in the analysis of 

the second most significant SNP in the NHLBI ESP EA sample; there is no strong evidence 

of correlation between Z and G. A similar issue arises when some part of Z is subject to 

missingness. We denote that part of Z and G as G̃ and denote the rest of Z as Z̃. We plan to 

formulate the conditional distribution of G̃ given Z̃ through general odds ratio functions (Hu 

et al. 2010).

We have focused on the inference procedures rather than the design aspects. Although our 

simulation studies indicate that the two-tail design can be more efficient than the one-tail 

design, the optimal design remains unknown. It is unclear what the best sampling strategy is 

when multiple quantitative traits are of equal interest. Because our likelihood framework 

applies to any multivariate TDS, our variance formulas can be used to compare the 

efficiencies of different designs.
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Refer to Web version on PubMed Central for supplementary material.
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APPENDIX: TECHNICAL DETAILS

A.1 Derivation of the Observed-Data Likelihood

Let Vi ≡ (Vi1, …, ViK)T be a K×1 vector of ones and zeros indicating which components of 

Yi are observed or missing for the ith individual. Let Ri indicate, by the values 1 versus 0, 

whether the ith individual is selected for sequencing. We make the following assumptions:

Assumption 1

The conditional distribution of Vi given (Yi, Zi, Gi) is a function of ( , Zi, Gi) for 

sequenced individuals and a function of  for nonsequenced individuals.

Assumption 2

The distribution of R ≡ (R1, …, RN) depends on (V, Y, Z, G) ≡ {(V1, Y1, Z1, G1), …, (VN, 

YN, ZN, GN)} only through V ∘ Y ≡ (V1 ∘ Y1, …, VN ∘ YN), where “∘” denotes component-

wise product.

Assumption 3

 does not contain parameters 

θ and F.

Under Assumptions 1–2, the complete-data density for the underlying variables (Ri, Vi, Yi, 

Zi, Gi), i = 1, …, N, is

The observed data are (Ri, Vi, Vi ∘ Yi, RiZi, RiGi), i = 1, …, N, whose density is obtained by 

integrating over the unobserved variables in the complete-data density, i.e.,
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where R ∘ Z = (R1Z1, …, RN ZN), R ∘ G = (R1G1, …, RN GN), and Ymis is the missing part of 

Y. We can ignore  because 

of Assumption 3. The remaining part of the above density is exactly the observed-data 

likelihood given in (2).

A.2 Estimation

To calculate the MLEs for (3), we use the EM algorithm in which missing data contain the 

partially missing Yi’s and the missing observations on (Z, G) for individuals not selected for 

sequencing. The complete-data log-likelihood function is

At the tth iteration, the M-step maximizes

where  is the conditional expectation given , (Zi, Gi) = (zj, gj), 

evaluated at θ̂(t), and  is the conditional probability of I{(Zi, Gi) = (zj, gj)} = 1 given 

, (z1, g1), …, (zm, gm), evaluated at θ̂(t), . That is,

Write  and η = (βT, γT)T. The M-step involves the following calculations:

where ηk is the kth row of η, and a⊗2 = aaT. We start with initial values η̂(0) = 0, Σ̂(0) being 

the sample covariance matrix based on those Yi’s with complete observations, and 
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, j = 1, …, m, and iterate until convergence to obtain the 

MLEs (β̂, γ̂, Σ̂ q̂1, ···, q̂m). In the above expressions, the conditional expectations can be 

evaluated by using the fact that the missing part of Yi, denoted by , given  and (zj, 

gj), follows a normal distribution with mean 

 and variance 

, where  and  are the corresponding parts for 

and  in β, and the same partitions apply to γ to yield  and  and to Σ to yield 

, and .

We estimate the asymptotic covariance matrix of the MLEs by the Louis formula (Louis 

1982). We use Akl to denote the (k, l)th element of any matrix A. For i = 1, …, N and j = 1,

…, m, we calculate the derivatives of log f(Yi|zj, gj) + log qj to obtain the {K(p + d) + K(K + 

1)/2 + m} × 1 complete-data score vector

where , with ek being the kth canonical vector of length K, i.e. 

with 1 in the kth position and 0 in all the other positions,

with  and Pij = (0, …, 0, 1/q̂j, 0, …, 0)T. We also calculate the second derivatives 

as a {K(p + d) + K(K + 1)/2 + m}× {K(p + d) + K(K + 1)/2 + m} matrix, which is the block 

diagonal matrix

where
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and l22ij is a diagonal matrix with diagonal elements {0, …, 0, , 0, …, 0}. In the above 

matrix,

We then calculate the information matrix as

To account for the constraint that , we define D to be the derivative matrix of (β, 

γ, Σ, q1, ···, qm) with respect to (β, γ, Σ, q1, ···, qm−1). Then, the covariance matrix for (β̂, γ̂, 

Σ̂, , ···, q̂m−1) is estimated by Ω = F−1, where F = DTQD.

A.3 Asymptotic Properties

Let Θ denote the parameter space of θ, which is a bounded open set in the interior of the 

domain of θ, and  denote the space of the joint distributions of (Z, G). Let θ0 ∈ Θ and F0 ∈ 

 denote the true values of θ and F. We impose the following regularity conditions and state 

the asymptotic results in Theorem 1.
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Assumption 4

With probability one, Pr(R = 1, Vk = Vl = 1|V ∘ Y, Z, G) is bounded away from zero, for each 

pair of k and l ∈ {1, …, K}.

Assumption 5

For any nonzero β and γ, Pr(βG + γZ = 0) < 1.

Assumption 6

The density function of F0 is positive in its support and continuously differentiable with 

respect to a suitable measure.

Theorem 1

Under Assumptions 1–6, θ̂ and F̂(·, ·) are consistent in that |θ̂ − θ0| + supz,g|F̂(z, g) − F0(z, g)| 

→ 0 almost surely. In addition,  converges in distribution to a zero-mean normal 

random vector whose covariance matrix attains the semi-parametric efficiency bound.

Proof—The observed-data likelihood given in (2) is similar to the likelihood given in (6) of 

Lin and Zeng (2006), which pertains to haplotype rather than genotype effects. In (2), 

fθ(Yobs|Z, G) is the density of a multivariate linear regression model with partial missingness 

in Y, whereas in (6) of Lin and Zeng (2006), mg(Y, X; θ), which reduces to Pα,β,ξ(Y |X) when 

haplotypes are replaced by genotypes, is the density of a univariate generalized linear model 

with Y being always observed. If we can verify that Conditions 1–3 for Pα,β,ξ (Y|X) in Lin 

and Zeng (2006) are satisfied by fθ(Yobs|Z, G), we can use Theorem 1 of Lin and Zeng 

(2006) to show the consistency, asymptotic normality, and asymptotic efficiency of our 

estimators.

Before verifying Conditions 1–3 in Lin and Zeng (2006), we need some additional notation. 

Suppose that there are s distinct missing patterns in Y, each with a positive probability of 

being observed. Let δt be the indicator of the tth missing pattern. Let Yobs(t) and Ymis(t) 

denote the observed and missing parts of Y for the tth missing pattern, t = 1, …, s. Then 

fθ(Yobs|Z, G) can be rewritten as .

Condition 1 in Lin and Zeng (2006) pertains to the identifiability of the regression model. 

Suppose that two sets of parameters θ and θ̃ yield the same likelihood value. Then 

 for sequenced individuals. By 

Assumption 4, we can find, for each pair of k and l ∈ {1, …, K}, some t0 ∈ {1, …, s}, such 

that Yk and Yl are observed in the t0th missing pattern. Setting δt0 = 1, δt = 0, and t ≠ t0, we 

have fθ(Yobs(t0)|Z,G) = fθ̃(Yobs(t0)|Z,G), where both sides are multivariate normal densities. 

Because Yk and Yl are components of Yobs(t0), we have ηk = η̃k, ηl = η̃l, Σkk = Σ̃
kk, Σll = Σ̃

ll, 

and Σkl = Σ̃
kl. Condition 1 in Lin and Zeng (2006) is verified.

Conditions 2 and 3 in Lin and Zeng (2006) are the same if we replace haplotypes by 

genotypes. Thus, it remains to show that the information operator for θ and F is 
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continuously invertible at the true parameter values. This is tantamount to showing that the 

score function at any non-trivial submodel is non-zero because the information operator is 

the sum of an invertible operator and a compact operator mapping the score space of (θ0, F0) 

to itself. To this end, suppose that there exists a constant vector u, such that

(A.1)

Let , where V(t) 

represents V in the tth missing pattern, D(V(t)) represents the diagonal matrix with the 

diagonal vector being V(t), and A+ represents the Moore-Penrose generalized inverse of any 

square matrix A. Then

where , and

By Assumption 4, we can find, for each pair of k and l ∈ {1, …, K}, k ≤ l, some t0 ∈ {1, …, 

s}, such that . Set δt0 = 1, δt = 0, and t ≠ t0. Since Yk and Yl can take arbitrary 

values and  and  are non-degenerate linear functions of Yk and Yl, we see that 

and  can take arbitrary values. By examining the linear and quadratic terms of  and 

 in equation (A.1), we conclude that their corresponding coefficients must be zero. That 

is, , and ukl = 0, where uk, ul, and ukl are the components of u associated 

with , and , respectively. By Assumption 5, uk = 0 and ul = 0. It follows that u 
= 0. Thus, the score function is non-zero at any non-trivial submodel, and Conditions 2 and 

3 in Lin and Zeng (2006) hold.

Remark

Condition 1 suggests that we need to observe with positive probability each pair of 

components of Y in some individuals selected for sequencing in order for the MLE method 

to be applicable. We do not require a fully-observed Y for any individual. On the other hand, 

both the CHARGE-TSS ARIC data and NHLBI ESP EA data contain a large proportion of 

sequenced individuals with fully-observed Y. Thus, Condition 1 is not an issue but mainly 

serves theoretical purposes.
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A.4 Association Tests

For Wald tests employed in single-variant analysis, we estimate all parameters under the 

alternative hypothesis. Suppose that we decompose β into  and wish to test the null 

hypothesis . The Wald test statistic is , where β̂
a is the MLE of βa, 

and Ωaa is the covariance matrix of β̂
a, which is the submatrix of Ω corresponding to βa. We 

refer Ta to the  distribution, with the degree of freedom da being the dimension of βa. In 

particular, to test the genetic effect on each trait, we consider the null hypothesis 

for k = 1, …, K. The test statistic is , where Ωkk is the variance estimate of β̂
k. 

We refer Tk to the  distribution.

Gene-level tests for rare variants rely on score statistics. To test the global null hypothesis 

that there is no genetic effect on any trait, i.e. H0: β = 0, we calculate the restricted MLE of 

(γ, Σ, q1, ···, qm−1) under H0. This is accomplished through the above EM algorithm in 

which β is set to 0 and only (γ, Σ, q1, ···, qm−1) is estimated. The score statistic for testing 

H0: β = 0 is , where  is the subvector of l1ij corresponding to β. It can 

be shown that U1 is asymptotically normal with mean 0 and covariance matrix 

, where  is the partition of F with respect to β and the 

other parameters.

For T1 and T5 tests, G is the total number of mutations among variants whose MAFs are 

below 1% and 5%, respectively. For the MB test, G is the weighted sum of mutations with 

weights defined as {MAF(1 − MAF)}−1/2 for each variant (Madsen and Browning 2009). 

For the above three tests, G is a scalar, and d = 1. The test statistic for testing H0: β = 0 is 

. We refer T(1) to the  distribution.

For SKAT, G is a vector of the genotypes of individual variants within a gene. A SKAT-

type statistic can be defined as , where B is a diagonal matrix of weights that 

depend on the MAFs through a beta function. The null distribution of Q2 is approximated by 

, where (λ1, …, λKd) are the eigenvalues of , and ( ) 

are independent  random variables (Wu et al. 2011).

To test the genetic effect on a particular trait, say, the k0th trait, i.e. H0: βk0= 0, where βk0 is 

the k0th row of β reflecting the genetic effect on the k0th trait, we estimate ({ηk}k=1,…,K,k≠k0, 

γk0, Σ, q1, ···, qm−1) under H0. This is accomplished through the above EM algorithm (with a 

modified M-step) in which βk0 is set to 0 and only ({ηk}k=1,…,K,k≠k0, γk0, Σ, q1, ···, qm−1) is 

estimated. The M-step for estimating η is
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where A is a pK ×(pK − 1) matrix constructed by deleting the {p(k0 −1)+1}th column of the 

pK × pK identity matrix IpK, and A ⊗ B denotes the Kronecker product of matrices A and B. 

The score statistic for testing H0: βk0 = 0 is , where  and 

 are the partitions of l1ij and F with respect to βk0 and the other parameters. It 

can be shown that U2 is asymptotically normal with mean 0 and covariance matrix 

. All tests of H0: βk0 = 0 can be constructed in a similar 

manner. For SKAT tests, we use the vector of genotypes of individual variants as the genetic 

variables for the k0th trait and use the burden scores for other traits to ensure numerical 

stability.
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Figure 1. 
Quantile-quantile plots for the single-variant analysis of the LDL data using the MLE and 

LS methods in the TDS study only and in all four studies included in the NHLBI ESP EA 

sample. The values of the genomic control λ, defined as the ratio between the observed 

median of the test statistics and the median of the  distribution, are also shown.
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Table 3

Summary of the ARIC Data in the CHARGE-TSS

Trait No. (%) of non-missing values Sampling strategy No. sequenced (No. after QC)

ECG PR interval 8996 (98.82) high residual 94 (92)

ECG QRS interval 9053 (99.45) high residual 90 (89)

Blood pressure 9091 (99.87) high/low residual 93 (89)

Body mass index 9095 (99.91) high 90 (79)

Fasting insulin 8896 (97.73) high 94 (94)

C-reactive protein 7211 (79.22) high residual 93 (90)

Hematocrit 9071 (99.65) low residual 97 (85)

Retinal venule diameter 7099 (77.99) high 156 (154)

Carotid wall thickness 8725 (95.85) high 91 (87)

Pulmonary: FEV1 8958 (98.41)
low 186 (185)

Pulmonary: FEV1/FVC 8956 (98.39)

Stroke early onset 74 (70)

Random sample 946 (913)

Total 9103 (100.00) 2003 (1927)

NOTE: For the sampling strategy, “high” (“low”) means sampling from the upper (lower) tail of the trait distribution; “residual” indicates that the 
sampling is based on the residuals of the original values adjusted for covariates.
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