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Abstract
Constructing classification rules for accurate diagnosis of a disorder is an important goal in
medical practice. In many clinical applications, there is no clinically significant anatomical or
physiological deviation exists to identify the gold standard disease status to inform development of
classification algorithms. Despite absence of perfect disease class identifiers, there are usually one
or more disease-informative auxiliary markers along with feature variables comprising known
symptoms. Existing statistical learning approaches do not effectively draw information from
auxiliary prognostic markers. We propose a large margin classification method, with particular
emphasis on the support vector machine (SVM), assisted by available informative markers in
order to classify disease without knowing a subject’s true disease status. We view this task as
statistical learning in the presence of missing data, and introduce a pseudo-EM algorithm to the
classification. A major distinction with a regular EM algorithm is that we do not model the
distribution of missing data given the observed feature variables either parametrically or
semiparametrically. We also propose a sparse variable selection method embedded in the pseudo-
EM algorithm. Theoretical examination shows that the proposed classification rule is Fisher
consistent, and that under a linear rule, the proposed selection has an oracle variable selection
property and the estimated coefficients are asymptotically normal. We apply the methods to build
decision rules for including subjects in clinical trials of a new psychiatric disorder and present four
applications to data available at the UCI Machine Learning Repository.
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1 Introduction
Statistical learning has been a powerful tool for classification problems. An effective
statistical learning algorithm provides a decision rule for classification based on feature
variables which can minimize the misclassification rate evaluated against a gold standard.
Traditional statistical learning approaches for classification are either regression-model
based (e.g., multiple logistic regression) or density-based (e..g, linear discriminant analysis)
which rely on various model assumptions that may not be satisfied especially for high-
dimensional feature data. In contrast, over the past decade, the large margin classification
(e.g., Shen et al. 2003; Wang, Shen, Pan 2009) in particular the support vector machine
(SVM, Vapnik 1995), has been proven to be a successful model-free statistical learning
technique for classification and prediction problems, and is widely used in many
applications including cancer epidemiology, gene expression studies, personalized medicine,
and image classification (e.g., Moguerza and Muoz 2006; Klöppel et al. 2008; Orru et al.
2012).

The success of the large margin classification including the SVM in applications is
supported by its optimal theoretical properties: Lin (2002) showed that the SVM directly
estimates the Bayes rule which minimizes the expected missclassification rate without
estimating the class probabilities. There is a large body of literature on SVM and its
derivatives such as generalizing the standard SVM to the multi-category case (Liu et al.
2005), improving robustness to outliers (Wu and Liu 2007), and using SVM to maximize the
area under a receiver operating characteristic curve (Wang et al. 2011). With high
dimensional feature variables, usually only a small proportion of variables is expected to be
truly associated with an outcome. Therefore the feature space contains a large number of
noise variables. In this case, the standard SVM may not perform well, and alternative
approaches combines the L1-penalty or the non-convex penalty (SCAD) with SVM (e.g.,
Zhu et al. 2003; Zhang et al. 2006) to provide sparse solutions.

Applying the above methods to classify patients into disease classes (diseased versus non-
diseased, i.e., disease status) using subject-specific feature information requires knowing all
class labels. However, in clinical practices, perfect diagnosis or classification of a subject’s
disease status is often difficult. In cases where the clinically significant anatomical and/or
physiological deviation from the normal structure or function of any body part is not known,
it can be impossible to determine exactly what criteria should be used to identify a disease
status. Historically, expert opinion has been used for diagnosis. However, these opinions
may be biased or objective, and greater emphasis has been placed on incorporating empirical
evidence and using data-driven approaches to inform clinical decision making (Kraemer,
Shrout and Rubio-Stipec 2007).

Although gold standard disease status is often unknown, one or more auxiliary markers
informative of the latent disease status may be available, and these markers have different
distributions in diseased and non-diseased subjects. For example, for some psychiatric
disorders, especially new disorders such as complicated grief (Shear et al. 2005), different
diagnostic criteria sets have been proposed in the clinical literature, but there is no definitive
measure for this condition (Prigerson et al. 2009; Shear et al. 2011). Despite this fact, feature
variables such as symptom rating scales are available and appear to be effective screening
tools for complicated grief. In addition, informative markers for disease severity (e.g., Work
Social Assessment Scales, Mundt et al. 2002) are often measured in clinical studies to assess
disease-related impairment in functioning. Another example where gold standard class
labels might be unavailable is in cancer research. The research goal is to build a prediction
model for tumor subtype from feature variables such as subject’s genotypes, in a situation in
which accurate but invasive biomarkers (e.g., tumor histology or physiology) are available,
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but do not completely identify subtypes. It is desirable to build a model for tumor subtypes
from the less invasive tests (genotype profile) instead of an invasive diagnostic test (tumor
histology) obtained from biopsy.

There is a large body of literature proposed for unsupervised learning where all the class
labels are unknown (e.g., Hinton et al. 1999; Xu et al. 2004). In particular, Nigam et al.
(1998) proposed parametric methods to perform text mining through mixture models and an
EM algorithm. Xu et al. (2004) proposed a maximum margin clustering using SVM where
all possible combination of the class labels enters in an exhaustive search and the one with
the minimum loss is selected. Xu and Schuurmans (2005) generalized this earlier work to
semi-supervised learning and multiclass problems. Due to heavy computational burden, the
exhaustive search quickly becomes infeasible with increasing sample size (exponential
increase). Zhang et al. (2007) proposed an approximation to the exact solution to improve
computational speed and made methods in Xu et al. (2004) practical. When there are class
labels on a subgroup of subjects, Rigollet (2007) derived error bounds for semisupervised
classification and used a density based approach to achieve derived rates of convergence.
Wang, Shen and Pan (2009) proposed semi-supervised learning through an EM algorithm
(Dempester, Laird, and Rubin 1977) where conditional probabilities of missing class labels
given feature variables are computed through an iterative algorithm (Wang et al. 2008). Culp
(2011) proposed semi-supervised learning that combines feature-based data and graph-based
data for classification.

In our problem, none of the subjects have a known disease status, or class label, but all of
them have informative markers which can viewed as partial representations of the class
labels. Therefore none of the current semi-supervised large margin classification techniques
are directly applicable. In addition, existing unsupervised learning algorithms are not
appropriate because they do not efficiently extract information from the informative markers
to infer the unobserved disease status. Using informative markers directly as a surrogate
outcome for the disease status may lose information and lead to classification rules only
partially predicting the true disease status. Furthermore, when there are more than one
disease markers, it is not clear which marker to choose or what combination to use as a
surrogate for disease status.

To tackle these challenges, in this work, we propose a large margin classification-based
learning approach, implemented with the SVM, to construct classification rules without
observing a subject’s true disease status but effectively incorporating information from
available informative markers. Specifically, we view the lack of gold standard disease status
as a missing data problem, and introduce the EM algorithm for missing data to the
classification: we propose a novel pseudo-EM algorithm based on loss function as a pseudo-
likelihood. One major distinction from the traditional EM algorithm is that we no longer
model the distribution of missing data given the observed feature variables either
parametrically or semiparametrically. Instead, we leave this distribution completely
unspecified and treat the loss function of the classification as a natural surrogate. To select
important feature variables, we use a penalty function that encourages sparse fit to perform
simultaneous feature selection and classification in the pseudo-EM algorithm. The proposed
general framework is implemented with SVM. We study theoretical properties of the
proposed methodology and show that the derived decision function is Fisher consistent.
Additionally, we show that when using an appropriate sparse penalty in the EM algorithm,
this method possesses an oracle variable selection property as if the true coefficients of the
decision rule were known when the decision function is linear. In this case, the estimated
coefficients of the non-null variables are asymptotic normal. Extensive simulation studies
are conducted to compare the proposed approach with parametric alternatives and sensitivity
analyses are performed to examine the effect of violations of some assumptions. Finally,
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practical utility of the proposed method is demonstrated through constructing decision rules
for selecting patients for clinical trials of complicated grief (Shear et al. 2005) and four other
data sets available at the UCI Machine Learning Repository.

2 Methodology
2.1 Model framework and assumptions

Let Di denote the true disease status (class label) of the ith participant coded as Di = 1 for
diseased and Di = −1 for non-diseased. Let Xi denote a vector of a potentially large number
of feature variables, which are to be selected for classifying a subject into a diseased or non-
diseased group. In many applications, Di’s are not observed; instead, some disease-
informative markers are available and we denote the vector of these markers by Zi for
subject i. The observed data from n i.i.d. subjects are (Xi, Zi), i = 1, …, n. The informative
markers Zi are collected on the observed sample, but are not available on future subjects for
whom predictions are performed using feature variables Xi.

We assume that Zi and Xi are conditionally independent given a subject’s disease status Di;
that is, Zi is non-informative of the feature variables within diseased or non-diseased group.
Although this is a common assumption in the literature (e.g., Chung et al. 2006), our
proposed methods can be easily generalized to allow Zi to depend on Xi in each group (for
example, see Section 6). Furthermore, we assume that given the true class label Di, markers
Zi follow a multivariate normal distribution:

To avoid non-identifiability of group labels, we assume that it is known in advance a
particular marker component has population means that differ between groups, and for this
marker it is known whether the diseased group has a larger population mean or a smaller
mean. This assumption is usually met in practice since substantive knowledge usually
informs whether disease subjects have a larger mean or a smaller mean of an informative
marker. In our Grief study data example (see Section 5.1), Zi is a marker measuring
subjects’ functioning impairment with a larger population mean value (more impairment)
associated with diseased group. Note that this assumption does not imply that subjects with
the higher marker value are diseased due to random variability in marker values. In other
words, the informative marker alone does not fully identify disease groups. Moreover,
because of the marker variability, using a single marker may not be as informative as using
all the markers which may contain additional information about the disease status. Finally,
the Gaussian distribution assumption is not essential and it can be replaced by any
parametric distributions to model this mixture population.

2.2 Large margin classification via a pseudo-EM algorithm
When disease labels Di’s are observed, large margin classification can be used to identify
classification rules based on the feature variables, Xi. Specifically, it is equivalent to
minimizing a margin loss subject to a penalty, that is,

(1)

where L(·) is a margin loss defined by functional margin dg(x),  is a reproducible kernel
Hilbert space (RKHS) with the kernel function K(x, y), ||g|| is the norm of g in the RKHS,
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and λn is a tuning parameter depending on the sample size. Here, g(x) is a general decision
function to be estimated. Note that in many applications g(x) is often assumed to be a linear
function, that is, g(x) = b + βTx, and ||g|| = ||β||. Examples of margin loss functions include

the hinge loss L(z) = (1 − z)+ for the SVM and its variations,  with q > 1 (Lin 2002),
the ψ-loss with L(z) = 1 − sign(z) if z ≥ 1 or z < 0 and 2(1 − z) otherwise (Shen et al. 2003),
and the logistic loss log{1 + exp(z)} (Zhu and Hastie, 2005).

When Di’s are not available, we treat Di’s as missing data and adopt a pseudo-EM algorithm
for estimation. However, we do not attempt to specify a model for Di given Xi as required in
the usual EM context; instead, we construct nonparametric pseudo-probabilities and aim to
minimize the original loss function in (1) in the M-step of the algorithm. The intuition of the
proposed method is as following: since Di are missing but Zi are partial manifestation of Di,
one would naturally consider to infer disease status using available information from Zi and
use feature variables Xi to form classification rules. Taking a uni-dimensional Zi as example,
a subject with a large value of Zi has a high probability of being diseased; at the same time,
if the subject is classified as diseased by X with little loss, then one should not reclassify this
subject as non-diseased with high probability. Iterating through an EM-type algorithm
reflects how to appropriately combine information from Zi and Xi for classification.

To be more specific, we first use the assumed Gaussian mixture model to estimate μd and Σd
by maximizing the marginal log-likelihood,

where f(Zi|Di = d; μd, Σd) is the multivariate normal density function. The estimation can
easily be implemented by many existing numerical routines (e.g, McLachlan and Pee 2000).
We denote these estimators as μ̂;d and Σ̂d. Next, we impose the pseudo-likelihood function
for Di given Xi as proportional to the exponent of the negative of the objective function in
(1). Therefore, under the conditional independence assumption, the pseudo-log-likelihood
for the complete data (Zi, Di, Xi) for i = 1, …, n is (up to some constant):

The proposed pseudo-EM algorithm is then based on maximizing the conditional
expectation of this pseudo-log-likelihood given the observed data.

We carry out the following E- and M-step at the mth iteration.

(E-step)—In this step, we compute the posterior pseudo-log-likelihood of complete data
(Zi, Di, Xi) given the observed data. The posterior probability of Di = 1 given the observed
data is
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where Pr(m−1)(Di = d|Xi) denotes the conditional probability of Di given Xi. For the usual
EM algorithm, a probability model would be assumed for Pr(Di|Xi) (e.g., logistic
regression). We propose a nonparametric pseudo-probability model of Di given Xi based on
the loss function without introducing extra modeling assumptions. To be specific, we
construct

where a pseudo-density function is

(2)

and g(m−1)(x) is the decision function obtained in the (m − 1)th iteration.

(M-step)—We update the decision function g(·) by minimizing the negative conditional
pseudo-log-likelihood given the observed data, or equivalently, the conditional expectation
of (1) given the observed data. This is equivalent to solving

(3)

In the special case when L(z) is the hinge loss, this minimization problem can be carried out
as a weighted version of the usual SVM. For example, if g(x) is assumed to be a linear
function, i.e., g(x) = b + βTx, and ||g|| = ||β||, the minimization problem is

(4)

where  is the posterior expectation of Di given the observed data defined as

It follows that the quadratic optimization is equivalent to

where q = dim(β) and ξi are slack variables allowing for overlaps between classes. The dual
form of this optimization problem is
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In fact, the computation can be easily implemented using any existing SVM package (e.g.,

Becker et al. 2009): one can label the ith case as one if , as negative one if ,

and rescale the feature variables for each subject to be . A similar dual problem is
used to solve for the general non-linear decision function (3) through reproducible kernels.

We iterate the M-step and E-step until the change in the loss function is smaller than a pre-
specified threshold to obtain b̂ and β̂. Note that the distribution of Z given D enters in the
computation of a subject’s probability of being diseased (E-step) and enters the subsequent
computation of classifying disease status using X (M-step). Here Z and X are associated
through D. The methods attempt to combine information in Z and X to recover class labels
and construct classification rules.

2.3 Sparse large margin classification in EM
When the dimension of Xi is large, it is expected that only a few feature variables may be
informative for classification. Additionally, in practice it may be desirable to use less
number of feature variables for disease classification especially when the feature variables
are costly to obtain. In this case, a sparse penalty term, pλn(|·|), has been suggested to replace
the L2-norm in (1) to yield a regularized SVM when the hinge loss function is used (Zhu et
al. 2003; Zhang et al. 2006; Becker et al. 2009). Commonly used sparse penalty terms
include L1-norm or SCAD penalty. However, since L1-norm or SCAD tend to choose only
one or a few of the correlated variables, an improved regularization method with elastic net
(Enet) penalty was proposed in Zou and Hastie (2005) for regression models. Enet was
adapted to the SVM in Wang, Zhu and Zou (2008). Specifically, a large margin classifier
with a linear classification rule and elastic net penalty is equivalent to the following
optimization problem when class labels are observed:

(5)

where λ1n ≥ 0 and λ2n ≥ 0 are the two tuning parameters depending on the sample size. The
parameter λ1n controls the number of feature variables selected, while λ2n controls a
grouping effect.

The use of a sparse penalty can be easily incorporated into the proposed large margin
classification-EM algorithm, where we replace the L2-norm in the M-step by one of the
above penalty functions. For example, with correlated feature variables we use the elastic
net penalty in the implementation of the the M-step by solving

(6)
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3 Theoretical Properties

First, we justify the proposed method by showing the convergence of the algorithm in the
following theorem. A proof is given in the appendix.

Theorem 1—Let p̃[d, g(·)] = exp [−L{dg(·)} − pλn(g)], where pλn(g) is a penalty function,
and define

Then (g) is non-decreasing after each iteration in the EM algorithm. Furthermore, the
value of  does not increase if and only if the decision rule based on g(·) does not change
after an iteration.

From Theorem 1, at the final convergence of the EM algorithm, we expect the estimator for
g(·), denoted by ĝ(·), to be a local minimum for

To guarantee that we can have a global minimum, we suggest to start from a wide range of
initial values in the EM algorithm then choose the one yielding the smallest value.

By standard assumptions for Gaussian mixture models (McLachlan and Peel 2000), μ̂d and
Σ̂d are consistent estimators for μd0 and Σd0, the true values of μd and Σd, respectively. In
addition to these assumptions, we assume that

(c.1) ĝ(x) belongs to a compact set  in some normed space with norm ||·||;

(c.2) supg∈ pλn(g) = o(n);

(c.3) [log {Σd p[d, g(X)]f (Z|D = d; μd, Σd)}: g ∈ , ||μd − μd0|| < δ0, ||Σd − Σd0|| < δ0]
is a P-Donsker class for some constant δ0 > 0, where p[d, g(x)] is defined in (2);

(c.4) sup||g−g*||≥ε (g) < (g*), where

and g*(·) maximizes (g) on  (it exists due to the compactness).

Conditions (c.1) through (c.3) hold naturally when g(·) is a linear decision rule and the
corresponding β’s are bounded component-wise and L(x) is the hinge loss. Then under (c.1)
to (c.3), we immediately obtain supg∈  |n−1 (g) − (g)| = op(1). Note that (g) is
equivalent to the Kullback-Leibler information from a mixture of density functions, then
condition (c.4) is the uniqueness assumption on the maximum of the mixture distribution.
This condition can be satisfied in many cases. For example, if X is assumed to be
multivariate normal and g(x) is linear, then our subsequent Theorem 3, which requires
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condition (c.4), states that any maximum of (g) should possess the same sign as

. Thus, any maximum of (g) can be shown to be proportional to the true
linear score up to some positive constant. Consequently, the uniqueness of the maximum for

(g) is equivalent to the uniqueness of the maximum of the one-dimensional function (θg0)
for θ > 0, which can be easily verified. Particularly, condition (c.4) ensures that ĝ must
converge to g* but nothing else. The proof of this result follows from Pollard (1990) and
Theorem 5.7 in van der Vaart (1996).

The next theorem proves that the decision rule based on g*(·) coincides with the oracle
Bayes rule where all subjects’ disease labels are known if the latter belongs to .

Theorem 2—Let g0(x) be p1(x) − p−1(x) where pd(x) = Pr(D = d|X = x). If g0(x) ∈ , then
sign[g*(x)] = sign[g0(x)].

The proof of Theorem 2 is given in the appendix. Theorem 2 shows that the proposed
learning algorithm is Fisher consistent.

Next, assume that the true decision rule g0(x) is a linear function, . Then along with
the above consistency results in Theorem 2, we can further show that the estimator for the
true coefficients β0, denoted by β̂, is asymptotically normal and the sparse classification
method possesses the oracle variable selection property if an appropriate sparse penalty term
is used.

Theorem 3—In addition to (c.1)–(c.4), we assume that X has continuously differentiable
density with respect to some dominating measure and that (1, XT)T(1, XT) is full rank with

positive probability. If  where βk is the kth component of β and it

satisfies: for non-zero θ,  and , and for any M > 0,

, then

a. β̂ is consistent;

b. with probability tending to 1, sign(β̂k) = sign(β0k), where β̂k and β0k are the kth
component of β̂ and β0, respectively;

c.  converges in distribution to a normal distribution with mean zero where

β̂1 and  denote the components of β̂ and β0 corresponding to non-zero β0k’s.

The proof of Theorem 3 utilizes the local quadratic approximation of (βTx) at β0 and the
M-estimation theory. We provide the proof in the appendix.

4 Simulation Studies
4.1 Simulation design

For all simulation experiments, we generated binary disease labels Di with a success
probability of 0.5. Given a subject’s disease label Di = d, we generated a disease-informative

marker  and q-dimensional feature variables Xi = (Xi1, · · ·, Xiq)T ~ MV N(θd,
Σd) independently of Zi. We fitted a linear decision boundary, g(x) = b+βTx, and compared
the proposed SVM with pseudo-EM algorithm (SVM-EM) to: (1) an oracle procedure where
we used the gold standard disease labels as the outcomes of SVM with various penalty
functions (SVM-Oracle); (2) a two-step approach where in the first step, subjects were
classified into diseased and non-diseased group by a clustering analysis based on a Gaussian
mixture model, and in the second step, the obtained disease labels were used as outcomes in
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a regularized SVM (SVM-2stage). We evaluated performance of various methods by miss-
classification rate, area under the ROC curve (AUC), and sparsity of the fitted decision rule
since variable selection is performed. We used generalized approximate cross-validation
(GACV, Wahba et al. 2000) to select the tuning parameters when variable selection is
performed. In all simulations, the initial values of class labels were obtained from fitting a
Gaussian mixture model. We also tried a wide range of initial values and the results were
very similar.

We let q = 10, and let the sample size n = 300 or 500. For each set of simulations, 500 runs
were conducted. It is well known that using the same data to fit a model and evaluate its
performance may lead to over-optimism. To compute an honest miss-classification rate and
AUC, we simulated 100 independent validation sets. We examined three common types of
feature variables: continuous, binary and multinomial. The mean of the disease-informative
marker Zi was (μ1, μ−1) = (1.5, 0) for continuous feature variable cases and (μ1, μ−1) = (2, 0)

for binary and multinomial variable cases. The variances were .

We considered four simulation settings. The first three settings simulated independent
continuous, binary and multinomial feature variables, respectively, and the fourth setting
simulated correlated continuous variables. The SCAD penalty was used in the first three
settings and both SCAD and Enet penalties (Wang et al. 2008) are used in the fourth setting
to compare performance of different penalty functions when feature variables are correlated.
For the continuous feature variables, the mean vector for non-diseased subjects was θ−1 = (0,
0, · · ·, 0)T and for diseased was θ1 = (0, 2, 0, 2, 0, 0, 2, 0, 0, 0)T. In the binary variable cases,
we first generated ten continuous variables from the same multivariate normal distribution,
and dichotomized them as one if Xik > 0 and 0 if Xik ≤ 0 for k = 1, · · ·, 10. In the
multinomial variable cases, we imitated the real data example and generated the variables
from a multinomial distribution taking values 0, 1, 2, 3, or 4. The probability vector for non-
diseased subjects was (0.2, 0.2, 0.2, 0.2, 0.2) and (0, 0, 0.1, 0.2, 0.7) for diseased.

4.2 Simulation results
Table 1 reports the AUC, miss-classification rate, and variable selection properties under the
four simulation settings. Since SVM-Oracle uses the true disease labels, it provides the
lowest miss-classification rate and the largest AUC. The miss-classification rate of proposed
SVM-EM is only slightly higher than SVM-Oracle: the difference is less than 1.5% for the
continuous and multinomial feature variable cases and less than 2% for the binary variable
cases. The reduction in missclassification rate from our approach compared to SVM-2stage
can be 6% (5.4% versus 11.3%). The difference in the miss-classification rate between
different approaches decreases as the sample size increases to 500. The SVM-EM provides
an AUC almost identical to SVM-Oracle for all three types of feature variables. The AUC of
SVM-EM is higher than SVM-2stage for the continuous feature variable cases. The
improvement is larger for the binary variable cases, where the difference is 5.3% for n = 300
and 4.7% for n = 500. In addition, a larger sample size is required for SVM-EM with binary
variables to achieve similar performance as continuous variable, which is expected since less
information is conferred by binary feature variables. The performance of SVM-EM with
multinomial variables is in between continuous and binary cases in terms of miss-
classification rate and AUC.

In the fourth setting of Table 1, we report results under the assumption of weak correlation
between the feature variables where they have an AR-1 structure and an autocorrelation
parameter of ρ = 0.2. The miss-classification rates of the three approaches with SCAD
penalty are slightly higher than the corresponding quantities where the feature variables are
independent, and the AUCs are slightly lower. Here we also implemented the Enet penalty
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due to its desirable grouping effect with correlated variables. The Enet SVM-EM has higher
AUC and lower miss-classification rate than SCAD SVM-EM, which is expected (last block
of Table 1, setting IV).

In Table 1, we also report variable selection properties. The column indexed as “C” is the
mean number of variables with non-zero coefficients correctly estimated to be nonzero; “IC”
is the mean number of variables with zero as coefficients incorrectly estimated as non-zero
in the model; and “Correct-fit” is the proportion of models that correctly select the exact
subset of the non-null variables. The correct-fit percentage of SVM-Oracle is the highest,
which reflects information gained from observing the gold standard group labels. The
percentage of correct-fit of SVM-2stage is much lower than SVM-EM in many cases. For
example, the correct-fit percentage is 75.2% for SVM-2stage versus 87.8% for SVM-EM
with n = 500 under the multinomial case. The performances of SVM-EM and SVM-2stage
improve substantially when the sample size is increased to 500.

When the feature variables are correlated (the fourth setting in Table 1), we see that the
performance has a similar trend as those with independent variables in setting I. In terms of
percentage of correct-fit, the improvement of using elastic penalty is considerable compared
to SCAD for both SVM-EM and SVM-2stage. Specifically, the improvement in correct-fit
percentage is about 37.4% for SVM-EM and about 20% for SVM-2stage with n =300, and
34.4% for SVM-EM and 22.6% for SVM-2stage with n =500. As for the computational
speed, on average the computing time for n = 300 is 1.2 minutes for each repetition and 1.5
minutes for n=500 with a Dell Workstation with 2.67GHz CPU and 4G memory. The
median number of EM iterations is 16 for n = 300 and 12 for n = 500.

4.3 Sensitivity analyses
We present four sets of sensitivity analyses. In (A), we study sensitivity to the normality
assumption in (1); in (B), we study sensitivity to the conditional independence assumption
of Zi and Xi given Di; in (C), we examine sensitivity to the pseudo-class-probabilities in (2);
and in (D), we examine semi-supervised learning using different proportions of missing
disease labels. For analysis (A), we generated Zi from a Laplace distribution with mean zero
and variance two for the non-diseased subjects and mean two and variance two for the
diseased subjects. Other simulation parameters remain the same as the independent
continuous feature variable case. For (B), we generated Zi and Xi jointly from a multivariate
normal distribution given a subject’s group status, where Zi was correlated with Xik with ρ =
0.1 and Xik’s were mutually independent. The other settings are the same as the first
scenario in Table 1. For (C), we generated data the same way as in the third scenario in
Table 1. For (D), the setting is the same as the first scenario in Table 1.

Tables 2 summarizes the sensitivity analyses results. From setting (A), we see that although
the informative marker was generated from a Laplace distribution, the miss-classification
rates and the AUCs are comparable to those where normality is satisfied. The estimated
coefficients show ignorable biases for all three approaches at both sample sizes (results not
shown here). In terms of variable selection properties, the performance of SVM-EM is also
similar to the case where the distribution of Zi is indeed normal.

From setting (B) in Table 2, we see that although Zi is correlated with Xi given Di, the
relative performance of the three approaches shows similar patterns as the independent case.
The miss-classification rates and AUCs exhibit minimal changes. The variable selection
performance (e.g., percent of correct-fit) is affected by about 10% to 20%.

In analysis (C), we investigated an alternative approach of computing pseudo-class-
probabilities:
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(7)

This expression implies that when the slack variables , which suggests
no misclassification error, we predict a subject’s disease status with high confidence (a
probability of one). When 0 < ξi < 1, we predict a subject’s disease status with a probability
less than one but greater than 1/2 (random guess). If ξi > 1, then misclassification occurs,
and we predict the disease status with probability less than 1/2, which is worse than a
random guess. The results show that using (7) achieves similar miss-classification rate, AUC
and model sparsity as using (2). This suggests that SVM-EM is not sensitive to the
estimation of class probabilities as long as the ranking is preserved through a monotone
transformation of the slack variables.

In analysis (D), we compared the proposed methods with semi-supervised learning where
the true class labels are known on a subset of subjects. In the implementation of semi-
supervised learning, we randomly selected a subset (10%, 20%, or 30%) of subjects to
reveal their true disease labels, while using the estimated conditional probabilities
Pr(m−1)(Di|Xi) by the method in Wang, Shen, and Liu (2008) to recover disease status of the
rest of the subjects. We see that the informative marker guided SVM-EM without using any
disease labels (setting I in Table 1) has better performance than semi-supervised learning
when 10% of the true labels are revealed, and SVM-EM has about the same AUC and
missclassification rate as semi-supervised learning when 20% of the disease labels are
available (setting D in Table 2). Note that with 30% of the labels revealed, the
missclassification rate and AUC of the semi-supervised learning is similar to SVM-oracle.
In other words, in this setting using more than 30% of the disease labels does not appear to
improve prediction when the informative marker is available on all subjects. In terms of
variable selection properties, performance of SVM-EM is in between revealing 20% and
30% of the disease labels in a semi-supervised learning.

In summary, the proposed method is not sensitive to the normality assumption, the
conditional independence of Xi and Zi given Di under a weak dependence structure, or the
computation of the pseudo-class-probabilities. The informative marker recovers information
from disease labels to perform classification when the labels are completely missing.

5 Real Data Examples
5.1 Application to complicated grief studies

An application of the proposed methods is to contribute to the recent efforts on constructing
a classification algorithm for a new psychiatric disorder, Complicated Grief (CG; Shear et
al. 2005). CG refers to a form of grief in which the natural healing process is derailed and
debilitating symptoms persist (Shear et al. 2005). CG (renamed as persistent complex
bereavement disorder) is currently being proposed for inclusion to the Diagnostic Statistical
Manual of Mental Disorders, with specific criteria still to be determined. Crucial to its
ultimate usefulness is the ability to accurately diagnose patients suffering from this disorder.
Several criteria sets for CG have been proposed (e.g., Prigerson et al. 2009; Shear et al.
2011a), but there is no gold standard for disease status. However, there are several disease-
specific symptom rating scales that have been shown to distinguish patients with CG from
other bereaved patients and bereaved people in the general population. Most of the existing
studies use some version of the Inventory of Complicated Grief (ICG), a self-report
questionnaire (Prigerson et al. 1995) to assess disease symptoms. In addition, there are also
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other measures that assess grief-related impairment in functioning, such as the Work and
Social Adjustment Scale (WSAS), a self-report that measures work and social impairment
attributable to CG (Mundt et al. 2002).

The goal of this analysis is to construct a classification rule to screen CG patients for clinical
trials by combining ICG variables, using WSAS as our disease informative marker. WSAS
is an indicator of disease severity and a prognostic marker of future functioning/disease
severity outcomes (e.g., correlation between baseline WSAS and end of study ICG was 0.74
in Shear et al. 2005). Here the feature variables are disease-specific symptoms as measured
by the ICG. WSAS is not treated as part of the feature variables since it measures
functioning impairment caused by complicated grief. By accounting for WSAS, we identify
subjects with CG symptoms who may have differing future outcomes.

We use independent data sets for training the classifier (training set) and evaluating its
performance (validation set). Subjects included in the training set were recruited in a
randomized controlled treatment study of individuals with CG (Pittsburgh study; Shear et al.
2005) comparing a specific CG Psychotherapy compared to Interpersonal Psychotherapy.
Subjects included in the validation set are being recruited for two ongoing treatment studies
for CG: Optimizing Treatment for Complicated Grief (also called Healing Emotions After
Loss: HEAL, Duan et al. 2011) and Complicated Grief for Older Adults (CGTOA, Shear et
al. 2011b). HEAL is a multi-site study to compare response to antidepressant medication
administered with and without CGT among bereaved individuals. CGTOA is a CGT
treatment study in an older population (at least 50 years of age).

There were 175 subjects (67% women) with a baseline visit in the Pittsburgh study included
in the training set. Here our feature variables to be selected and combined include 19
variables with integer values ranging from 0 to 4 in the ICG questionnaire and the disease-
informative marker is the continuous functioning measure, WSAS. We applied the proposed
SVM-EM with a linear decision rule and SCAD or Enet penalty. We compared the proposed
method with a standard approach treating WSAS as the outcome and fitting a penalized
regression with Enet penalty (standard Enet). We used generalized cross validation to
choose the tuning parameter for SVM-EM, and ten-fold cross validation for the standard
penalized regression approach.

The selected variables and their coefficients from the three analyses are summarized in
Tables 3 and 4. SVM-EM with SCAD selected 5 variables, SVM-EM with Enet selected 8,
and standard Enet selected 4. A previous factor analysis limited to people clinically
diagnosed with CG shows that the ICG variables can be grouped into six domains (Simons
et al. 2011). We see that there are three variables that are selected by all three approaches,
and they appear to have strong effects across the analyses. Standard Enet missed the domain
“Shock and disbelief”, while the two SVM-EM approaches selected one variable from this
domain. We note a clustering effect of Enet SVM-EM which is consistent with the
motivation for such a penalty function: it tends to select multiple correlated variables from
the same domain. For example, it chose four variables from the first domain, while SVM-
EM with a SCAD penalty only selected two. None of the approaches chose any variables
from the domain “Hallucinations of the deceased”.

Next, we evaluated performances of the three approaches using the independent validation
data collected in HEAL and CGTOA. There were 196 subjects with a baseline visit in these
studies, including 109 from HEAL and 87 from CGTOA. Among those, 77% were female.
We computed the correlation of the fitted predictive scores (i.e., β̂TXi) with various other
clinical measures known to be associated with CG. The measures being evaluated include
the Structured Clinician Interview of Complicated Grief (SCI-CG), Total Impact of Event

Wang et al. Page 13

J Am Stat Assoc. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Scale (IES-T), Impact of Event Scale – Avoidance (IES-A), and Impact of Event Scale –
Intrusion (IES-I). We see from Table 4 that the two SVM-EM approaches have higher
correlation than the standard Enet on all four measures. For example, Enet SVM-EM yields
predictive scores with a correlation of 0.47 with SCI-CG, compared to standard Enet with a
correlation of just 0.34. As for the two SVM-EM approaches with different penalty
functions, SVM-EM with Enet penalty provides a higher correlation for SCI-CG, while it
yields a higher correlation on the three IES measures with SCAD penalty.

We present the decision boundary of Enet SVM-EM in Figure 1. We show the decision
boundary as a function of two summary indices: the first index sums over selected variables
in “Domain 1” and “Domain 2” in Table 3 and the second index sums over the selected
variables in the remaining domains. We color each subject in the validation set using a
median split of the total ICG scores: the red dots indicate subjects with ICG≥42 (more
symptoms), and the black triangles indicate subjects with ICG < 42 (less symptoms). We
can see that using a median split to classify patients’ symptom severity does not always
agree with the fitted decision rule which incorporates the information from WSAS. The
disagreement rate is about 15%.

In summary, these analyses suggest superior performance of SVM-EM due to accounting for
a mixture of diseased and non-diseased subjects, borrowing information from a disease-
informative marker and using an appropriate penalty function to account for correlated
variables. Future studies may be designed to collect data on the natural history of bereaved
subjects’ normal grief recovery process as well as CG patients’ symptomatology and
functioning process. This information can be used as markers informative of disease
progression to assist deriving classification rules to better distinguish diseased and non-
diseased subjects.

5.2 Application to UCI data
In addition, we analyzed four benchmark data examples provided to the UCI Machine
Learning Repository (Blake and Merz 1998) including Wisconsin breast cancer (WBC),
Pima Indians diabetes (PIMA), HEART and Spam email (SPAM). WBC data contained
subjects with benign or malignant breast tumors. There are 9 biomarkers computed from a
digitized image of a fine needle aspirate of a breast mass, and they describe characteristics
of the cell nuclei present in the image. PIMA data include females at least 21 years old of
Pima Indian heritage among whom, 268 tested positive for diabetes, 500 tested negative, and
there are 8 biological attributes available. HEART data contain 270 subjects and 13
biological attributes associated with presence and absence of heart disease. SPAM data
classifies spam emails using 57 attributes and 4601 instances which are frequencies of a
particular words or characters.

Although the class labels for all these data are available, to use these data as examples to
illustrate our methods, we do not use any of the class labels, but combine 20% to 30% of the
attributes as informative markers, and implemented SVM-EM using the remaining attributes
as feature variables. We also implemented SVM-oracle where the class labels on all training
cases were used. For all these analyses, we randomly partitioned data into a training set and
a testing set. For the SPAM data, 1000 cases were randomly selected as training and the rest
as testing. For the other three data sets, 200 cases were randomly selected as the training set.
The testing set is used to compute the AUC and missclassification rate of the decision
function fitted from the training set by SVM-EM or SVM-oracle.

We summarize the results for each data set in Table 5. We see that when the marker is
informative and has a strong correlation with the disease status, SVM-EM can almost fully
recover information contained in disease labels. For example, for the WBC data where the
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correlation between the informative markers and the true disease status is 0.867, SVM-EM,
the missclassificaiotn rate and AUC of SVM-EM is almost identical to the case where the
class labels are all known (SVM-Oracle). For the SPAM data where the correlation is
moderate, the performance of our approach is very close to SVM-Oracle. For the HEART
data when the correlation is weak (0.378), in the absence of any class label, SVM-EM still
recovers information from the distribution of the informative marker and its
missclassification rate and AUC are only 7% and 6% different from the ideal case of
knowing all class labels. Lastly, we compare our approach with a none-SVM based
approach, K-means clustering. We found that SVM-EM has notably lower missclassification
rate than K-means clustering for SPAM data (i.e., SVM-EM: 16.1% versus K-means:
41.2%) and PIMA data (i.e., 36.5% versus 40.4%) and it has comparable performance for
WBC (i.e., 4.5% versus 4.8%) and HEART (i.e., 26.7% versus 23.4%) data. In summary,
the UCI data analysis shows that SVM-EM achieves similar classification accuracy as
SVM-Oracle with a moderate or large correlation between disease status and the informative
marker, and it still recovers partial information when the correlation is weak.

6 Discussion
We present large margin classification in the setting of missing class labels but with
presence of informative markers. Such scenario occur frequently in clinical research on
disease diagnosis/classification and biomarker studies, especially for disorders where no
clinically significant anatomical or physiological deviation exists to be the gold standard
disease status. Our theoretical examination shows that the proposed method is Fisher
consistent and has an oracle variable selection property under some general conditions in
Johnson, Lin and Zeng (2008). Simulations show that SVM-EM has a competitive AUC and
missclassification rate compared to SVM-Oracle where the gold standard class labels are
observed. An intuitive explanation is that SVM-EM recovers information available in the
class-informative markers to inform discriminating two classes of subjects. The missing
class labels affects the ability to choose the correct model more than the AUC or
missclassification rate. This suggests that the unobserved gold standard outcomes have a
greater influence on variable selection than on classification or prediction performance.
Although the proposed methods are presented through SVM, they can be easily generalized
to other loss-function-based learning algorithms such as binomial deviance or squared-loss-
based classifiers.

We constructed pseudo-class-probabilities to guarantee the classification rule is a Bayes rule
as if the class labels were observed. However, as long as a monotonicity constraint is
preserved, the classification performance of SVM-EM is not sensitive to the specific form of
the pseudo-class-probabilities. It may be worthwhile to bear in mind that these pseudo-
probabilities do not estimate the true class probabilities. A more computationally involved
approach in Wang, Shen, and Liu (2008) may be used to construct nonparametric estimation
of class probabilities using the final class labels and outputs from SVM-EM. Our proposed
algorithm implemented on a Dell PC with 2.67GHz CPU and 4Gz memory is more than 10
times faster than the maximum margin clustering in Xu et al. (2004), because Xu et al.
(2004) used an exhaustive search over a 2n dimensional space of all possible combinations
of class labels (an average of 17 minutes on data with sample size of about 350; See Table V
in Zhang et al. 2007; In the table Xu et al. method is referred as MMC).

Here we assumed conditional independence of the auxiliary markers and feature variables
given the true class labels. It is possible to relax this condition by including the feature
variables in the Gaussian mixture model, i.e., replace f(Z|D) with f(Z|D, X). When a
nonparametric approach is desirable, one may consider a joint learning algorithm of Z on
(D, X) simultaneously with D on X.
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Other applications of the proposed approach include clinical studies where accurately
labeling a subject is far more expensive or intrusive (e.g., bioposy to test tumor type) than
measuring an informative marker (e..g, obtaining genotypes associated with tumor type). In
this case, it is desirable to classify feature patients using the cheaper or less intrusive feature
variables. For example, it may be desirable to derive disease screening rules from a self-
report questionnaire that is easy to administer while drawing information from a more
expensive clinician administered interview, despite neither being a gold standard disease
diagnosis. A practical note is that it is easy to include interactions of feature variables in the
proposed framework. In most clinical applications, interaction between symptoms is usually
not considered when constructing the diagnostic criteria set of a disorder. Furthermore, the
proposed method has the potential to provide a channel to introduce subject’s disease
prognostic factors and treatment response markers into the diagnosis criteria set of a
disorder.

In some applications the gold standard outcome may be more than two groups (for example,
a measure of the confidence of disease diagnosis ranging between 0 and 4). It is possible to
extend the SVM-EM to the multi-class problems by accounting for missing class labels in
loss functions for multi-category SVMs (Liu et al. 2005). Another extension is to use
support vector regression for dimensional disease diagnosis (Kraemer, Shrout and Rubio-
Stipec 2007) which can be treated as continuous outcomes.

It is easy to extend the the proposed method such as the SVM-EM to handle the case when
some class labels are observed and others are not, thereby easily incorporating expert’s
opinions in the current learning algorithm. For example, when there are gold standard
disease diagnoses provided by clinical experts on a sub-sample of the subjects, the observed
Dj on these subjects are readily incorporated into the pseudo-EM algorithm framework. Let

 index the set of all subjects with observed class labels, and let  index all subjects without
class labels. Then the objective function in the M-step is

and in the E-step we only update the posterior probability for subjects with missing disease
labels. This leads to a semi-supervised learning approach assisted by auxiliary markers.
Another related scenario is that in some studies, an imperfect reference measure of class
labels may be collected on all subjects. We can incorporate this reference diagnosis as part
of the vector of Zi to improve prediction and classification.

In clinical applications it is often the case that false positives and false negatives have very
different consequences, and therefore should not be treated equally. The method can be
modified to incorporate the different costs associated with these two different kinds of
errors. Specifically, Lin, Yee and Wahba (2002) argued that in the case of disease
classification, the expected cost of the future misclassification, rather than the expected
misclassification rate, should be used to measure the performance of a classifier. Based on
this, a weighted large margin classifier solves
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where Ω(Di) is a weight function that represents the costs for false positives and false
negatives. The current method can be modified to incorporate the different costs of false
positives and false negatives. Furthermore, weights can be used to adjust for sampling
design such as in a case-control study when population prevalence is available.

Lastly, evaluating validity of a classification rule without a gold standard class label is an
important statistical problem in its own right. There is a body of literature in diagnostic
medicine on evaluating accuracy of diagnostic tests in the absence of a gold standard (see
for example, Rutjes et al. 2007), which is not elaborated on here, but will be considered in
future work.

Acknowledgments
We thank the Editor, Associate Editor and two anonymous reviewers for their constructive comments which have
led to significant improvement of the quality and presentation of this work. This work is supported by NIH grants
NS073671-01, MH60783 and MH70741.

References
Becker N, Werft W, Toedt G, Lichter P, Benner A. Penalized SVM: a R-package for feature selection

SVM classification. Bioinformatics. 2009; 25:1711–1712. [PubMed: 19398451]

Chung H, Flaherty BP, Schafer JL. Latent class logistic regression: application to marijuana use and
attitudes among high school seniors. J R Statist Soc A. 2006; 169:723–743.

Culp M. On Propagated Scoring for Semisupervised Additive Models. Journal of the American
Statistical Association. 2011; 106:493, 248–259.

Dempster AP, Laird NM, Rubin DB. Maximum Likelihood from Incomplete Data via the EM
Algorithm. Journal of the Royal Statistical Society, Series B. 1977; 39 (1):138.

Duan, N.; Lebowitz, B.; Reynolds, C.; Simon, N.; Wang, Y.; Zisook, S.; Shear, K. Factorial Clinical
Trials for Hybrid (Explanatory and Pragmatic) Research Studies: Design of Optimizing Treatment
for Complicated Grief. Poster presentation at the annual meeting of the American College of
Neuropsychopharmacology; Waikoloa, HI. 2011 Dec.

Hinton, Geoffrey; Sejnowski, Terrence J. Unsupervised Learning: Foundations of Neural
Computation. MIT Press; 1999.

Johnson B, Lin D, Zeng D. Penalized Estimating Functions and Variable Selection in Semiparametric
Regression Models. Journal of the American Statistical Association. 2008; 103(482):672–680.
[PubMed: 20376193]

Klöppel S, Draganski B, Golding CV, Chu C, Nagy Z, Cook PA, Hicks SL, Kennard C, Alexander
DC, Parker GJ, Tabrizi SJ, Frackowiak RS. White matter connections reflect changes in voluntary-
guided saccades in pre-symptomatic Huntington’s disease. Brain. 2008; 131:196–204. [PubMed:
18056161]

Kraemer HC, Shrout PE, Rubio-Stipec M. Developing the diagnostic and statistical manual V: what
will “statistical” mean in DSM-V? Soc Psychiatry Psychiatr Epidemiol. 2007; 42(4):259–267.
[PubMed: 17334899]

Lin Y. Support vector machine and the Bayes rule in classification. Data Mining and Knowledge
Discovery. 2002; 6:259–275.

Lin Y, Lee Y, Wahba G. Support vector machines for classification in non-standard situations.
Machine Learning. 2002; 46:191–202.

Liu Y, Shen X, Doss H. Multicategory ψ-learning and support vector machine: computational tools.
Journal of Computational and Graphical Statistics. 2005; 14(1):219–236.

McLachlan, G.; Pee, D. Finite mixture models. New York: Wiley; 2000.

Moguerza J, Munoz A. Support Vector Machines with Applications. Statistical Science. 2006; 21(3):
322–336.

Wang et al. Page 17

J Am Stat Assoc. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Mundt J, Marks I, Shear M, Greist J. The work and social adjustment scale: a simple measure of
impairment in functioning. The British Journal of Psychiatry. 2002; 180:461–464. [PubMed:
11983645]

Nigam K, McCallum A, Thrun S, Mitchell T. Text classification from labeled and unlabeled
documents using EM. Mach Learn. 1998; 39:103–134.

Orru G, Pettersson-Yeo W, Marquand AF, Sartori G, Mechelli A. Using Support Vector Machine to
identify imaging biomarkers of neurological and psychiatric disease: A critical review. Neurosci
Biobehav Rev. 2012; 36(4):1140–1152. [PubMed: 22305994]

Park C, Kim K, Myung R, Kood J. Oracle properties of SCAD-penalized support vector machine.
Journal of Statistical Planning & Inference. 2012; 142:2257–2270.

Pollard, D. Empirical Processes: Theory and Applications. NSF-CMBS Regional Conference Series in
Probability and Statistics; Hayward, CA: Institute of Mathematical Statistics; 1990.

Prigerson H, Maciejewski P, Reynolds C, Bierhals A, Newsom J, Fasiczka A, Miller M. Inventory of
complicated grief: A scale to measure maladaptive symptoms of loss. Psychiatry Resarch. 1995;
59:65–79.

Rocha, GV.; Wang, X.; Yu, B. Asymptotic distribution and sparsistency for l1-penalized parametric
M-estimators with applications to linear SVM and logistic regression. 2009. http://arxiv.org/abs/
0908.1940v1

Rigollet P. Generalization error bounds in semi-supervised classification under the cluster assumption.
Journal of Machine Learning Research. 2007; 8:1369–1392.

Rutjes A, Reitsma J, Coomarasamy A, Khan K, Bossuyt P. Evaluation of diagnostic tests when there is
no gold standard. A review of methods. Health Technol Assess. 2007; 11(50)

Shear K, Frank E, Houck PR, Reynolds CF 3rd. Treatment of complicated grief: a randomized
controlled trial. Journal of the American Medical Association. 2005; 293:2601–2608. [PubMed:
15928281]

Shear MK, Simon N, Wall M, Zisook S, Neimeyer R, Duan N, Reynolds C, Lebowitz B, Sung S,
Ghesquiere A, Gorscak B, Clayton P, Ito M, Nakajima S, Konishi T, Melhem N, Meert K, Schiff
M, O’Connor MF, First M, Sareen J, Bolton J, Skritskaya N, Mancini AD, Keshaviah A.
Complicated grief and related bereavement issues for DSM-5. Depress Anxiety. 2011a; 28(2):
103–17. [PubMed: 21284063]

Shear, K.; Skritskaya, N.; Duan, N.; Mauro, C.; Wang, Y.; Lebowitz, B.; Reynolds, C.; Simon, N.;
Zisook, S.; Glickman, K.; Guesquiere, A.; Worthington, J.; LeBlanc, N.; Young, IT. Suicide,
depression and complicated grief. Poster presentation at the annual meeting of the American
College of Neuropsychopharmacology; Waikoloa, HI. 2011b Dec.

Shen X, Tseng GC, Zhang X, Wong W. On psi-learning. Journal of the American Statistical
Association. 2003; 98:724–734.

Simon N, Wall MM, Keshaviah A, Dryman M, LeBlanc N, Shear K. Informing the symptom profile
for Complicated Grief. Depression and Anxiety. 2011; 28(2):118–126. [PubMed: 21284064]

van der Vaart, AW. Asymptotic Statistics. Cambridge University Press; Cambridge: 1996.

Vapnik, V. The Nature of Statistical Learning Theory. Springer-Verlag; New York: 1995.

Wahba, G.; Lin, Y.; Zhang, H. GACV for support vector machines, or, another way to look at margin-
like quantities. In: Smola, AJ.; Bartlett, P.; Scholkopf, B.; Schurmans, D., editors. Advances in
Large Margin Classifiers. Cambridge, Massachusetts: MIT Press; 2000. p. 297-309.

Wang L, Zhu J, Zou H. Hybrid huberized support vector machines for microarray classification and
gene selection. Bioinformatics. 2008; 24 (3):412–419. [PubMed: 18175770]

Wang Y, Chen H, Schwartz T, Duan N, Parcesepe A, Lewis-Fernandez R. Prediction based structured
variable selection through penalized support vector machine. Biometrics. 2011; 67:896–905.
[PubMed: 21175555]

Wang J, Shen X, Liu Y. Probability estimation for large margin classifiers. Biometrika. 2008; 95:149–
167.

Wang J, Shen X, Pan W. On Efficient Large Margin Semisupervised Learning: Method and Theory.
Journal of the Machine Learning Research. 2009; 10:719–742.

Wu Y, Liu Y. Robust truncated-hinge-loss support vector machines. Journal of the American
Statistical Association. 2007; 102:479, 974–983.

Wang et al. Page 18

J Am Stat Assoc. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://arxiv.org/abs/0908.1940v1
http://arxiv.org/abs/0908.1940v1


Xu, L.; Schuurmans, D. Unsupervised and semi-supervised multi-class support vector machines.
AAAI-05, The Twentieth National Conference on Artificial Intelligence; 2005.

Xu, L.; Neufeld, J.; Larson, B.; Schuurmans, D. Advances in Neural Information Processing Systems.
Vol. 17. Cambridge, MA: MIT Press; 2005. Maximum margin clustering.

Zhang H, Ahn J, Lin X, Park C. Gene selection using support vector machine with non-convex
penalty. Bioinformatics. 2006; 22:88–95. [PubMed: 16249260]

Zhu, J.; Rosset, S.; Hastie, T.; Tibshirani, R. Advances in Neural Information Processing Systems.
2003. 1-norm support vector machines.

Zou H, Hastie T. Regularization and Variable Selection via the Elastic Net. Journal of the Royal
Statistical Society, Series B. 2005; 67(2):301–320.

APPENDIX

Proof of Theorem 1
The proof follows similar arguments as the traditional EM algorithm which shows that the
objective function increases at each iteration. We denote Ẽ as the conditional expectation
given the observed data based on the working distribution p̃(d, g(x))f(z|D = d; μd, Σd). Let
g(m)(·) denote the estimate for g(·) at the mth iteration. Then we have

Thus,

By the property of the Kullback-Leibler information,

we obtain
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That is, (g(m), μ̂d, Σ̂d, d ∈{−1, 1}) ≥ (g(m−1), μ̂d, Σ̂d, d ∈{−1, 1}). Furthermore, the
equality holds if and only if

We can easily show that the latter holds if and only if sign(g(m)) = sign(g(m−1)).

Proof of Theorem 2
Since g*(X) maximizes

for each x in X’s support, y = p(1, g*(x))/[p(1, g*(x)) + p(−1, g*(x))] maximizes

where pd(x) is the true probability of D = d given X = x.

Differentiating the above function, we obtain that y solves

On the other hand, we know

Take the difference of the above equations and it yields
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so y = p1(x). Therefore, p1(x) > 1/2 if and only if p(1, g*(x)) > p(−1, g*(x)) so if only if g*(x)
> 0. In other words, sign[g*(x)] = sign[p1(x) − p−1(x)] = sign[g0(x)].

Proof of Theorem 3
The proof of Theorem 3 follows similar arguments as Rocha et al. (2009) and Park et al.
(2012). Thus, we only sketch the proof for the choice of the hinge loss in the following
proof. In conditions (c.1)–(c.4), take the norm as the usual Euclidean norm for (b, β) and
pλn(g) = pλn(|β|). Clearly, g* in condition (c.4) should be g0. For notational convenience, we
absorb the constant term into X, so β includes the intercept coefficient. Furthermore, we let
Pn denote the empirical distribution and P be the true expectation. We use Γ(β, μ, Σ) to
denote log{Σd exp[−L(dβTX)]f(Z|D = d; μd, Σd)}.

We first establish the consistency of β̂ in (a). From assumption (c.1), for any subsequence,
we can choose a further subsequence such that β̂ → β+. For this chosen subsequence, from

the fact that (ĝ) ≥ (g0) where ĝ(x) = β̂Tx and , we have

Under conditions (c.1) and (c.2), it gives

Furthermore, since μ̂d →p μ0 and Σd →p Σ0, according to condition (c.3), we take the limits
of both sides, and from the Glivenko-Cantelli theorem, it gives PΓ(β+, μ0, Σ0) ≥ PΓ(β0, μ0,
Σ0). That is, (g+) ≥ (g0) where g+(x) = {β+}Tx. Therefore, g+ = g0 by condition (c.4).
Since this holds for any subsequence, we conclude that β̂ →p β0. Next, we establish the
convergence rate of β̂ as follows. For any β = β0 + un−1/2 where |u| = M for a large M, we
have

Since
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for some positive constant c, where the last step uses the condition (c.4), and

by the property of pλnk, we obtain

Thus, in probability,  when M is chosen large enough. This shows that β̂

is -consistent.

To prove the oracle property in (b), it suffices to show that if β0k = 0 for the kth component,
then β̂k = 0 with probability tending to 1. To do that, consider the probability set {|β̂ − β0| ≤
Mn−1/2} for a large M. This set has probability tending to 1 if n then M goes to infinity. We
now prove (b) by contradiction. On this set, if β̂k ≠ 0, then from

, where β̂−k is equal to β̂ except that its kth component is 0, we
have

The left-hand side of the above equation is equal to

After the Taylor expansion at (β0, μ0, Σ0) and the use of the stochastic differentiability of
Gn, this term is equal to Op(n−1/2|β̂k|)+O{|β̂k|(|μ̂ − μ0|+|Σ̂ − Σ0|)} = Op(n−1/2)|β̂k|. Thus, it

follows , and we obtain a contradiction.
Therefore, with probability tending to 1, β̂k = 0 if βk0 = 0. We have proved (b).

To prove (c), we now let , and fix β̂2 = 0. We define Γ1(β1, μ, Σ) = Γ[(β1, 0),
μ, Σ]. Then

On the right-hand side, the first term converges uniformly in h ∈ K for some compact set K
to a Gaussian process WTh where W is a normal random variable with mean zero. By the
Taylor expansion and the differentiability of P [Γ1(β, μ̂, Σ̂)] in β, the second term is
asymptotically equivalent to
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The third term vanishes by the assumption of pλn(·). Therefore, from the Argmax theorem in
van der Vaart and Wellner (1993), ĥ is asymptotically equivalent to the argument that
maximizes

The latter maximizer is equal to

The asymptotic normality for  thus follows from the asymptotic normality of
(μ̂, Σ̂). We have proved (c) in Theorem 3.
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Figure 1.
Fitted decision boundary and agreement with total ICG ≥ 42*.
*: Group 1 includes variables selected from the first two domains in Table 5, and group 2
includes variables selected in the remaining domains.
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Table 3

Selected variables and their effects in the CG study

Analysis SVM-EM1* SVM-EM2** Standard method†

Domain 1: Yearning and preoccupation with the deceased

“I think about this person so much that it’s hard for me to do the things I normally do” 1.08 0.22 0.95

“I feel that life is empty without the person who died” 0 0.09 0

“I feel that it is unfair that I should live when this person died” 0 0.10 0.13

“I feel lonely a great deal of the time ever since he/she died” 0.57 0.12 1.37

Domain 2: Anger and bitterness

“I feel bitter over this persons death” 0 0.01 0

Domain 3: Shock and disbelief

“Disbelief over what happened” 0.62 0.02 0

Domain 4: Estrangement from others

“Lost the ability to care about other people” 1.03 0.13 0.17

“Envious of others who have not lost someone close” 0 0.04 0

Domain 5: Hallucinations of the deceased

No variable selected

Domain 6: Behavior change, including avoidance or proximity seeking

“I feel drawn to places and things associated with the person who died” 0.58 0 0

*
SVM-EM with SCAD penalty

**
SVM-EM with Enet penalty

†
Standard method using WSAS as the gold standard outcome with Enet penalty
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Table 4

Correlation between the classification scores and external measures using independent data sets in CG studies.

Measure SVM-EM1* SVM-EM2** Standard method†

SCI-CG 0.42 0.47 0.34

IES-T 0.26 0.19 0.18

IES-I 0.22 0.20 0.20

IES-A 0.24 0.15 0.13

NOTES: See Table 3.
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