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Abstract
We propose recursively imputed survival tree (RIST) regression for right-censored data. This new
nonparametric regression procedure uses a novel recursive imputation approach combined with
extremely randomized trees that allows significantly better use of censored data than previous tree
based methods, yielding improved model fit and reduced prediction error. The proposed method
can also be viewed as a type of Monte Carlo EM algorithm which generates extra diversity in the
tree-based fitting process. Simulation studies and data analyses demonstrate the superior
performance of RIST compared to previous methods.
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1 Introduction
Tree-based methods have become increasingly popular statistical tools since Breiman et al.
(1984) introduced the classification and regression tree (CART) algorithm. The purpose of
this paper is to develop highly accurate tree-based nonparametric survival regression
methods for censored data that improve significantly over existing methods. Before
describing the new approach, we need to briefly review previous, related methods.

Early tree-based methods built single tree structures and the prediction rules were easy to
interpret. The over simplicity of the resulting models, however, often yielded poor
prediction accuracy. The ideas of ensembles and randomization to improve prediction
accuracy in tree-based algorithms were introduced by Breiman (1996), Dietterich (2000a),
and many others. Following these ideas, Breiman (2001) provided a general framework for
tree ensembles called “Random Forests”, which later on become the most popular tree-based
method. It is now generally acknowledged by the research community that a certain level of
randomization along with constructing ensembles in tree-based methods can substantially
improve performance (Dietterich 2000b; Cutler and Zhao 2001; Biau et al. 2008). This was
also noted by Geurts et al. (2006) who introduced the Extremely Randomized Trees (ERT)
method. ERT is based on an even higher level of randomization than Random Forests and
the performance is shown to be comparable in regression and classification settings.

Moreover, adaption of tree-based method to censored survival data has also drawn a lot of
interest. Specifically, tree-based survival regression can be robust under violation of the
restrictive proportional hazards assumptions. Early forms of tree-based survival model
regression focused on splitting rules and tree pruning. Gordon and Olshen (1984) used
distance measures between Kaplan-Meier curves as the criteria for splitting nodes; Ciampi et
al. (1987) constructed splitting rules based on likelihood-ratio statistics; and Segal (1988)
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split and pruned based on the logrank test statistics; LeBlanc and Crowley (1992, 1993)
developed tree growing based on log-rank statistics and pruning methods based on a
goodness of split measure. However, the implementation for all of these early approaches
was restricted to the original CART paradigm and the associated pruning procedures,
resulting in limited model precision.

Introducing randomization and ensembles into tree-based model fitting opens another
window of opportunity for this area. Hothorn et al. (2004) proposed bagging survival trees
and compared it with single survival tree models. Later approaches adapt the more popular
Random Forests to survival data. In this setting, unpruned trees are built up and prediction is
calculated by averaging over the forest. Such adaptations include Hothorn et al. (2006) who
utilize the inverse probability of censoring weight (van der Laan and Robins 2003) to
analyze log-transformed right-censored data and construct a weighted estimation of survival
time. However, estimating the mean of a survival time is impossible whenever the positive
probability of censoring assumption (i.e., P(C > T|X) > 0) is violated (for example, as
happens in a clinical trial running for a predefined period: see Hothorn et al., 2006, for more
details). The Random Survival Forests introduced by Ishwaran et al. (2008) is another
extension of Breiman's Random Forests but applied to survival settings. A new tree
construction strategy and splitting rule was introduced, and a concordance index was used to
evaluate performance.

An important question we could ask ourselves at this point is: what is the maximum
information that can be extracted from censored survival data? We could also ask: is it
possible to obtain as much information as is contained in non-censored survival data? And if
not, what is the best we can do? These questions motivated us to develop an updating
procedure that could extrapolate the information contained in a censored observation so that
it could effectively be treated as uncensored. This basic idea is also motivated by the nature
of tree model fitting which requires a minimum number of observed failure events in each
terminal node. Consequently, censored data is in general hard to utilize, and information
carried by censored observations is typically only used to calibrate the risk sets of the log-
rank statistics during the splitting process. Motivated by this issue, we have endeavored to
develop a method that incorporates the conditional failure times for censored observations
into the model fitting procedure to improve accuracy of the model and reduce prediction
error. The main difficulty in doing this is that calculation and generation of the conditional
failure times requires knowledge of model structure. To address this problem, we propose an
imputation procedure that recursively updates the censored observations to the current
model-based conditional failure times and refits the model to the updated dataset. The
process is repeated several times as needed to arrive at a final model. We refer to the
resulting model predictions as recursively imputed survival trees (RIST).

Although imputation for censored data has been mentioned in the non-statistical literature
(as, for example, in Hsieh 2007; and Tong, Wang and Hsiao 2006), the proposed use of
censored observations in RIST to improve tree-based survival prediction is novel. The
primary benefits of RIST are three-fold. First, since the censored data is modified to become
effectively observed failure time data, more terminal nodes can be produced and more
complicated tree-based models can be built. Second, the recursive form can be viewed as a
Monte Carlo EM algorithm (Wei and Tanner 1990) which allows the model structure and
imputed values to be informed by each other. Third, the randomness in the imputation
process generates another level of diversity which contribute to the accuracy of the tree-
based model. All of these attributes lead to a better model fit and reduced prediction error.

To evaluate the performance of RIST and compare with other popular survival methods, we
utilize four forms of prediction error: Integrated absolute difference and supremum absolute
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difference of the survival functions, integrated Brier score (Graf et al. 1999; Hothorn et al.
2004) and the concordance index (used in Ishwaran et al. 2008). The first two prediction
errors for survival functions can be viewed as L1 and L∞ measures of the functional
estimation bias. Note that the Cox model uses the hazard function as a link to the effect of
covariates, so one can use the hazard function to compare two different subjects. Tree-based
survival methods, in contrast, do not enjoy this benefit. To compare the survival of two
different subjects and also calculate the concordance index error, we propose to use the area
under the survival curve which can be handy in a study that runs for a limited time. Note that
this would also be particularly useful for Q-learning applications when calculating the
overall reward function based on average survival (Zhao, et al. in press).

The remainder of the paper is organized as follows: In section 2, we introduce the data set-
up, notation, and model. In section 3, we give the detailed proposed algorithm and some
additional rationale behind it. Section 4 uses simulation studies to compare our proposed
method with existing methods such as Random Survival Forests (Ishwaran, et al., 2008),
conditional inference Random Forest (Hothorn et al 2006), and the Cox model with
regularization (Friedman, et al. 2010), and discusses pros and cons of our method. Section 5
applies our method to two cancer datasets and analyzes the performance. The paper ends
with a discussion in Section 6 of related work, including conclusions and suggestions for
future research directions.

2 Data set-up and model
The proposed recursively imputed survival tree (RIST) regression applies to right censored
survival data. To facilitate exposition, we first introduce the data set-up and notation. Let X
= (X1, ..., Xp) denote a set of p covariates from a feature space χ. The failure time T given X
= x is generated from the distribution function Fx(·). For convenience, we denote the
survival function as Sx(·) = 1 – Fx(·). The censoring time C given X = x has conditional
distribution function Gx(·). The observed data are (Y, δ, X), where Y = min(T, C) and δ =
I{T ≤ C}. Throughout this article we assume a conditionally independent censoring
mechanism which posits that T and C are independent given covariates X. We also assume
that there is a maximum length of follow-up time τ. A typical setting where this arises is
under progressive type I censoring where survival is measured from study entry, and one
observes the true survival times of those patients who fail by the time of analysis and
censored times for those who do not. In this case, the censoring time Ci can be viewed as the
maximum possible duration in the study for subject i, i = 1, . . . , n. The survival time Ti for
this subject follows survival distribution Sxi which is fully determined by Xi = (Xi1, ..., Xip).
If Ti is less than Ci, then Yi = Ti and δi = 1 is observed; otherwise, Yi = Ci and δi = 0 is
observed. Using a random sample of size n, RIST can estimate the effects of covariate X on
both the survival function and expectation of T (truncated at τ).

3 Proposed Method and Algorithm
3.1 Motivation and Algorithm outline

In this section we give a detailed description of our proposed recursively imputed survival
tree (RIST) algorithm and demonstrate the unique and important features. One of the
important ideas behind this method is an imputation procedure applied to censored
observations that more fully utilizes all observations. This extra utilization helps improve the
tree structures through a recursive form of model fitting, and it also enables better estimates
of survival time and survival function.

The imputation procedure is motivated by a fact about censored data. Specifically, a
censored observation will always fall into one of the following categories: The true survival
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time T is larger than study time τ so that we would not observe it even if the subject started
at time 0 and was followed to the end of study; Alternatively, the true survival time T is less
than τ so that we would observe the failure if the subject started at time 0 and there was no
censoring prior to end of study. However, such a fact is masked whenever a subject is
censored. Hence, the key questions are how to classify censored observations and how to
impute values for them if they fall into either category.

We will begin our algorithm with a graphical view (Figure 1) followed by a high-level
illustration of the framework (Table 1), then a detailed description of each step will be given
in subsequent sections: Survival tree model fitting (Section 3.2), Conditional survival
distribution (Section 3.3), One-step imputation for censored observations (Section 3.4), Refit
imputed dataset and further calculation (Section 3.5), and Final prediction (Section 3.6).

3.2 Survival tree model fitting
The extremely randomized tree (ERT) model is fitted to the initial training set to assess the
model structure. The substantial differences between ERT and Breiman's (2001) Random
Forests approach are that, first, the splitting value is chosen fully at random; second, the
whole training set is used instead of only bootstrap replicates. M independent trees are fit to
the entire training dataset as follows. For each tree, when reaching a node to split, K
covariates along with one random split point per covariate are chosen from all non-constant
covariates (splitting will stop if all covariates are constant). In our model fitting, the log-rank
test statistic is used to determine the best split among the K covariates which provides the
most distinct daughter nodes. Once a split has been selected, each terminal node is split
again using the same procedure until no further splitting can be done without causing a
terminal node to have fewer than nmin events (i.e. observations with δ = 1). We will treat
each terminal node as a group of homogeneous subjects for purposes of estimation and
inference.

3.3 Conditional survival distribution
Calculations of conditional survival functions will be made first on the node level, then
averaged over all M trees. For the lth terminal node in the mth tree, since there are at least
nmin failure events, a Kaplan-Meier estimate of the survival function can be calculated

within the node, which we denote by , where t ∈ [0, τ]. Noticing that for any particular
subject, that subject eventually falls into only one terminal node for each fitted tree model,

we can drop the index “l”. Hence we denote the single-tree survival function by  for the
ith subject. Averaging over M trees, we have the forest level survival function

. Now, given a subject i that is censored at time c, i.e., Yi = c and δi = 0, one
can approximate the conditional probability of survival, P(Ti > t|Ti > c), by

(1)

Furthermore, we force  by imposing a point mass at time τ. This point mass will
represent the probability that the conditional failure time is larger than τ.

3.4 One-step imputation for censored observations
When subject i is censored, the true survival time Ti is larger than Ci. However, if the
subject is followed from the beginning of study (time 0), one and only one of the following
two situations can happen: this subject could survive longer than the study length τ and we
would not observe the failure time even if uncensored; or the subject could actually fail
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before the end of study. We now propose a one-step imputation procedure for these censored
observations. The purpose of this one-step imputation is to unmask the above difference by
utilizing the conditional survival function calculated in Section 3.3. To do so, we generate a
new observation  from this distribution function and treat it as the observed value if the
subject were followed from time 0. Due to the construction of ,  must be between Yi and
τ. If , then we assume that Ti is less than τ, and we replace Yi by this new observation

 with censoring indicator . If , then we assume that the subject has Ti greater than
τ, and we replace Yi by τ with censoring indicator . This updating procedure is
independently applied to all censored observations. This gives us a one-step imputed dataset.
Note that the observed failure events in the dataset are not modified by this procedure.

3.5 Refit imputed dataset
Using the imputation procedure that we introduced in section 3.4, we independently
generate M imputed datasets, and fit a single extremely randomized tree to each of them. We
pool the M trees to assess the new model structure and survival function estimations.
Subsequently, the new conditional censoring distribution can be calculated for each
censored observation in the original dataset conditional on their corresponding original
censoring value. The original censored observations can thus be again imputed. A new set of
imputed datasets can be then generated to assess the next cycle model structure. Hence, a
recursive form is established by repeating the model fitting procedure and imputation
procedure. Note the term “original” here refers to the raw dataset before imputation. In other
words the “conditional survival function” is always conditional on the original censoring
time Yi.

Interestingly, at this stage, all observations are either observed failure events or effectively
censored at τ. The traditional Kaplan-Meier estimator will reduce to a simple empirical
distribution function estimator. Details of this empirical distribution function estimator will
be given in the following section.

This recursive approach can be repeated multiple times prior to the final step. Each time, the
imputation is obtained by applying the current conditional survival function estimate to the
original censored observations. We denote the process involving q imputations as q-fold
RIST, or simply RIST q.

3.6 Final prediction
The final prediction can be obtained by calculating node level estimation and then averaging
over all trees in the final model fitting step. For a given new subject with covariates

, denote Snew(·) to be the true survival function for this subject.
Dropping this subject down the mth tree, it eventually falls into a terminal node (which we
label as node l). Note that all the observations in this node are either observed events before
τ, or censored at τ, and we will treat all observations in a terminal node as i.i.d. samples
from the same distribution. To estimate Snew(t), we employ an empirical type estimator

which can be expressed, in the mth tree, as  where φm(l) denotes
the size of node l in the mth tree. Then the final prediction can be calculated as follows:

(2)
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4 Simulation Studies
In this section, we use simulation studies to compare the prediction accuracy of RIST with
three existing methods, including two popular tree-based models and the Cox model with
regularization. Random Survival Forests (Ishwaran et al. 2008) and conditional inference
Random Forest (Hothorn et al. 2006) are both constructed based on Breiman's (2001)
Random Forests algorithm. The Random Survival Forests (RSF) constructs an ensemble of
cumulative hazard functions. The conditional inference Random Forest (RF) approach
utilizes inverse probability of censoring (IPC) weights (van der Laan and Robins, 2003) and
analyzes right censored survival data using log-transformed survival time. The above two
methods are implemented through R-packages “randomSurvivalForest” and ”party”. It also
interesting to compare our method to the Cox model with regularization. Although the Cox
model has significant advantages over tree-based models when the proportional hazards
model is the true data generator, it is still important to see the relative performance of tree-
based models under such circumstances. The Cox model fittings are implemented through
the R-package “glmnet” (Friedman, et al. 2010).

4.1 Simulation settings
To fully demonstrate the performance of RIST, we construct the following five scenarios to
cover a variety of aspects that usually arise in survival analysis. The first scenario is an
example of the proportional hazards model where the Cox model is expected to perform
best. The second and third scenarios represent mild and severe violations of the proportional
hazards assumption. The censoring mechanism is another important feature that we want to
investigate. In Scenario 4, both survival times and censoring times depend on covariate X,
however, they are conditionally independent. Scenario 5 is an example of dependent
censoring where censoring time not only depends on X but is also a function of survival
time T . Although this is a violation of our assumption, we want to demonstrate the
robustness of RIST. Now we describe each of our simulation settings in detail:

Scenario 1: A proportional hazards model adapted from Section 4 of Ishwaran, et al.
(2010), we let p = 25 and X = (X1, ..., X25) be drawn from a multivariate normal
distribution with covariance matrix V , where Vij = ρ|i–j| and ρ is set to 0.9. Survival
times are drawn independently from an exponential distribution with mean

, where b0 is set to 0.1. Censoring times are drawn independently from
an exponential distribution with mean set to half of the average of μ. Study length τ is
set to 4. Sample size is 200 and the censoring rate is approximately 30%.

Scenario 2: We draw 10 i.i.d. uniform distributed covariates and use link function

 to create a violation of the proportional hazards
assumption. Survival times follow an exponential distribution with mean μ. Censoring
times are drawn uniformly from (0, τ) where τ = 6. Sample size is 200 and the
censoring rate is approximately 24%.

Scenario 3: Let p = 25 and X = (X1, ..., X25) be drawn from a multivariate normal
distribution with covariance matrix V , where Vij = ρ|i–j| and ρ is set to 0.75. Survival
times are drawn independently from a gamma distribution with shape parameter

 and scale parameter 2. Censoring times are drawn uniformly
from (0, 1.5 × τ) and the study length τ is set to 10. Sample size is 300 and the
censoring rate is approximately 20%.

Scenario 4: We generate a conditionally independent censoring setting where p = 25
and X = (X1, ..., X25) are drawn from a multivariate normal distribution with covariance
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matrix V, where Vij = ρ|i–j| and ρ is set to 0.75. Survival times are drawn independently

from a log-normal distribution with mean set to .
Censoring times follow the same distribution with parameter μ+0.5. Study length τ is
set to 4. Sample size is 300 and the censoring rate is approximately 32%.

Scenario 5: This is a dependent censoring example. We let p = 10 and X = (X1, ..., X10)
be drawn from a multivariate normal distribution with covariance matrix V , where Vij
= ρ|i–j| and ρ is set to 0.2. Survival times T are drawn independently from an exponential

distribution with mean . A subject will be censored at one third of the
survival time with probability μ/2. The study length τ = 2, sample size is 300 and the
censoring rate is approximately 27%.

4.2 Tuning parameter settings
All three tree-based methods offer a variety of tuning parameter selections. To make our
comparisons fair, we will equalize the common tuning parameters shared by all methods and
set the other parameters to the default. According to Geurts et al. (2006) and Ishwaran et al.
(2008) the number of covariates considered at each splitting, K, is set to the integer part of

 where p is the number of covariates. For RIST and RSF, the minimal number of
observed failures in each terminal node, nmin, is set to 6. The counterpart of this quantity in
the RF, minimal weight for terminal nodes is set to the default. For RSF and RF, 1000 trees
were grown. Two different splitting rules are considered for RSF: the log-rank splitting rule
and the random log-rank splitting rule (see Section 6 in Ishwaran et al., 2008). In the RF, a
Kaplan-Meier estimate of the censoring distribution is used to assign weights to the
observed events. The imputation process in RIST can be done multiple times before
reaching a final model. Here we consider 1, 3, and 5 imputation cycles with M = 50 trees in
each cycle (namely 1-fold, 3-fold, and 5-fold RIST).

The Cox models are fit with penalty term . We use the lasso
penalty by setting α = 1. The best choice for λ is selected using the default 10-fold cross-
validation.

4.3 Prediction Error
The survival function is the major estimation target in all tree-based methods and can be
easily calculated for the Cox model. We first define 3 prediction errors for survival function
estimations as follows: Integrated absolute error and supremum absolute error can be viewed
as L1 and L∞ measures of the survival function estimation error. To be more specific, let
S(t) denote the true survival function and let Ŝ(t) denote its estimate. Integrated absolute

error is defined as  and Supremum absolute error is defined as

. Noticing that both measurements require knowledge of the true data
generator, which is typically not known in practice, we also utilize the widely adopted
integrated Brier score (Graf et al. 1999, Hothorn et al. 2006) as a measure of performance
since it can be calculated from observed data only. The Brier score for censored data at a
given time t > 0 is defined as

(3)
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where Ĝ(·) denotes the Kaplan-Meier estimate of the censoring distribution. The integrated
Brier score is further given by

(4)

In the simulation study validation set, where the failure times are fully observed, Ĝ(t)
reduces to 1 and δ = 1. The integrated Brier score can then be viewed as a degenerate
version of an L2 measure of the survival function estimation error. In our simulations, the
Brier score is only calculated up to the maximum study length τ since there is no
information available beyond τ in the training dataset. Hence the integrated Brier score in

our simulation study is defined by . Note that this definition will also
prevent errors at large t from dominating the results.

The fourth prediction error that we utilize is Harrell's concordance index (C-index) (Harrell
et al. 1982, Ishwaran et al. 2008) which can also be used with observed data only. The C-
index provides a nonparametric estimate of the correlation between the estimated and true
observed values based on the survival risks of a pair of randomly selected subjects. To
compare the risks of two subjects, RIST uses area under the predicted survival curve; RSF
uses cumulative survival function; the RF uses predicted survival time; and the Cox model
uses the link function. A detailed calculation of the C-index algorithm is given in Ishwaran
et al. (2008), and the prediction error is defined as 1 minus the C-index.

4.4 Simulation results
Each simulation setting is replicated 500 times and results are presented in the following
tables. For convenience, within each scenario, we use the best method in terms of
performance as the reference group which we rescale to 1. Prediction errors for all other
methods are scaled and presented as a ratio to the reference group, i.e. prediction errors
larger than 1 will indicate a worse performance. The last column is the original scale
multiplier. Major findings are summarized below:

1. In all simulation settings with survival function prediction error, RIST performs
better than the other two tree-based methods and the improvements are significant.
For example, under the proportional hazards model (Scenario 1) with integrated
absolute error of the survival function (Table 2), RSF0 and RF perform 37.7% and
68.9% worse than RIST respectively. In all other scenarios, RIST performs at least
19% better than RSF and the improvements can be up to 31.4% better in terms of
this error measurement. For supremum error, RIST performs 21.6 ~ 55.5% better
than RF and improvements over RSF generally lie between 10 ~ 20%.
Improvements in terms of integrated Brier score are less impressive due to the large
variability when generating the survival times, however, performances of RIST are
uniformly better than RSF and RF.

2. Results for comparing RIST with the Cox model can vary from situation to
situation. In Scenarios 3 and 4 where the proportional hazards assumption is
severely violated, performance of the Cox model can be over 40% worse than RIST
in terms of both integrated and supremum survival error. On the other hand, under
the proportional hazards model, the Cox model performs 26.4% better than RIST.
However, when compared to RSF0 and RF (which 74.1% and 113.5% worse than
the Cox model), RIST still shows a much stronger performance relative to the other
tree-based methods.

3. If we focus on the worst performing scenario for each method, we can see that the
robustness of RIST is superior to any competing methods. In fact, RIST is the most

Zhu and Kosorok Page 8

J Am Stat Assoc. Author manuscript; available in PMC 2013 January 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



robust in terms of all three survival function estimation errors. And RIST never
falls into the “worst two” category in any situation using any error measurement,
whereas all other methods always, at some point, fail to compete with the others
(i.e., has largest prediction error).

4. 3-fold and 5-fold RIST generally perform better than 1-fold RIST, however,
higher-fold imputation does not always further improve the performance. The
reason is that after several cycles of imputation, the model structure tends to have
stabilized. This might also possibly be due to overfitting in certain settings.
Scenario 5 represents a dependent censoring case which violates our model
assumptions, and slight overfitting can be seen. This phenomenon indicates that our
imputation procedure is somewhat sensitive to the information carried by censored
observations, but not excessively so. Nevertheless, severe violation of the
independent censoring assumption could further downgrade the performance of
RIST.

5. For many simulation settings, the C-index errors are very close for all the methods.
Simulations show that the C-index is not as sensitive as other measurements. For
example, in Scenario 1 (the proportional hazards model) where the Cox model is
clearly superior to any tree-based models, RSF1 still shows an even lower C-index
error than the Cox model. Hence interpretibiliy of the C-index is sometimes
unclear.

6. Performance of the RF method is generally not as strong as the other approaches.
The likely reason is that this method utilizes inverse probability of censoring (IPC)
which relies heavily on the assumption that G(T|X) = P(C > T|X) is strictly greater
than zero almost everywhere. However, in real life study designs, such as in
clinical trials running for a predefined period, this assumption is violated (Hothorn
et al. 2006). Under such circumstances, the estimation of mean survival time would
be expected to be biased.

As suggested by one of the reviewers, in addition to presenting mean prediction errors, we
also want to further analyze where the differences occur in time over the study duration.
Hence we plot the mean survival errors over time for two somewhat typical settings:
Scenario 1, the proportional hazards model; and Scenario 3, in which the proportional
hazards assumption is violated. The mean survival error over time is calculated by averaging
|S(t) – Ŝ(t)| over all subjects in the validation set, and the plot is the average over 500
simulation runs. As presented in Figure 2 (Scenario 1), the Cox model performs uniformly
best. Comparison among tree-based methods show that RIST5 remains relative strong in
performance under the proportional hazards model. In Figure 3 (Scenario 3), RIST has a
significant improvement over all other competing methods, and the improvements occur
over the entire range of t. Due to violation of the proportional hazards assumption, the Cox
model has the worst performance in this setting. One interesting fact that we observed is
that, in many circumstances, RSF estimations of the survival functions seem be unstable
towards the end of study duration and the prediction error is increased while all other
methods tend to have their prediction errors decreasing towards the end.

5 Data Analysis
In this section we compare RIST with RSF, RF, and the Cox model on two datasets: the
German Breast Cancer Study Group (GBSG) data and the Primary Biliary Cirrhosis (PBC)
data. We use Brier score and integrated Brier score as the criteria for comparison. The
integrated Brier score, as we observed in the simulation studies, provides a slightly more
sensitive measurement than the C-index. A random assignment algorithm (a slight
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modification from Ishwaran et al. 2008) is also being introduced to handle missing covariate
data in the PBC data section.

5.1 Breast Cancer Data
In 1984, the German Breast Cancer Study Group (GBSG) started a multi-center randomized
clinical trial to compare recurrence-free and overall survival between different treatment
modalities (Schumacher et al., 1994). In this section we utilize this dataset to compare RIST
with other methods.

5.1.1 Data description—By March 31, 1992, median follow-up time was 56 months with
197 events for disease-free survival and 116 deaths observed. The recurrence-free survival
times of the 686 patients (with 299 events) who had complete data were analyzed in
Sauerbrei and Royston (1999). The p = 8 observed factors are age, tumor size, tumor grade,
number of positive lymph nodes, menopausal status, progesterone receptor, estrogen
receptor, and whether or not hormonal therapy was administered. There is no missing data.
This data-set has been studied by both Ishwaran et al. (2008) and Hothorn et al. (2006) for
tree types of model fitting, hence we also utilize this dataset in our paper.

We randomly divide the dataset into two equal sized subsets, and then use one as a training
set and the other as a validation set. 500 independent training datasets were thus generated
and prediction error calculated according to the corresponding validation sets. All parameter
settings are identical to those given in Section 4.2.

5.1.2 Results—We present the relative over-time Brier scores in Figure 4 (using 5-fold
RIST as the reference group, and subtracted from each method accordingly). The plot is
constructed so that worse performance compared to 5-fold RIST is above 0. The Brier score
for RF is significantly distinct from other methods and its relative Brier score is over 0.15
more than RIST towards the end of study. Among all other methods, RIST and RSF0
performs similar, while RIST has lower Brier score at a majority of time points across the
entire range. The Cox model and RSF1 perform worse than the above two; however, they
both perform significantly better than RF.

The boxplot for integrated Brier scores are shown in Figure 5. The boxplot for RF is above
the upper bound (with mean 0.2535 and 1st, 2nd, and 3rd quartiles 0.2438, 0.2529, and
0.2623 respectively) and will not be presented in this plot. RIST performs best in terms of
both mean and median integrated Brier score. The improvement compared to the Cox
model, RSF1 and RF, is significant. RSF0 performs close to RIST, however RIST5 has
lower integrated Brier score than RF0 in 62.2% of the simulations, and out-performs the
Cox model and RSF1 in 78.8% and 93.8% of the simulations respectively.

A variable importance (Breiman 2001; Ishwaran 2007) analysis is done by using the
validation set to assess the variable importance measure. However, similar results were
found among all tree-based methods.

5.2 PBC Data
The Mayo clinical trial of primary biliary cirrhosis (PBC) of the liver (Fleming and
Harrington 1991) has long been famous and considered a benchmark dataset in survival
analysis. We compare the performance of RIST with other methods on this dataset. A
method for handling missing covariates is also introduced.

5.2.1 Data description—This Mayo clinical trial study was conducted between 1974 and
1984 and the study analysis time was in July, 1986. A total of 424 PBC patients, referred to
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the Mayo clinic during that ten-year interval, met the eligibility criteria for the randomized
trial. 312 cases in the dataset participated in the randomized trial and contain largely
complete data and hence will be used in our analysis. The additional 112 cases did not
participate in the clinical trial and these data will not be used. The data contains 17
covariates including treatment, age, sex, ascites, hepatomegaly, spiders, edema, bilirubin,
cholesterol, albumin, urine copper, alkaline phosphatase, SGOT, triglicerides, platelets,
prothrombin time, and histologic stage of disease.

As with the breast cancer example, we randomly divide the PBC data set into a training
dataset and a validation set with equal sample size and independently repeat this 500 times.
Model parameter settings here are also the same as in the breast cancer example.

5.2.2 Missing covariate method—Missing data is an issue in the PBC dataset. Among
the 312 subjects, there are 28 subjects with missing cholesterol measurements, 30 with
missing triglicerides measurements, 2 with missing urine copper measurements and 4 with
missing platelet measurements. There are 276 subjects with complete measurements for all
covariates. Our algorithm for handling missing data is very similar to Ishwaran et al. (2008),
where the missing X values are randomly generated from the empirical distribution of the
in-bag observations in a node. Ishwaran et al.'s (2008) method will be implemented in both
RSF0 and RSF1.

Now We describe our missing data algorithm as follows: To find the best splitting variable
from the K randomly chosen covariates, the test statistic for any variable Xp is calculated by
omitting the subjects that have missing Xp value. When the splitting variable is chosen and
daughter nodes are built, those subjects with missing splitting variable are randomly
assigned to either daughter node with probabilities proportional to the sizes of the daughter
nodes. This random assignment algorithm is also applied during the prediction process.
Suppose we drop a subject with missing covariate Xp down a single tree. Whenever Xp is
required to determine which further node it falls into, we randomly throw this subject into
either node with probability proportional to node size as described above.

5.2.3 Results—Similar to the Breast Cancer data analysis, we present the relative over-
time Brier scores in Figure 6 using 5-fold RIST as the reference group. The Brier score of
RF increases dramatically as time increases. We restrict our plotting frame so that we can
focus more on the differences between the other methods. The Brier score of the Cox model
and RSF1 is higher than RIST5 at almost every time over the entire study duration. RSF0
has higher prediction error than RIST5 at most time points, however, it out-performs RIST5
towards the end of study.

The boxplot for integrated Brier scores are shown in Figure 7. We again restrict the plotting
frame so that for the majority of time RF will be above the upper bound and differences
between other methods can be easily seen. RIST5 performs best, followed by RIST3,
RIST1, RSF0, the Cox model and RSF1. A t-test comparing RSF0 and RIST5 shows that
RIST5 is significantly better with P-value < 0.001. In fact, in 65.2% simulations, RIST5 has
lower integrated Brier score than RSF0. Moreover, RIST5 out-performs the Cox model and
RSF1 in 87.8% and 99.6% simulation runs respectively.

6 Discussion
In this paper, we introduced recursively imputed survival trees (RIST), a novel censoring
imputation approach integrated with a tree-based regression method for right-censored
survival data. While preserving information carried by the censored observations (by
calculating conditional survival distribution), the imputation method extends the utility of
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censored observations and uses the updated conditional failure information to improve
model prediction. The regression procedure is built on the newly developed tree method,
extremely randomized trees (Geurts et al. 2006), which is an alternative to Breiman's
popular random forests (Breiman 2001) method. Through a recursive algorithm, both the
model fitting processes and the imputation processes affect each other, and the performances
of both improve simultaneously.

6.1 Why RIST works
Up to this point, we have only used simulations to demonstrate the performance of RIST. It
is important and interesting to discuss the motivation and driving force behind our proposed
method. Here we provide several explanations that will help further understand this new
approach.

One potential advantages of RIST comes from the tree-based modeling point of view. Since
the entire training set is used to build each single tree, extremely randomized trees can build
larger models (i.e with more terminal nodes) compared to Random Forests which use
bootstrap samples. Furthermore, after the first imputation cycle, additional observed events
are created which allow each tree to grow even deeper. One may wonder whether this could
cause over-fitting; however, the random generation of the imputed values provides sufficient
diversity which will help eliminate over-fitting.

Moreover, we found that the Monte Carlo EM (MCEM) algorithm (Wei and Tanner 1990;
McLachlan and Krishnan 1996) is the best way to explain our proposed procedure
theoretically. The random generation of imputed values can be viewed as the Monte Carlo
E-step without taking the average of all randomly generated sample points, while the
survival tree fitting procedure is explicitly an M-step to maximize the nonparametric model
structure. The “random E-step” imputation procedure does not only preserve the information
carried by censored observations, but it also introduces an extra level of diversity into the
next-level of model fitting. As is well known, diversity is one of the driving forces behind
the success of ensemble methods as has been addressed by many researchers, including
(Breiman 1996; Dietterich 2000). An interesting phenomenon of diversity can be seen when
averaging the terminal node survival function estimation over the forest. Figure 8 (of a
subject from Scenario 2) shows that even though an individual terminal node estimation
(using nmin observed events) could have a high variance or be largely biased, the overall
forest estimation will still be very accurate. In the most common ensemble tree methods,
diversity can be created through taking bootstrap samples and random selections of variables
and their splitting values. With independently imputed datasets, the patterns being
recognized by each tree in a forest will present an even greater level of diversity. The
accuracy of survival function and conditional survival function estimations can therefore be
even further improved.

The effect that we have seen over the imputation cycle can also be visually explained as a
“blurring effect” in optics: While each model fitting step sums up all information from
adjacent observations of the target point in the feature space, similar effects also happen to
other adjacent observations simultaneously. The next imputation step allows information
from remote observations to be carried into adjacent censored observations which can be
used in calculating the target survival function estimation. Hence, over several imputation
cycles, the overall information that defines the target prediction does not come solely from
the partitioned neighborhood of the target point, it comes instead from a “blurred”
neighborhood that reaches out to a much wilder range.
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6.2 Other Issues
In multi-fold RIST, most of the improvement is gained during the first several imputation
cycles. Additional recursive steps of RIST can help adjust the imputed value and the fitted
model structure; however, the increments of improvement tend to be small since the model
structure stabilizes fairly quickly. Unfortunately, we do not yet have explicit convergence
criteria for RIST. However, based on our simulation experience, it appears that 3-fold to 5-
fold RIST generally performs best. Although higher fold imputations perform reasonably
well and may even be optimal in some settings, over-fitting also appears to be a possibility.
In addition, as fold level increasing, the computational intensity also increases. Hence, we
do not recommend going beyond 5-fold RIST.

Another issue that has been addressed frequently in tree-based model fitting is the choice of
splitting statistics. During our research, we examined the performance of several alternatives
to the log-rank statistic, including the supremum log-rank (Kosorok and Lin 1999) statistics.
However, no significant differences in performance of RIST were detected under the
simulation settings that we presented.

Although it is not the focus of our paper, the missing data issue often occurs. Our missing
data algorithm is very similar to the approach given in Ishwaran et al. (2008). However, the
way we handle missing subjects can ensure that there are a sufficient number of non-missing
subjects in each node. This is because we randomly categorize the missing subjects into
daughter nodes after the splitting has been done. For our current method, we suggest
removing any subject with missing Y value or missing censoring indicator. Although these
data can be easily handled with the same logic based on missing covariate classification, we
feel that our censoring imputation method relies somewhat on the accuracy of outcome
variables, so that imputing subjects with incomplete outcomes may eventually increase
prediction error.

6.3 Future Research
The statistical mechanism, particularly consistency, of ensemble tree-based methods is still
not fully understood. Some insightful discussions can be found in Breiman (2000), Lin and
Jeon (2006), and Biau et al. (2008). Although the consistency results of Extremely
Randomized Trees can be induced from single tree consistency, the adaption of this method
to survival data involves significant theoretical challenges. Ishwaran and Kogalur (2010)
showed consistency of RSF under the assumption that the feature space is discrete and finite.
However, the generalization of this to non-discrete compact feature spaces is both important
for applications—since most feature spaces in practice are non-discrete—and also
challenging theoretically. Once the results are established, the consistency of RIST can be
induced since the imputation procedure is based on a consistent conditional survival
function estimation process.

One of the promising applications of RIST is in multi-stage treatment discovery. In medical
research settings, one of the central goals is to discover effective therapeutic regimens.
Many typical regimens for patients with life-threatening diseases (such as advanced cancers)
consist of multiple stages. Reinforcement learning has recently been shown to be effective in
discovering optimal, multi-stage treatments in cancer (see, for example, Zhao, et al., 2009;
and Zhao, et al., in press). In these settings, good nonparametric regression estimators that
predict survival for high dimensional covariates are needed. RIST appears to be a nice fit for
this setting.
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Figure 1.
A Graphical demonstration of RIST
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Figure 2.
Proportional Hazards Model
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Figure 3.
Non-Proportional Hazards
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Figure 4.
Relative Brier score
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Figure 5.
Integrated Brier score
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Figure 6.
Relative Brier score
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Figure 7.
Integrated Brier score

Zhu and Kosorok Page 22

J Am Stat Assoc. Author manuscript; available in PMC 2013 January 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Figure 8.
Diversity and forest averaging
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Table 1

Algorithm for tree fitting

1. Survival tree model fitting: Generate M extremely randomized survival trees for the raw training data set under the following settings:

    a) For each split, K candidate covariates are randomly selected from p covariates, along with random split points. The best split, which
provides the most distinct daughter nodes, is chosen.

    b) Any terminal node should have no less than nmin > 0 observed events.

2. Conditional survival distribution: A conditional survival distribution is calculated for each censored observation.

3. One-step imputation for censored observations: All censored data in the raw training data set will be replaced (with correctly estimated
probability) by one of two types of observations: either an observed failure event with Y < τ, or, a censored observation with Y = τ.

4. Refit imputed dataset and further calculation: M independent imputed datasets are generated according to 3, and one survival tree is fitted
for each of them using 1.a) and 1.b).

5. Final prediction: Step 2–4 are recursively repeated a specified number of times before final predictions are calculated.
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