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Abstract

High-throughput DNA sequencing allows for the genotyping of common and rare variants for
genetic association studies. At the present time and for the foreseeable future, it is not
economically feasible to sequence all individuals in a large cohort. A cost-effective strategy is to
sequence those individuals with extreme values of a quantitative trait. We consider the design
under which the sampling depends on multiple quantitative traits. Under such trait-dependent
sampling, standard linear regression analysis can result in bias of parameter estimation, inflation
of type I error, and loss of power. We construct a likelihood function that properly reflects the
sampling mechanism and utilizes all available data. We implement a computationally efficient EM
algorithm and establish the theoretical properties of the resulting maximum likelihood estimators.
Our methods can be used to perform separate inference on each trait or simultaneous inference on
multiple traits. We pay special attention to gene-level association tests for rare variants. We
demonstrate the superiority of the proposed methods over standard linear regression through
extensive simulation studies. We provide applications to the Cohorts for Heart and Aging
Research in Genomic Epidemiology Targeted Sequencing Study and the National Heart, Lung,
and Blood Institute Exome Sequencing Project.
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1. INTRODUCTION

The past few years have seen progressive advances in high-throughput sequencing
technologies that allow the sequencing of genomic regions for association studies. However,
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the cost of performing high-throughput sequencing on a large number of individuals is still
high and will likely remain so in the near future. If a quantitative trait is of primary interest,
then a cost-effective strategy is to sequence individuals with the extreme trait values. This
trait-dependent sampling (TDS) strategy can substantially increase statistical power when
compared to a random sample of the same size (Allison 1997; Page and Amos 1999; Slatkin
1999; Chen et al. 2005; Huang and Lin 2007; Lin et al. 2013).

Many sequencing studies are derived from large, population-based cohorts, such as the
Atherosclerosis Risk in Communities (ARIC) study (The ARIC Investigators 1989),
Cardiovascular Health Study (CHS) (Fried et al. 1991), and Framingham Heart Study (FHS)
(Dawber et al. 1951). In these cohorts, hundreds of traits are measured at baseline and
follow-up visits. Investigators are often interested in multiple (potentially correlated)
quantitative traits. One may select an equal number of individuals from the upper and lower
tails of each trait distribution or select individuals from one tail of each trait distribution and
use a random sample as a common comparison group. The former design was adopted by
the National Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing Project (ESP)
(Lin et al. 2013). The latter design was recently used in the Cohorts for Heart and Aging
Research in Genomic Epidemiology Targeted Sequencing Study (CHARGE-TSS) (Lin et al.
2014).

The NHLBI ESP European American (EA) sample consists of 2538 individuals who were
selected for sequencing from six cohorts: ARIC, CHS, FHS, Coronary Artery Risk
Development in Young Adults (CARDIA) study (Friedman et al. 1988), Multi-Ethnic Study
of Atherosclerosis (MESA) (Bild et al. 2002), and Women’s Health Initiative (WHI) (The
Women’s Health Initiative Study Group 1998). The project contains several studies, each of
which was focused on a particular trait and some of which selected individuals with extreme
values of quantitative traits, including low-density lipoprotein (LDL) and blood pressure
(BP). The CHARGE-TSS involves three cohorts, ARIC, CHS and FHS, in which ~200
individuals with extreme values from each of 14 traits, as well as a random sample of ~2000
individuals, were selected for sequencing at a total of 77 genomic loci that had been
identified by genome-wide association studies (GWAS) to be associated with one or more
traits (Lin et al. 2014).

Standard linear regression analysis based on least squares (LS) estimation only uses the
sequenced individuals and treats them as if they were randomly selected from the whole
cohorts. Thus, the multivariate TDS design is ignored with this approach. If the genetic
variant of interest is independent of all the traits used in the sampling, then the LS method
has correct type | error. If the genetic variant affects certain traits used in the sampling,
however, then the LS method yields biased estimates of the genetic effects. The type | error
for testing the genetic effect on one trait may also be inflated if other traits that are used in
sampling are affected by the genetic variant.

Analysis methods for the univariate TDS design, such as that of Lin et al. (2013), may be
applied to the multivariate TDS design. Lin et al. (2013) analyzed the LDL data in the
NHLBI ESP by performing separate analysis in each study and combining the summary
statistics. This approach may not preserve the type | error because it cannot properly handle
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sequenced individuals with extreme values in multiple traits, as elaborated in Section 2. In
the CHARGE-TSS, the selection of individuals with the extreme values of the pulmonary
function was based on both the forced expiratory volume in the first second (FEV1) and the
ratio of FEV to forced vital capacity (FEV1/FVC) (Lin et al. 2014). The univariate
approach is not applicable to this case because it does not allow the selection of an
individual to depend on multiple traits. Another limitation of the univariate approach is that
it cannot perform simultaneous inference on multiple traits.

In this paper, we develop a valid and efficient likelihood-based approach to making
inferences about genetic effects under multivariate TDS. In our formulation, the sampling
can depend on multiple quantitative traits in any manner. Quantitative traits are related to
genetic variants and covariates through a multivariate linear regression model while the
distributions of genetic variants and covariates are unspecified. We derive the likelihood that
accounts for the TDS and utilizes all available data. The computation is challenging due to
the presence of missing trait values with arbitrary patterns, the multivariate nature of the
model, and a potentially infinite-dimensional covariate distribution. We develop a novel
expectation-maximization (EM) algorithm (Dempster et al. 1977) to maximize the
likelihood. We establish the consistency, asymptotic normality, and asymptotic efficiency of
the resulting estimators by using novel arguments to deal with the challenging issue of
partially missing trait values. We construct single-variant and gene-level association tests
(Li and Leal 2008; Madsen and Browning 2009; Price et al. 2010; Lin and Tang 2011; Wu
et al. 2011) for assessing the marginal genetic effects on each trait or the joint effects on any
subset of traits. We demonstrate the superiority of the proposed methods over the univariate
approach and standard linear regression through extensive simulation studies. Finally, we
provide applications to the CHARGE-TSS and NHLBI ESP data.

2. METHODS

Let Y = (Y1, ..., YK)T be a K x 1 vector of quantitative traits, G be a d x 1 vector of genetic
variables, and Z be a p x 1 vector of covariates (including the unit component). We relate Y
to G and Z through the multivariate linear model:

Y=pG+yZ+e, (1

where £is a K x d matrix of regression parameters for the genetic effects, yis a K x p matrix
of regression parameters for the covariate effects, and ¢ is a K-variate normal random vector
with mean 0 and covariance matrix X. In single-variant analysis, d = 1, and G is a scalar that
codes the number of minor alleles the individual carries at the variant site under the additive
model or indicates whether the individual carries any minor allele (or two minor alleles) at
that site under the dominant (or recessive) model. In gene-level analysis for rare variants, G
is a (weighted) sum of the numbers of mutations across multiple variant sites within a gene
or the vector of genotypes for individual variants.

Under the multivariate TDS design, Y is measured on all the N individuals in the cohort
(with potential missing values), and G is only collected for a sub-sample of size n. The
selection may depend on observed Y in an arbitrary manner. Under the “one-tail” design
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used in the CHARGE-TSS, the sequenced individuals include those with extreme values of
each quantitative trait of interest plus a random sample. Under the “two-tail” design used in
the NHLBI ESP, the sequenced individuals have the largest or smallest trait values. If Z
contains demographic/environmental variables and ancestry information, such as the
percentage of African ancestry or the principal components (PCs) for ancestry, which is
estimated from the GWAS marker data, then Z may potentially be available for all N
individuals. If the ancestry information is obtained from the sequence data, then Z is
available only for the n sequenced individuals. Because it is often difficult to retrieve
covariate information for nonsequenced individuals, especially when multiple cohorts are
involved, we require Z to be available only for the n sequenced individuals.

We arrange the records such that the first n individuals are the sequenced ones and the
remaining (N — n) are the nonsequenced ones. Then the data consist of ( Y'?*, Z;, G;j) for i =

1,...,nand ngs fori=n+1, ..., N, where ngs is the observed part of Y;. We include all
the individuals with at least one nonmissing trait — the largest possible sample — in the
analysis. We assume that the observations on Y are missing at random. We require Z to be
completely observed for all sequenced individuals, which is the case in both the CHARGE-
TSS and NHLBI ESP.

We represent g, ¥, and by 6. We show in Appendix A.1 that the observed-data likelihood
takes the form

n

N
[1176(Y ™2, G f(Zi, G 1] J.gle(Y ™|z, 9)dF(2,9), (@
i=1 i=n+1

where fg(|z g) is the joint density of Yo conditional on (Z, G) = (z g), f(-, -) is the joint
density of (Z, G), and F(, -) is the distribution function of f(:, -). Note that we do not assume
a specific form for f(-, -) in (2). Thus, f(;, -) is infinite-dimensional when Z contains
continuous covariates. We estimate f(:, -) by the discrete probabilities at the observed distinct
values of (Z;, Gj), i =1, ..., n, denoted by (z, 91), ---, (Zm, Om), M < n, and maximize the
above function over other parameters. Denote the point mass at (z, gj) as gj, j =1, ..., m.
The objective function to be maximized is equivalent to

m

n N
10gf0<Y§)bs\ZuGi)‘HOgZI{(ZuGi):(zjagj)}%' + > IOngo(bes|zjagj)qj, 3)
=1 j=1 i=n+l  j=1

m

where I(:) is the indicator function.

We present in Appendix A.2 a novel EM algorithm for maximizing (3) that is
computationally efficient and numerically stable. In addition, we prove in Appendix A.3 that
the resulting maximum likelihood estimators (MLES) are consistent, asymptotically normal,
and asymptotically efficient. Thus, the corresponding association tests have correct type |
error and are the most powerful of all valid tests.
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Inferences about the genetic effects on the traits of interest are flexible under our likelihood
framework, as detailed in Appendix A.4. For single-variant analysis, G is a scalar, and S
reduces to a K x 1 vector. We can use the Wald, score, or likelihood ratio statistics to test
any subset of 8. The Wald tests are the most efficient computationally because we only need
to fit the model once no matter how many and what kind of hypotheses we are interested in;
to perform the score or likelihood ratio tests, we need to obtain the restricted MLES under
each null hypothesis. For variants with moderate minor allele frequencies (MAFs), the three
types of tests give similar results.

To perform a burden test for rare variants, we define G as the total number of mutations
among variants whose MAFs are below a pre-specified threshold, such as 1% or 5%, with
the corresponding tests denoted by T1 and T5, respectively; alternatively, we define G as a
weighted sum of the mutation counts, using weights such as those defined by Madsen and
Browning (2009) to reflect each variant’s MAF, with the corresponding test denoted by MB.
For detecting variants with opposite effects on the traits, we extend the sequence kernel
association test (SKAT) (Wu et al. 2011) to the multivariate TDS setting. We can test the
null hypothesis that there is no genetic effect on a particular trait or the “global” null
hypothesis that there is no genetic effect on any trait. All our gene-level tests are based on
the score statistics, which are statistically more accurate and numerically more stable than
the Wald statistics for rare variants (Lin and Tang 2011).

Lin et al. (2013) proposed a likelihood-based approach for the univariate TDS design. They
derived efficient estimators for both the primary trait, which is used for sampling, and the
secondary trait, which is not used for sampling. Suppose that we wish to make inference on
the first trait under a multivariate TDS design with K traits. We can analyze the first trait as
the primary trait by treating the individuals with extreme values of the first trait as
sequenced individuals and all others as nonsequenced individuals. We can also analyze the
first trait as a secondary trait with each of the remaining (K —1) traits as the primary trait.
We can then combine the summary statistics of the K analyses. This meta-analysis is not
valid because it does not account for the correlations of the K statistics caused by
overlapping individuals. To avoid overlaps of sequenced individuals, we let each individual
be considered “sequenced” in only one analysis. This strategy, however, will introduce bias
into the univariate analysis because the “selection” for one trait depends on other traits. We
label these two methods as (2) and (b), respectively.

For the design that contains a random sample, such as the one-tail design adopted by the
CHARGE-TSS, each individual in the cohort has a positive probability of being selected.
Then the inverse probability weighting (IPW) method commonly used in survey sampling
can be adopted. The IPW method avoids the joint modeling of the traits and thus can handle
quantitative, binary, and censored traits simultaneously. It yields unbiased effect estimation
and correct type | error. Such weighting methods, however, are substantially less efficient
than the LS method (T. Lumley, personal communication, April 19, 2012). Efficiency is a
major concern in association studies since many genetic effects are small and the correction
for multiple comparisons is extremely severe for tens of thousands of variants. In addition,
IPW is not applicable to the design that does not contain a random sample.
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3. RESULTS

3.1 Simulation Studies

We evaluated the performance of the MLE and LS methods in extensive simulation studies.
The ARIC data in the CHARGE-TSS are more complex than the NHLBI ESP data because
the former contain more sampling traits and more sequenced individuals with extreme trait

values than the latter. Thus, we designed our simulation studies to mimic the ARIC data in

the CHARGE-TSS.

We generated 11 traits from the multivariate linear model given in (1) in which G is the
number of minor alleles for a SNP with MAF of 0.1, Z is a normally distributed confounder
(representing a PC for ancestry or some other genetically related variable) with mean G and
unit variance, and the error terms are multivariate normal with mean 0, variances 1, and
correlations r under compound symmetry. (The Pearson correlation between G and Z is
~0.17.) We generated a cohort of 9000 individuals and selected individuals for sequencing
as follows: we first selected a random sample of 1000 individuals; we then selected 100
individuals with the largest values of Y; from the remaining 8000 individuals; and we
continued to select 100 individuals with the largest values of Y, from the remaining 7900
individuals, and so on, until we reached a “sequenced” sample of 2100 individuals. We set
S =0 and considered two cases of non-zero effects for the other 10 traits: Case 1. five traits
with the same effect, i.e., /= -~ = 5= 0.2, f7 = -~ = 11 = 0; and Case 2. six traits with
opposite effects, i.e., o= =f=0.2, 5= 5= =-0.2, fg = = p11 = 0. The value of
0.2 for fFcorresponds to RZ of 0.7% and 4.0% under y= 0 and 0.3, respectively; the value of
-0.2 corresponds to R2 of 0.7% and 0.2% under y= 0 and 0.3, respectively. We assessed the
bias, type | error, and power of the MLE and LS methods. The nominal significance level a
was set to 0.001. All results are based on 100,000 replicates.

Table 1 shows the results for trait 1 (null effect) and trait 2 (positive effect) in Case 1. The
MLE method provides unbiased estimation of genetic effects and correct type | error. The
LS method is approximately unbiased for £ when the confounder has no effect and the traits
are strongly correlated, and it has a negative bias for £ when there is confounding or the
traits are weakly correlated or independent. When the confounder has no effect, the LS
method substantially overestimates /. The bias is larger when the correlations are lower.
When there is confounding, the bias decreases as the correlations increase. When the traits
are weakly correlated or independent, the LS method yields highly inflated type | error,
whether or not the confounder has an effect. The type | error is also inflated when the traits
are strongly correlated and the confounder has an effect. The MLE method is more powerful
than the LS method because its standardized test statistic tends to be larger. The largest
power difference is 0.188 under y= 0.3 and r = 0.5. The MLE method always yields smaller
root mean squared error (RMSE) than the LS method (see Table S1 of the Supplementary
Material).

Table 2 shows the results for trait 1 (null effect), trait 2 (positive effect), and trait 3 (negative
effect) in Case 2. The MLE method continues to provide unbiased estimation of genetic
effects and correct type | error. The LS method tends to overestimate the effect on trait 2 and
underestimate the effect on trait 3, and the bias can be as high as 26%, which is higher than
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in Case 1. The LS method also has inflated type I error (as high as 80%) when there is
confounding. When the confounder has no effect, the LS method generally has correct type |
error, although it is not as powerful as the MLE method; the power differences are larger
when the correlations are higher, which is opposite to what we find in Case 1. The MLE
method always yields smaller root mean squared error (RMSE) than the LS method (see
Table S1). For both Case 1 and Case 2, we conducted other simulations with larger genetic
effects and lower MAFs or with 10% random missingness in all traits. The results are
similar to those of Tables 1 and 2 and thus not shown.

Due to the presence of a random sample, it was possible to evaluate the IPW method. We set
the weights for individuals with extreme trait values at 1 and set the weights for individuals
in the random sample at 9. These weights are not exactly equal to the inverse selection
probabilities, which are difficult to calculate under the sequential selection mechanism, but
the approximations are good enough for our illustration. The results for Case 1 and Case 2
are summarized in Table S2. Comparing Table S2 with Tables 1 and 2, we observe that
although the IPW method preserves the type | error, it is substantially less powerful than the
MLE and LS methods.

We also conducted simulation studies under the two-tail design. Specifically, we generated
the cohort in the same manner as in the previous simulation studies but sequentially selected
95 individuals from the upper and lower tails of each trait distribution to reach a
“sequenced” sample of 2090 individuals. The results that are analogous to those shown in
Tables 1 and 2 are summarized in Tables S3 and S4. The MLE method continues to perform
well. Because the two-tail sampling is more extreme than the one-tail sampling used in the
previous simulation studies, the LS method tends to yield more bias. The loss of power by
the LS method compared to the MLE method tends to be more severe under the two-tail
design than under the one-tail design (with maximal differences of 0.583 vs. 0.188). In
addition, the MLE method is generally more powerful under the two-tail design than under
the one-tail design (with the power difference being as high as 0.184).

We conducted additional simulation studies under simple random sampling. We generated
the cohort in the same manner as before but selected a simple random sample of 2100
individuals. The LS method is valid in this setting. The power is approximately 0.61 for all
traits with non-zero effects (positive or negative) in both Case 1 and Case 2 with any
combination of yand r. When comparing with the power estimates for trait 2 in Tables 1 and
S3 and traits 2 and 3 in Tables 2 and S4, we see that the two multivariate TDS designs are
much more efficient than simple random sampling.

To assess the robustness to the normality assumption, we simulated data in the setup of Case
1 under the one-tail design but let & follow a multivariate t distribution t (0, X), where X is
the scale matrix, and vis the degrees of freedom. We set y=0.3 and r = 0.05. We added a
variation of the MLE method that applies the inverse normal transformation to the trait
values, which is referred to as MLE-INV. The results are summarized in Table S5. The
MLE method has appreciable bias and inflated type | error for trait 1 (null effect) when vis
small but performs reasonably well when v is moderate or large. The MLE-INV method has
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better control of the type I error than the MLE method when vis small. The LS method is
biased and its performance worsens as v increases.

To compare our multivariate approach with the univariate approach of Lin et al. (2013), we
simulated a cohort of 10,000 individuals with two traits. We set the genetic variable to be
the number of minor alleles for a SNP with MAF of 0.1, the effect sizes at 0.2 and 0 for the
two traits; we did not include any confounder in the model. We adopted the two-tail design
by sequentially selecting 250 individuals from the upper and lower tails of the two trait
distributions. We used score tests for both approaches. We set the nominal significance level
at 0.001 and varied the correlation between the two traits and the proportion of random
missingness for each trait. As shown in Table S6, the univariate approach has inflated type |
error, which is caused by the underestimation of the variance in method (a) and the bias in
method (b). The inflation increases as the correlation between the two traits becomes
stronger. There is power loss in (b) as compared to the multivariate approach, which is
caused by the larger variances of the test statistics. The power difference is larger when the
correlation is higher and is not affected much by the level of missingness.

3.2 CHARGE-TSS ARIC Data

We considered the ARIC data in the CHARGE-TSS. As described, a random sample plus
individuals with extreme values for 11 traits were selected from ~9000 ARIC whites who
provided informed consent for use of their genetic data and had sufficient DNA for
sequencing. The selected individuals were sequenced for 77 genomic loci that had
previously been found to be associated with one or more of 14 traits. (Three traits were not
used for sampling in the ARIC data.) After quality control (QC), the genotype data included
31,813 SNPs and 2003 individuals. Details for the design, sample selection criteria,
genotype QC, and annotation can be found in Lin et al. (2014).

We removed individuals without PCs (calculated from GWAS data) and obtained 9103
individuals, among whom 1927 were sequenced. Table 3 shows the number of individuals
with nonmissing trait values in the cohort, the specific sampling strategy, and the achieved
number of extreme cases for sequencing, as well as that number after QC for each of the 11
traits. (Note that the numbers of extreme cases for all traits may add up to be greater than n
since some individuals may have extreme values for multiple traits.) Of the 11 traits used for
sampling, stroke is an age-at-onset trait that cannot be incorporated into our model. We
treated the 60 individuals who were selected solely due to stroke as nonsequenced
individuals. As noted before, the pulmonary function trait comprised two traits — FEV4 and
FEV1/FVC — such that the total number of traits entering into the analysis remained at 11.
C-reactive protein (CRP) and retinal venule diameter have about 20% missingness in the
whole cohort, while all the other traits have less than 5% missingness.

In the CHARGE-TSS, the selections for certain traits were based on the residuals of the
original values adjusted for various covariates. For those traits, we used the residuals in the
analysis. Most of the traits are positively correlated, and there is no pairwise correlation less
than —0.15. The correlations are 0.56 between fast insulin and body mass index (BMI), 0.49
between the two pulmonary function traits, 0.30 between BMI and CRP, and 0.22 between
fast insulin and hematocrit, as well as between fast insulin and CRP. All the other positive
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correlations are well below 0.2, and many of them are essentially O (see Table S7). We
included age, gender, study centers, and the top five PCs as covariates.

We focused on BMI. We restricted the single-variant analysis to SNPs with MAFs larger
than 5% and ended up with 2971 SNPs. We chose the additive genetic model. Table 4 shows
the top 10 SNPs for the MLE method and the corresponding LS results. The LS method
consistently yields larger effect estimates for SNPs with positive effects and smaller effect
estimates for SNPs with negative effects. This is similar to what we find in most scenarios
under Case 2 in the simulation studies. As shown in Figure S1 of the Supplemental Material,
the p-values for the MLE and LS methods are similar.

In gene-level analysis of rare variants, we considered “functional coding” variants, i.e., non-
synonymous, splicing, and stop-gain variants, and ended up with a total of 2360 variants.
We removed any targeted region with minor allele count (MAC) — the number of
individuals with at least one mutation — less than five. For MB and SKAT tests, we only
included variants with MAFs less than 5%. Table S8 shows the results for the top five
targeted regions in each of the four types of tests based on the MLE method. We also
performed gene-level tests of the global null hypothesis that there is no genetic effect on any
trait. Table S9 shows the results for the top five targeted regions in each of the four types of
tests. It would be worthwhile to follow up the regions identified in Tables S8 and S9 in
larger samples.

3.3 NHLBI ESP EA Data

The NHLBI ESP EA data consist of the six cohorts mentioned previously and include four
types of study designs. The first study is a TDS study consisting of 872 individuals who
were selected from the upper and lower tails of the LDL and BP distributions. The second
study is a random sample of 721 individuals with measurements on a common set of
phenotypes; this study is referred to as the deeply phenotyped reference (DPR). The third
study is a case-control study of early myocardial infarction (MI) consisting of 220 cases and
390 controls. The fourth study is a case-only study of stroke consisting of 335 individuals
with ischemic stroke. Exome sequencing was performed on the selected individuals at the
University of Washington and the Broad Institute. We implemented the genotype QC steps
described by Lin et al. (2013) and obtained 1,281,645 variants.

In the TDS study, we excluded individuals (either sequenced or nonsequenced) who were
not eligible for either the LDL or BP selection. In the FHS, which contains related
individuals, we removed one individual from each pair of first- or second-degree relatives.
The actual sample selections for LDL and BP were based on the residuals rather than the
original values. We used the LDL residuals (log-transformed LDL values adjusted for age,
age-squared, gender, and lipid medication) and BP residuals (mean of the residuals for
diastolic and systolic BPs adjusted for age, gender, BMI, and anti-hypertensive medication)
as the trait values in the analysis. We considered LDL as the trait of interest and removed
individuals with missing LDL values in the DPR, MI, and stroke studies. Note that
individuals with missing LDL or BP values (but not both) were still included in the analysis
of the TDS study. Table 5 summarizes the sample sizes of the four studies in each cohort
after QC.
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In the TDS study, we used both the MLE and LS methods to analyze LDL. For case-control
and case-only studies with rare diseases, standard linear regression analysis of secondary
quantitative traits conditional on the disease status yields approximately correct results (Lin
and Zeng 2009). Because early Ml and ischemic stroke are relatively rare, we performed
standard linear regression in the MI (adjusted for the Ml status), stroke, and DPR studies.
We included cohorts and sequencing centers/targets as covariates. We performed meta-
analysis of the four studies using software MASS (Tang and Lin 2013).

We restricted the single-variant analysis to SNPs with MACs =5 and ended up with 109,607
SNPs. We chose the additive model and used score statistics to ensure numerical accuracy
for SNPs with low MACs. Figure 1 shows the quantile-quantile plots using the MLE and LS
methods in the TDS study only and in all four studies. Although the trends in the quantile-
quantile plots of the TDS study appear to be similar between the MLE and LS methods, the
MLE method clearly produces more significant results than the LS method in the meta-
analysis. Table 6 lists the top 10 SNPs for the MLE method in the meta-analysis. For the
MLE method, the top SNP (chr19:45397229) in the meta-analysis is also the top SNP in the
TDS study, with the p-value in the meta-analysis being much more significant (2.08x10~10
vs. 2.64x1077). For the LS method, although the top SNP remains the same, its p-value in
the meta-analysis is less significant than that in the TDS study (1.17 x 1075 vs. 4.29 x 1077).

The forest plots shown in Figure S2 help to explain the results in Figure 1 and Table 6. The
MLE estimates in the TDS study are very similar to the estimates in the DPR, MI, and stroke
studies. (The estimates in the stroke study tend to have large standard errors due to its small
sample size.) Thus, the MLE estimates from the meta-analysis are similar to the MLE
estimates in the TDS study but with smaller standard errors. Because of its bias, the LS
method yields larger effect estimates as well as (proportionately) larger standard errors than
the MLE method in the TDS study, such that the two methods have similar standardized test
statistics in the TDS study. Because the LS estimates in the TDS study are much larger than
the LS estimates in the other three studies, meta-analysis of the LS estimates from the four
studies yields less significant results than the MLE meta-analysis.

We also performed single-variant analysis in the TDS study using the univariate approach of
Lin et al. (2013). Figure S3 compares the p-values for the multivariate and univariate
methods. The two methods yield similar results for most SNPs. This is because the
correlation between LDL and BP among individuals in the TDS study is only 0.01. Note that
the multivariate approach produces a more significant p-value for the top SNP
(chr19:45397229) than the univariate approach does (2.64 x 1077 vs. 1.24 x 107).

In gene-level analysis for rare variants, we considered variants that are nonsynonymous,
stop-gain, stop-loss, or splicing mutations. Other steps were the same as in the analysis of
the CHARGE-TSS ARIC data. The results are displayed in Figures S4-S7 and in Tables
S10-S13. The conclusions regarding the performance of the MLE and LS methods are
similar to those of the single-variant analysis. Again, the MLE method yields more
significant results than the LS method. We also performed gene-level tests of the global null
hypothesis. The results are displayed in Figure S8 and in Tables S14-S16. The strongest
signals appear in the T1 tests.
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4. DISCUSSION

Multivariate TDS is a useful and cost-effective design when investigators are interested in
multiple quantitative traits but cannot afford to sequence all cohort members. The
CHARGE-TSS and NHLBI ESP are two recent examples of this design. It is not hard to
envision that many large-scale whole-exome and whole-genome sequencing projects will
adopt similar multivariate TDS designs. As demonstrated in the simulation studies and in the
two real examples, standard linear regression without regard to the sampling design can
result in estimation bias, type | error inflation, and power loss, and the existing methods for
univariate TDS have important limitations.

In this paper, we propose for the first time a valid and efficient likelihood-based approach to
making inferences under multivariate TDS, paying special attention to gene-level tests for
rare variants. The methodology is very general and can be applied to both genetic and non-
genetic studies. The proposed EM algorithm is stable and the software is available on our
website.

Our approach is scalable to whole-exome and whole-genome sequencing studies. In our
single-variant analysis of the NHLBI ESP EA data, it took ~5 seconds on an IBM HS21
machine to perform one association analysis. The computation time increases as the number
of traits or the percentage of missing data increases. When there are no covariates or
covariates are categorical (i.e. when m is small), the computation is fast. When there are
continuous covariates, we recommend splitting the genome and using multiple CPUs.

As shown in the simulation studies, the MLE method has appreciable bias and inflated type |
error when the normality assumption on gis severely violated. In practice, one should
inspect the trait distributions and explore parametric transformations, such as the log
transformation, or the rank-based inverse normal transformation. In genome-wide studies, a
well-behaved quantile-quantile plot for the association tests would imply that non-normality
has no undue influence on the type I error.

For single-variant analysis, we compared the MLE method with the univariate LS method. It
is also possible to consider the multivariate LS method. If one is only interested in the
marginal genetic effects on each trait and the traits are completely observed for all
sequenced individuals, then univariate and multivariate LS methods yield the same results.
If there is a small proportion of missingness, then the two methods should still yield similar
results. If one is interested in the joint genetic effects on multiple traits, then a multivariate
model is necessary. We adopt a multivariate model in our MLE approach primarily because
the sampling scheme involves multiple traits. Our model is more elaborate than a univariate
model, but it is the only approach that provides valid and efficient inferences for the
multivariate TDS design.

In both the simulation studies and the real examples, all traits in the model are used in the
sampling process. In practice, investigators may be interested in secondary quantitative traits
which are not directly used for sampling but are correlated with the primary traits. (Note that
standard linear regression is valid only when a secondary trait is independent of all primary
traits, which is an unlikely scenario.) It is straightforward to analyze secondary traits with
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our MLE method. Using a multivariate normal distribution for the primary and secondary
traits, one can include each secondary trait of interest as an additional “primary” trait and
use our MLE method with these (K + 1) traits.

Our approach does not require Z for nonsequenced individuals. In the NHLBI ESP, part of Z
(sequencing centers/targets) is not available for nonsequencd individuals. In the CHARGE-
TSS, Z is available for all individuals. Incorporating Z of nonsequenced individuals into the
analysis has two advantages. First, it allows the selection of individuals for sequencing to
depend on Z. Second, it improves the efficiency of estimation. Then the likelihood involves
the conditional distribution of G given Z(1, which is the part of Z that is correlated with G.
We plan to incorporate kernel smoothing into the likelihood to handle continuous
components in Z(). Table S17 shows the estimated distribution of (Z, G) in the analysis of
the second most significant SNP in the NHLBI ESP EA sample; there is no strong evidence
of correlation between Z and G. A similar issue arises when some part of Z is subject to
missingness. We denote that part of Z and G as G and denote the rest of Z as Z. We plan to
formulate the conditional distribution of G éiven Z t~hrough general odds ratio functions (Hu
et al. 2010).

We have focused on the inference procedures rather than the design aspects. Although our
simulation studies indicate that the two-tail design can be more efficient than the one-tail
design, the optimal design remains unknown. It is unclear what the best sampling strategy is
when multiple quantitative traits are of equal interest. Because our likelihood framework
applies to any multivariate TDS, our variance formulas can be used to compare the
efficiencies of different designs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX: TECHNICAL DETAILS

A.1 Derivation of the Observed-Data Likelihood

Let V; = (Vi1, ..., Vik) T be a Kx1 vector of ones and zeros indicating which components of
Y;j are observed or missing for the ith individual. Let R; indicate, by the values 1 versus 0,
whether the ith individual is selected for sequencing. We make the following assumptions:

Assumption 1

The conditional distribution of V; given (Y;, Z;, Gj) is a function of (Y ¢*, Z;, G;) for
sequenced individuals and a function of y 2%* for nonsequenced individuals.

Assumption 2

The distribution of R = (Ry, ..., Ry) depends on (V, Y, Z, G) = {(V1, Y1, Z1, Gy), ..., (Vn,
YN, Zns Gn)} only through Ve Y = (V12 Y, ..., VN © YN), Where “” denotes component-
wise product.

Assumption 3

n N
FRIVoY)[[._ f(VilVio Yi,Zi,G)]]._ . f(Vi[Vie Y:) does not contain parameters

=n-+
Gand F.

Under Assumptions 1-2, the complete-data density for the underlying variables (R;, Vi, Vi,
Zi, Gi), i= 1, ..., N, is

f(RV,Y.Z,G)=f(R|V oY) ﬁfm, Yi Z:,Gy)

=f(R|V o Y)_fllf(Vi\VE 0 Yi,2;,Gi)fo(Yi|Zi, Gi)f(Z:, Gi) % H+1f(V|V o Yi)fo(YilZ:, Gi)f(Zi, Gi).

The observed data are (Rj, Vi, Vi-° Vi, RiZi, RiGj), i =1, ..., N, whose density is obtained by
integrating over the unobserved variables in the complete-data density, i.e.,

f(RRV.VoY RoZ RoG)
=f(RV o V)1 f(VilVio Yi. Z0.G) {[ . fo( YilZi; G)AY ™™} [(;. i)

< 11 F(ViVio Y[, {fymisf(,(mz,g dY™ | dF (z,g)
1=n+1
=f(R|V o Y)l_jlf(x/;m 0 Y;.2:,G;) H+1f(V|V oY)

n N
x [Ilfo( Y{"|Zi, Gi)f(Z:, Gi)A_HJrlfz,ng( Y%|z,9)dF(z,9),
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where Re Z = (R1Z1, ..., Ry Zn), Re G = (R1Gy, ..., Ry Gy), and Y™iS s the missing part of

n N
Y. We can ignore f(BIV o Y)[T._ f(Vi[Vio Y0, Z;, G)[_ . f(VilVio Yi) pecause
of Assumption 3. The remaining part of the above density is exactly the observed-data
likelihood given in (2).

A.2 Estimation

To calculate the MLEs for (3), we use the EM algorithm in which missing data contain the
partially missing Y;’s and the missing observations on (Z, G) for individuals not selected for
sequencing. The complete-data log-likelihood function is

N m
> [ZI{(Z,-, Gi)=(z;:9;)} {Ingo(Yi|zj:gj)+]0ng}] :
i=1 | j=1

At the tth iteration, the M-step maximizes

N m
~(t) obs A
Zzwz] [E{]ngo(Y’b|z]agj)‘ Yib ,Z],gjﬂ }+10gqj:| )

i=1j=1

®)

where E(-| Yy obs, zj,9j3 0 ) is the conditional expectation given y ¢, (Z;, Gj) = (3, ;).
®

evaluated at 69, and ¢,; is the conditional probability of I{(Z;, Gj) = (z, g)} = 1 given
Yo%, (21, 1), -, (Zms Om), evaluated at 60, g0 4(®). That is,

I{(Zzan):(Z]»gj)} i:l,...,n;
() Ta(t) (bes\zj ,Qj)ti<t)

Vi = b j() i=n+1,...,N.
obs A (¢
;-fé(t) (Y7%121,91)4;

Write W;=(g;, z;f)T and = (A7, ¥")T. The M-step involves the following calculations:

-1
(ﬁ;(f+1)) (E Z’% W®2> [Z zw” "BV Y, zj,g]ﬂ }W s 1<Sk<K,

1=1j= i=15=1

(t+1)

, ) (o
> 1zzw() {(Yi—n(””Wj) Y 29,0 }

i=1j=
A(t41) _ o1 N 2(8)
q; =N i;wij )

where 7). is the kth row of 7, and a®2 = aaT. We start with initial values 740 = 0, £0) being
the sample covariance matrix based on those Y;’s with complete observations, and
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0)_ 1\

= H{(Z;,G))=(z;,9;)} . . . .
aG=n ; { )=(z; g])},j =1, ..., m, and iterate until convergence to obtain the
MLEs (8 % X qq, -, qm)- In the above expressions, the conditional expectations can be

evaluated by using the fact that the missing part of Y;, denoted by Y, given y ¢%* and (3,
gj), follows a normal distribution with mean

. . mo oo, —1 b .
Bl gy zity D} (Y —B7"g;—¥{"=;) and variance

mm mo oo, —1 mo, T X . X
Y. > oY -}, where gmis and gobs are the corresponding parts for y s
and y'?%s in 8, and the same partitions apply to yto yield 4™ and ~ 2% and to X to yield
ST and
We estimate the asymptotic covariance matrix of the MLES by the Louis formula (Louis
1982). We use Ay to denote the (k, I)th element of any matrix A. Fori=1,...,Nandj=1,

..., m, we calculate the derivatives of log f(Yi|z, gj) + log g; to obtain the {K(p + d) + K(K +
1)/2 + m} x 1 complete-data score vector

}T

l1ij:[5T ;

T T
1ij""’SKZjaTllijaTlmj,... T Pt

» L KKy i

A —1
where Sij:Wje;fz (Y,;—nW;), with g being the kth canonical vector of length K, i.e.

with 1 in the kth position and 0 in all the other positions,

Tklij:—%{l-FI(k # l)}(iil)kﬁ%{lﬂ(k %* l)}(Yi—ﬁW'j)Tiil(elirelk)iil(Yi—ﬁWj), k<l

with e, =eej and Pj; = (0, ..., 0, 1/g;, 0, ..., 0)T. We also calculate the second derivatives
asa{K(p +d) + K(K+ 1)/2 + m}x {K(p + d) + K(K + 1)/2 + m} matrix, which is the block
diagonal matrix

li1i5 0

mx{K(p+d)+K(K+1)/2} l22ij

lo::— {K(p+d)+K(K+1)/2} xm
21

where
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- 981, 9S1; 851” dShz ~
any o e ) 1, KK
05 ki) 95 i) 08 kij 08 ki
om i a2:11 ZKK
L= os; T 08y T oy, amiy )
3211 8Zn 8211 9 KK
851, T 9Spy T 0Tppy Ty ki
D DI O D3
and lppjj is a diagonal matrix with diagonal elements {0, .. l/qj, , ..., 0}. In the above
matrix,
OSkij

A —1
o =—WWle Ty e

. ’ ’ a—1 Sl n
aaZSkl,] =—3{I+I(K #1)}W;ely (eypte)y (YimqaWj),
K

%my_ MI+1(k # DHIHIK # O} (eprten) |
LIk # DI # )Y W)
{ifl(ek'ﬁrel' )iil(ekz-kez;c)iil} (Yi—nWj)

{1+I(k¢ ) { 14+1(K ;tl')}(Y‘—ﬁW»)T
{5 (euren)s eypren ) (YW,

We then calculate the information matrix as

N m
Q Z szJE{l27]|Y0bs zJagJ} Z[ quLJE{l |Yqu5azjagj}

i=1j5=1

®2
- (leiij{luj Y, 2, 9]'}> ].

m

To account for the constraint that Z =14 1 we define D to be the derivative matrix of (ﬂ
¥, 2, A1, -, Qm) With respect to (8 ¥, X, 41, -+, Qm-1)- Then, the covariance matrix for (8, ¥,
X, gy, Om-1) is estimated by © = F~1, where F = DTQD.

A.3 Asymptotic Properties

Let © denote the parameter space of 8, which is a bounded open set in the interior of the
domain of 8 and F denote the space of the joint distributions of (Z, G). Let @ € © and Fy €
F denote the true values of fand F. We impose the following regularity conditions and state
the asymptotic results in Theorem 1.
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Assumption 4

With probability one, Pr(R =1, Vy = V= 1|V - Y, Z, G) is bounded away from zero, for each
pairofkand | € {1, ..., K}.

Assumption 5

For any nonzero fand y, Pr(fG + yZ=0) < 1.

Assumption 6

Theorem 1

The density function of Fg is positive in its support and continuously differentiable with
respect to a suitable measure.

Under Assumptions 1-6, and F(-A, -) are consistent in that |0: G| + supz,g|F(2, 0) - Fo(z 9)|

— 0 almost surely. In addition, \/E(é_eo) converges in distribution to a zero-mean normal
random vector whose covariance matrix attains the semi-parametric efficiency bound.

Proof—The observed-data likelihood given in (2) is similar to the likelihood given in (6) of
Lin and Zeng (2006), which pertains to haplotype rather than genotype effects. In (2),
fg(YOPS|Z, G) is the density of a multivariate linear regression model with partial missingness
in'Y, whereas in (6) of Lin and Zeng (2006), mg(Y, X; 6), which reduces to P, g Y [X) when
haplotypes are replaced by genotypes, is the density of a univariate generalized linear model
with Y being always observed. If we can verify that Conditions 1-3 for P, g £ (Y|X) in Lin
and Zeng (2006) are satisfied by f¢(YPS|Z, G), we can use Theorem 1 of Lin and Zeng
(2006) to show the consistency, asymptotic normality, and asymptotic efficiency of our
estimators.

Before verifying Conditions 1-3 in Lin and Zeng (2006), we need some additional notation.
Suppose that there are s distinct missing patterns in Y, each with a positive probability of
being observed. Let & be the indicator of the tth missing pattern. Let Y°PS(t) and Ymis(t)
denote the observed and missing parts of Y for the tth missing pattern, t =1, ..., s. Then

s 5
fo(YoPSZ, G) can be rewritten as [ [, {fo( v |z,6)}",

Condition 1 in Lin and Zeng (2006) pertains to the identifiability of the regression model.
Suppose that two sets of parameters fand &yield the same likelihood value. Then

I1,_ {fe(Y*"0|z, e =[1,_ {a( Y2, @)} for sequenced individuals. By
Assumption 4, we can find, for each pair of kand | € {1, ..., K}, some tg € {1, ..., s}, such
that Y and Y| are observed in the toth missing pattern. Setting &, =1, & =0, and t # to, we
have fg(Yo0s(t0)|Z,G) = f(Y°Ps(t0)|Z,G), where both sides are multivariate normal densities.
Because Yy and Y; are components of Yos(0), we have 7 = 7K 7 = 7, S = Sk St = 2,
and Xy = Z|;|. Condition 1 in Lin and Zeng (2006) is verified.

Conditions 2 and 3 in Lin and Zeng (2006) are the same if we replace haplotypes by
genotypes. Thus, it remains to show that the information operator for and F is
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continuously invertible at the true parameter values. This is tantamount to showing that the
score function at any non-trivial submodel is non-zero because the information operator is
the sum of an invertible operator and a compact operator mapping the score space of (&, Fg)
to itself. To this end, suppose that there exists a constant vector u, such that

.0
T obs(t) —
u {ti_ltst—aelogfo(Y |Z, G)} 0. (A1)

T +
Letb® = 0", .60y =DV D)} (VD o (Y W)}, where VO
represents V in the tth missing pattern, D(V() represents the diagonal matrix with the
diagonal vector being V(®, and A* represents the Moore-Penrose generalized inverse of any
square matrix A. Then

7] T T
51086 (Y D12,G)=| (") ..., (SY)

T
t t
% U N

) KK )

where 5" =w{"), and
1 1
T,S):—E{Hz(k # l)}[{D(V(t))ZD(V(t))}+]kl+§{1+1(k 200 k<l

By Assumption 4, we can find, for each pairof kand | € {1, ..., K}, k<1, some ty € {1, ...,
s}, such that ;") =1;(")—1. Set &, = 1, & = 0, and t # to. Since Yx and Y; can take arbitrary
values and 5\’ and v are non-degenerate linear functions of Yy and Yj, we see that »."’
and bl(tO) can take arbitrary values. By examining the linear and quadratic terms of bgf’) and

bl(tO) in equation (A.1), we conclude that their corresponding coefficients must be zero. That
IS, ug W=0, uj W=0,and uy =0, where u, uj, and uy are the components of u associated

with 59, 5", and 7", respectively. By Assumption 5, ug = 0 and u; = 0. It follows that u
= 0. Thus, the score function is non-zero at any non-trivial submodel, and Conditions 2 and

3in Lin and Zeng (2006) hold.

Condition 1 suggests that we need to observe with positive probability each pair of
components of Y in some individuals selected for sequencing in order for the MLE method
to be applicable. We do not require a fully-observed Y for any individual. On the other hand,
both the CHARGE-TSS ARIC data and NHLBI ESP EA data contain a large proportion of
sequenced individuals with fully-observed Y. Thus, Condition 1 is not an issue but mainly
serves theoretical purposes.
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A.4 Association Tests

For Wald tests employed in single-variant analysis, we estimate all parameters under the
alternative hypothesis. Suppose that we decompose ginto (ﬂaT, ﬂE)T and wish to test the null
hypothesis £:3,=0. The Wald test statistic is 7,, = ﬁaTQ;alfia where A, is the MLE of A,
and 44 is the covariance matrix of £, which is the submatrix of Q corresponding to £,. We
refer T, to the X?ia distribution, with the degree of freedom d, being the dimension of £,. In
particular, to test the genetic effect on each trait, we consider the null hypothesis Hék):ﬁkzo

fork=1, ..., K. The test statistic is 7}, = ﬁi/Qkk, where Qy is the variance estimate of ﬂkf

We refer Ty to the 2 distribution.

Gene-level tests for rare variants rely on score statistics. To test the global null hypothesis
that there is no genetic effect on any trait, i.e. Hp: = 0, we calculate the restricted MLE of
(7. 2, qy, **, Qm-1) under Hq. This is accomplished through the above EM algorithm in
which Bis set to O and only (y, X, g1, -+, Qm-1) is estimated. The score statistic for testing

N ()
Ho: f=0is U= Z;jz::l%]l“{ where lﬁg is the subvector of I3j; corresponding to 4. It can
be shown that U; is asymptotically normal with mean O and covariance matrix

{ Fy Fip }

Vi=F),—FyF,, Fy;, where| F21 Fy |is the partition of F with respect to fand the
other parameters.

For T1 and T5 tests, G is the total number of mutations among variants whose MAFs are
below 1% and 5%, respectively. For the MB test, G is the weighted sum of mutations with
weights defined as {MAF(1 - MAF)} Y2 for each variant (Madsen and Browning 2009).
For the above three tests, G is a scalar, and d = 1. The test statistic for testing Hp: #=0is

T(1y = U{ Vi ' UL We refer Ty to the x2 distribution.

For SKAT, G is a vector of the genotypes of individual variants within a gene. A SKAT-

type statistic can be defined as @, = U BU,, where B is a diagonal matrix of weights that
depend on the MAFs through a beta function. The null distribution of Q, is approximated by

Kd | o
ijlijLj, where (A1, ..., Akq) are the eigenvalues of V;/2BVY/2 and (X3 15+ X} )

are independent y 2 random variables (Wu et al. 2011).

To test the genetic effect on a particular trait, say, the koth trait, i.e. Ho: f,= 0, where A is
the koth row of Breflecting the genetic effect on the Kqth trait, we estimate ({mcdk=1,...,k kzko»
Yo 2 d1s - Gm-1) under Ho. This is accomplished through the above EM algorithm (with a
modified M-step) in which A is set to 0 and only ({mqk=1,... K kzkg: g 2 A1, " Om-1) IS
estimated. The M-step for estimating 7 is
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-1
~ N " T ~ () -1 N m .
{ngt+1)v e 77](gz+1)> e J)Sfﬂ)] = |:AT { (Z ) ® (Z Z r‘/}zj) ‘/‘/J®2> } A:|

i=1j=1

N m (¢ A (t -1 (L
AT [z ORI {(z( )) ®WJ} BE{Y,|Y?" 2, g4 ’}} :

i=1j=1

where A is a pK x(pK - 1) matrix constructed by deleting the {p(kg —1)+1}th column of the

pK x pK identity matrix I 5, and A ® B denotes the Kronecker product of matrices A and B.

N m ~ @)

UQ = % 1 i

The score statistic for testing Ho: &, = 01is ;]; 7 , where[ l%) ]and
2 2
Ry Fy

FZ(IZ) FZ,(22> are the partitions of |y;; and F with respect to £, and the other parameters. It

can be shown that U, is asymptotically normal with mean 0 and covariance matrix

(21)
1ij

-1
V= F{-F) (F2(22)) FY All tests of Ho: A, = 0 can be constructed in a similar

manner. For SKAT tests, we use the vector of genotypes of individual variants as the genetic
variables for the kgth trait and use the burden scores for other traits to ensure numerical
stability.
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LS: TDS study
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Figure 1.

Quantile-quantile plots for the single-variant analysis of the LDL data using the MLE and
LS methods in the TDS study only and in all four studies included in the NHLBI ESP EA
sample. The values of the genomic control A, defined as the ratio between the observed

median of the test statistics and the median of the X% distribution, are also shown.
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Table 3

Summary of the ARIC Data in the CHARGE-TSS

Page 26

Trait

No. (%) of non-missing values

Sampling strategy

No. sequenced (No. after QC)

ECG PR interval

ECG QRS interval
Blood pressure

Body mass index
Fasting insulin
C-reactive protein
Hematocrit

Retinal venule diameter
Carotid wall thickness
Pulmonary: FEV;
Pulmonary: FEV,/FVC
Stroke

Random sample

Total

8996 (98.82)
9053 (99.45)
9091 (99.87)
9095 (99.91)
8896 (97.73)
7211 (79.22)
9071 (99.65)
7099 (77.99)
8725 (95.85)
8958 (98.41)

8956 (98.39)

9103 (100.00)

high residual
high residual
high/low residual
high

high

high residual
low residual
high

high

low

early onset

94 (92)
90 (89)
93 (89)
90 (79)
94 (94)
93 (90)
97 (85)
156 (154)
91 (87)

186 (185)

74 (70)
946 (913)
2003 (1927)

NOTE: For the sampling strategy, “high” (“low”) means sampling from the upper (lower) tail of the trait distribution; “residual” indicates that the
sampling is based on the residuals of the original values adjusted for covariates.
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