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Abstract
The aim of this paper is to develop a semiparametric model for describing the variability of the
medial representation of subcortical structures, which belongs to a Riemannian manifold, and
establishing its association with covariates of interest, such as diagnostic status, age and gender.
We develop a two-stage estimation procedure to calculate the parameter estimates. The first stage
is to calculate an intrinsic least squares estimator of the parameter vector using the annealing
evolutionary stochastic approximation Monte Carlo algorithm and then the second stage is to
construct a set of estimating equations to obtain a more efficient estimate with the intrinsic least
squares estimate as the starting point. We use Wald statistics to test linear hypotheses of unknown
parameters and establish their limiting distributions. Simulation studies are used to evaluate the
accuracy of our parameter estimates and the finite sample performance of the Wald statistics. We
apply our methods to the detection of the difference in the morphological changes of the left and
right hippocampi between schizophrenia patients and healthy controls using medial shape
description.
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1 Introduction
The medial representation of subcortical structures provides a useful framework for
describing shape variability in local thickness, bending, and widening for subcortical
structures (Fletcher et al., 2004). In the medial representation framework, a geometric object
is represented as a set of connected continuous medial primitives, called medial atoms. See
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Figure 1 for a hippocampus example. For 3-dimensional objects, these medial atoms are
formed by the centers of the inscribed spheres and by the associated spokes from the sphere
centers to the two respective tangent points on the object boundary. Specifically, a medial

atom  is formed by a position O, the center of the inscribed sphere; a
radius r, the common spoke length; and (s0, s1), the two unit spoke directions (Pizer et al.,
2003; Styner et al., 2004). A medial atom can be regarded as a point on a Riemannian
manifold, M(1) = R3 × R+ × S2 × S2, where S2 is the sphere in R3 with radius one. A medial
representation model consisting of K medial atoms can be described as the direct product of

K copies of M(1), i.e., . The existing statistical analytical methods for the
medial representation include principal geodesic analysis, the estimation of extrinsic and
intrinsic means, and a permutation test for comparing medial representation data from two
groups (Fletcher et al., 2004). The scientific interests of some neuroimaging studies,
however, typically focus on establishing the association between subcortical structure and a
set of covariates, particularly diagnostic status, age, and gender, thus requiring a regression
modeling framework for medial representation.

There are several challenging issues including multiple directions on S2 and the complex
correlation structure among different components of M(1) in developing medial
representation regression models with a set of covariates. Although there is a sparse
literature on regression modeling of a single directional response and a set of covariates of
interest (Mardia and Jupp, 1983; Jupp and Mardia 1989), these regression models of
directional data are based on particular parametric distributions, such as the von Mises-
Fisher distribution (Mardia, 1975; Mardia and Jupp, 1983; Presnell et al., 1998). For
instance, existing circular regression models assume that the angular response follows the
von Mises-Fisher distribution with either the angular mean ηi or the concentration parameter
κi being associated with the covariates xi (Gould, 1969; Johnson and Wehrly, 1978; Fisher
and Lee, 1992). However, it remains unknown whether it is appropriate to directly apply
these parametric models for a single directional measure to simultaneously characterize the
two spoke directions at each atom, which are correlated. Moreover, the two spoke directions
may be correlated with other components of each atom and this provides further challenges
in developing a parametric model to simultaneously model all components of each atom of
the medial representation.

The rest of this paper is organized as follows. In Section 2, we formulate the semiparametric
regression model and introduce the two-stage estimation procedure for estimating the
regression coefficients. Then, we establish asymptotic properties of our estimates and then
develop Wald statistics to carry out hypothesis testing. Simulation studies in Section 3 are
used to assess the finite sample performance of the parameter estimates and Wald test
statistics. In Section 4, we illustrate the application of our statistical methods to the detection
of the difference in morphological changes of the hippocampi between schizophrenia
patients and healthy controls in a neuroimaging study of schizophrenia.

2 Theory
2.1 Inverse Link functions

Suppose we have an exogenous q × 1 covariate vector xi and a medial representation for a
particular sub-cortical structure, denoted by Mi = {mi(d) : d ∈ , for the i–th subject, where
d represents an atom of the medial representation. For notational simplicity, we temporarily
drop atom d from our notation. We formally introduce a semiparametric regression model
for medial representation responses and covariates of interest from n subjects. The
regression model involves modeling a conditional mean of a medial representation response
mi at an atom given xi, denoted by μi(β) = μ(xi, β), where β is a p × 1 vector of regression
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coefficients in ℬ ⊂ Rp. Thus, μ(·, ·) is a map from Rq × Rp to M(1) and μi(β) = (μoi(β)T,
μri(β), μ0i(β)T, μ1i(β)T)T, which is a 10 × 1 vector and μoi(β), μri(β), μ0i(β), and μ1i(β) are
the ‘conditional means’ of the location Oi, the radius ri, and the two spoke directions s0i and
s1i respectively, given xi, for the i-th subject. Note that for spoke directions, we borrow the
term conditional mean for random variables in Euclidean space.

We need to formalize the notion of conditional mean explicitly. For the location component
of a medial representation, we may set μoi(β) = (g1(xi, β1), g2(xi, β2), g3(xi, β3))T, where
gk(·, ·) is a known inverse link function and βk is a pk × 1 coefficient vector for k = 1, 2, 3.
There are many different ways of specifying gk(xi, βk). The simplest one is the linear inverse

link function . We may also represent gk(xi, βk) as a linear combination of

basis functions {ψj(xi) : j = 1, …, J}, such as B-splines, that is , in
which βkj is the j-th component of βk. In this way, we can approximate a nonlinear function
of xi using the linear combination of basis functions. For the radius component, we may use
μri(β) = g4(xi, β4), where β4 is a p4 × 1 coefficient vector for a medial representation radius.

Since a radius is always positive, a natural inverse link function is ,
among other possible choices.

As the two spoke directions at each atom of a medial representation are spherical responses,
we develop a link function μ0i(β) ∈ S2 for the first spoke direction at a specific atom for
notational simplicity. Let xi,d be a qd × 1 vector of all the discrete covariates, xi,c are a qc × 1
vector of all the continuous covariates and their potential interactions with xi,d, β5d and β5c
are the regression parameters corresponding to xi,d and xi,c, respectively, and β5 contains all
unknown parameters in β5d and β5c. From now on, all covariates have been centered to have
mean zero. We assume that all first spoke directions associated with the same discrete
covariate vector xi,d are concentrated around a center on the sphere given by

(1)

where θ(xi,d) and ϕ(xi,d) are, respectively, the colatitude and the longitude, and β5d includes
all unknown parameters θ(xi,d) and ϕ(xi,d) for different xi,d.

We then describe the stereographic projection of projecting μ0i(β) on the plane with base
point g5(xi,d, β5d), denoted by Tst;g5(xi,d,β5d)(μ0i(β)) (Downs, 2003). A graphic illustration of

the stereographic projection  is given in Figure 2 (a). The stereographic
projection Tst;g5(xi,d,β5d)(μ0i(β)) is defined as the point of intersection for the plane passing
through g5(xi,d, β5d) with the normal vector g5(xi,d, β5d), which is given by g5(xi,d, β5d)T

{(u, v, w)T − g5(xi,d, β5d)} = 0 for (u, v, w) ∈ R3, and the line passing through −g5(xi,d, β5d)
and μ0i(β): μ0i(β) − t{g5(xi,d, β5d) + μ0i(β)} for t ∈ (−∞, ∞). With some calculation, it can
be shown that Tst;g5(xi,d,β5d)(μ0i(β)) is given by

Let R be a rotation matrix in SO(3) such that RT = R−1 and det(R) = 1, where det(R)
denotes the determinant of R and SO(3) is the set of 3 × 3 rotation matrices. By applying the
rotation matrix R to both g5(xi,d, β5d) and μ0i(β), we have

(2)
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We consider a specific rotation matrix for rotating s1 = (s1,u, s1,v, s1,w)T ∈ S2 to s2 = (s2,u,
s2,v, s2,w)T ∈ S2, denoted by Rs1,s2, such that Rs1,s2s1 = s2. We need to calculate

 and s3 = s1 × s2/‖s1 × s2‖ = (s3,u, s3,v,
s3,w)T, where s1 × s2 = (s1,vs2,w − s1,ws2,v, s1,ws2,u − s1,us2,w, s1,us2,v − s1,vs2,u)T and ‖·‖ is
the Euclidean norm of a vector. Then, Rs1,s2 is given by

(3)

where cη = 1 − cos(η).

The inverse link function μ0i(β) is explicitly given as follows. By letting R =
Rg5(xi,d,β5d),(0,0,−1)T in (2), in which (0, 0,−1)T is the south pole of S2, we have

(4)

We assume that

(5)

where β5c is a qc × 2 matrix. Let  be the inverse map of the stereographic projection
mapping from the plane with base point (0, 0, −1) back to S2 such that

Please see Fig. 2 (a) for details. Note that Rg5(xi,d,β5d),(0,0,−1)T ∈ SO(3), the inverse link
function μ0i(β) is given by

(6)

When β5c = 0 indicating no continuous covariate effect, μ0i(β) reduces to g5(xi,d, β5d).
Similarly, for the second spoke direction, we introduce β6d and β6c as the regression
parameters corresponding to xi,d and xi,c, respectively, and then we define g6(xi,d, β6d) and
μ1i(β), respectively, as the center associated with the same discrete covariate vector xi,d and
the inverse link function by following (1) and (6). We have discussed various inverse link
functions for μ (xi, β), but these link functions can be misspecified for a given data set. To
avoid such misspecification, we may estimate these inverse link functions
nonparametrically. It is a topic for future research.

2.2 Intrinsic regression model
Now, we introduce a definition of a residual to ensure that μi(β) is the proper conditional
mean of mi given xi. For instance, in a classical linear model, the response is the sum of the
regression function and the residual, and the conditional mean of the response equals the
regression function. Given two points mi and μi(β) on the manifold, we need to define the
residual or difference between them. At μi(β), we have the tangent space of M(1), denoted
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by Tμi(β)M(1), which is a Euclidean space representing a first order approximation of the
manifold M(1) near μi(β). We calculate the projection of mi onto Tμi(β)M(1), denoted by
Lμi(β)(mi), as follows:

(7)

where Lμki(β)(ski) = arccos(μki(β)T ski)s̃ki/‖s̃ki‖, in which s̃ki = ski − {μki(β)T ski}μki(β) for k
= 0, 1. Thus, Lμi(β) (mi) can be regarded as the residual or difference between mi and μi(β)
in Tμi(β)M(1). Geometrically, Lμi(β)(mi) is associated with the Riemannian Exponential and
Logarithm maps on M(1).

We introduce the Riemannian Exponential and Logarithm maps on M(1). Let the tangent
vector θ = (θo, θr, θs0, θs1)T ∈ TmM(1), where θo ∈ R3 is the location tangent component,
θr ∈ R is the radius tangent component, and θs0 and θs1 ∈ R3 are the two directional tangent
components. Let γm(t; θ) be the geodesic on M(1) passing through γm(0; θ) = m ∈ M(1) in
the direction of the tangent vector θ ∈ TmM(1). The Riemannian Exponential map, denoted
by Expm(·), maps the tangent vector θ at m to a point m1 ∈ M(1) and Expm(θ) = γm(1; θ).
The Riemannian Logarithm map, denoted by Lm(m1), maps m1 ∈ M(1) onto the tangent
vector θ = Lm(m1) ∈ TmM(1). The Riemannian Exponential map and Logarithm map are
inverses of each other, that is Expm(Lm(m1)) = m1.

Because a medial representation is the product space of several spaces, the Riemannian
Exponential/Logarithm map for M(1) is the product of the Riemannian Exponential/

Logarithm maps for each space. Let  be two
points in M(1) and θ ∈ TmM(1). We give the explicit form of the Exponential and
Logarithm maps for each space of interest. For the space of locations, Expo(θo) = O + θo,
and Lo(O1) = O1 − O. For the space of radiuses, Expr(θr) = r exp(θr) and Lr(r1) = log(r1/r).
For the space S2, Exps0(θs0) = cos(‖θs0‖2)s0 + sin(‖θs0‖2) θs0/‖θs0‖2. Let

. If s0 and s0,1 are not antipodal (s0 ≠ −s0,1), we can get

. Thus, for the space M(1), the Riemannian Exponential
and Logarithm maps are, respectively, given by

(8)

(9)

Although the Lμi(β)(mi) ∈ Tμi(β)M(1) are in different tangent spaces, we can use parallel
transport to translate them to the same tangent space at an overall base point, denoted by
B(β). We choose B(β) = (0, 0, 0, 1, g̅5(β5d)T, g̅6(β6d)T)T, where g̅5(β5d) and g̅6(β6d) are the
mean directions of g5(xi,d, β5d) and g6(xi,d, β6d) for all possible xi,d, respectively. We use
parallel transport formulated by a rotation matrix,

(10)

to translate Lμi(β)(mi) ∈ Tμi(β)M(1) into {R(μi(β) ⇒ B(β))}Lμi(β)(mi) ∈ TB(β)M(1). An
illustration of the parallel transport is given in Figure 2 (b). Finally, we define the rotated
residual of mi with respect to μi(β) as

(11)
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The ℰi(β) are uniquely defined in the same tangent space TB(β)M(1), which is a Euclidean
space.

The intrinsic regression model for medial representations M(1) at an atom is then defined by

(12)

for i = 1, …, n, where the expectation is taken with respect to the conditional distribution of
ℰi(β) given xi (Le, 2001). In model (12), the nonparametric component is the distribution of
mi given xi, which is left unspecified, while the parametric component is the mean function
μi(β), which is assumed to be known. Moreover, our model (12) does not assume a
homogeneous variance across all atoms and subjects. This is also desirable for real
applications, because between-subject and between-atom variabilities can be substantial.

At atom d, let ℰi(β, d) be {R(μi(β, d) ⇒ B(β, d))}Lμi(β,d)(mi(d)), where μi(β, d) is the
conditional mean of mi(d) given xi. Model (12) leads to an intrinsic regression model for
M(1)K given by

(13)

for all d ∈ and i = 1, …, n. As a comparison, consider a multivariate regression model Yi =
Xiβ + εi and E(εi | xi) = E(Yi − Xiβ | xi) = 0, where Yi is a py × 1 vector and Xi is a py × p
design matrix depending on xi. It is clear that ℰi(β, d) is closely related to εi = Yi − Xiβ in
the multivariate regression model and thus the intrinsic regression model (13) for M(1)K can
be regarded as a generalization of a standard multivariate regression.

The key advantage of translating tangent vectors on different tangent spaces to the same
tangent space is that we can directly apply most multivariate analysis techniques in
Euclidean space to the analysis of ℰi(β) (Anderson, 2003). By using parallel transport to
obtain ℰi(β), we can explicitly account for correlation structure among ℰi(β) and then
construct a set of estimation equations to calculate a more efficient parameter estimate.
Please refer to the next section for details.

2.3 Two-stage estimation procedure
We propose a two-stage estimation procedure for computing parameter estimates for the
semi-parametric medial representation regression model (12) as follows.

Stage 1 is to calculate an intrinsic least squares estimate of the parameter β, denoted by β̂I,
by minimizing the square of the geodesic distance,

(14)

where Dn,i(β) = dist{mi, μi(β)}2 and dist{mi, μi(β)} is the shortest distance between mi and
μi(β) on M(1). Since Dn(β) can be written as the sum of four terms:
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, we can minimize  for k = 1, 2, 3, 4
independently when they do not share any common parameters.

Computationally, we develop an annealing evolutionary stochastic approximation Monte
Carlo algorithm (Liang, 2011) for obtaining β̂I, whose details can be found in the
supplementary report. Moreover, according to our experience, the traditional optimization
methods including the quasi-Newton method do not perform well for optimizing Dn(β) and
strongly depend on the starting value of β. When μi(β) takes a relatively complicated form,
Dn(β) is generally not concave and can have multiple local modes. For instance, since μ1i(β)

is a nonlinear function of β and  may not be a concave function of β over ℬ, our prior

experiences have shown that the quasi-Newton method for optimizing  can easily
converge to local minima.

The estimate β̂I is closely associated with the intrinsic mean (Bhattacharya and
Patrangenaru, 2005) and does not involve the concept of parallel transport. If we replace |

arccos(s)|2 by 1 − s in , then our fitting procedure in Stage 1 is effectively
a maximum likelihood estimation for a model with the Fisher-distributed errors on the
sphere and thus β̂I is an extrinsic estimate. It will be shown in Theorem 1 below that β̂I is a
consistent estimate, but β̂I is not efficient, since it does not account for the correlation
among the different components of medial representations.

Stage 2 is to calculate a more efficient estimator of β, denoted by β̂E, which is a solution of

(15)

where ĥE(xi) = ∂βμi(β̂I){R(μi(β̂I) ⇒ B(β̂I))}−1 = ∂βμi(β̂I){R(B(β̂I) ⇒ μi(β̂I))},

, and V̂ = V(β̂I).

The equation (15) in Stage 2 is invariant to the rotation matrix R(B(β) ⇒ P0), where P0 =
(0, 0, 0, 1, 0, 0, 1, 0, 0, 1)T representing the center at the origin (0, 0, 0)T, the unit radius r =
1, and the two spoke directions pointing towards the north pole (0, 0, 1)T. Specifically, we
can use the rotation matrix R(B(β) ⇒ P0) to rotate ℰi(β) to {R(B(β) ⇒ P0)}ℰi(β) for all i.
Correspondingly, ĥE(xi) and V−1 are, respectively, changed to ĥE(xi){R(B(β) ⇒ P0)}T and
{R(B(β) ⇒ P0)}V−1{R(B(β) ⇒ P0)}T. Thus, after applying the rotation R(B(β) ⇒ P0), we
can show that ĥE(xi)V−1ℰi(β) equals

which is independent of R(B(β) ⇒ P0).

Model (12) is a conditional mean model (Chamberlain, 1987; Newey, 1993). The
conditional mean model implies that E{h(xi)ℰi(β)} = E[h(xi)E{ℰi(β) | xi}] = 0 for any
vector function h(·), which may depend on β. After some algebraic calculations, it can be
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shown that calculating β̂I is equivalent to solving

 that is, hI(xi) = ∂βμi(β)R(B(β) ⇒ μi(β)).
However, it has been shown (Chamberlain, 1987; Newey, 1993) that the optimal function
has the form hopt(xi, β) = E{∂βℰi(β) | xi}var{ℰi(β) | xi}−1, which achieves the
semiparametric efficiency bound for β. Therefore, hI(xi) is not an optimal function and thus
the intrinsic least squares estimate in Stage 1 is not an efficient estimator.

Since E{∂βℰi(β) | xi} and var{ℰi(β) | xi} for each β do not have a simple form, we must
estimate them nonparametrically, which leads to a nonparametric estimate of hopt(x, β),
denoted by ĥopt(x, β). Although we may solve the estimating equations

 to calculate the efficient estimator of β, it can be
computationally challenging to solve Fn(β) since nonparametrically, estimating the 8 × p
matrix E{∂βℰi(β) | xi} and the 8 × 8 inverse matrix of var{ℰi(β) | xi} can be very unstable
for a relatively small sample size. Thus, we replace var{ℰi(β) | xi} by var{ℰi(β)} and
approximate E{∂βℰi(β) | xi} by ∂βμi(β)R(B(β) ⇒ μi(β)). Moreover, in order to avoid
calculating ∂βμi(β)R(B(β) ⇒ μi(β)) and var{ℰi(β)} during each numerical iteration, we

calculate them at β̂I and then construct the objective function  for
calculating β̂E. The two-stage estimation procedure leads to substantial computational
efficiency, since solving the complex estimating equations (15) is relatively easy starting
from β̂I. An alternative way is to directly minimize

, which is much more complex than Dn(β) and
thus is computationally difficult.

As a comparison between β̂E and β̂I, we consider a multivariate nonlinear regression model
Yi = F(xi, β) + εi with E(εi | xi) = E{Yi − F(xi, β) | xi} = 0 and var(εi | xi) = Σ, where F(xi, β)
is a vector of nonlinear functions of xi and β. In this case, ℰi(β) = εi = Yi − F(xi, β),

, and ĥE(xi) = ∂βF(xi, β̂I). Then, Σ can be

estimated by using . Equation (15) reduces to

, whose solution is just β̂E. Under mild conditions, it can be
shown that compared with β̂I, β̂E is a more efficient estimator of β and its asymptotic

covariance is given by . In the context of highly concentrated
spoke data, our intrinsic regression model reduces to the multivariate nonlinear regression
model and similar to the multivariate nonlinear regression model, the two-stage approach
can increase statistical efficiency in estimating β.

2.4 Asymptotic properties
We establish consistency and asymptotic normality of β̂I and β̂E. The following assumptions
are needed to facilitate the technical details, although they are not the weakest possible
conditions.

Assumption A1. The data {zi = (xi, mi) : i = 1, …, n} form an independent and identical
sequence.

Assumption A2. β* is an interior point of the compact set ℬ ⊂ Rp and is the unique solution
for the model, E {hE(x)ℰ(β)} = 0, where hE(x) = ∂βμi(β*){R(B(β*) ⇒ μi(β*))}V(β*)−1.
Moreover, β* is an isolated point of the set of all minimizers of the map D(β) = E[dist{m,
μ(x, β)}2] on ℬ, denoted by Iℬ.
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Assumption A3. In an open neighborhood of β*, μ(x, β) has a second-order continuous

derivative with respect to β and ‖Lμ(β)(m)‖, ‖∂μLμ(β)(m)‖, ‖∂βμ(x, β)‖ and  are
bounded by some integrable function G(z) with E{G(z)2} < ∞.

Assumption A4. In an open neighborhood of β*, the rank of  is p and
E[{∂βDn,i(β)}⊗2] is positive definite, where a⊗2 = aaT for a given vector a.

Assumption A1 is needed just for notational simplicity and can be easily modified to
accommodate independent and non-identically distributed scenarios. Assumption A2 is an
identifiability condition. Assumptions A3 and A4 are standard conditions for ensuring the
first order asymptotic properties including consistency and asymptotic normality of M-
estimators when the sample size is large (van der Vaart and Wellner, 1996). We obtain the
following theorems, whose detailed proofs can be found in the Appendix.

Theorem 1. (a) If assumptions A1, A2, and A3 are true, then β̂I and β̂E converge to β* in
probability as n → ∞, where β* is the solution of (12).

(b) Under assumptions A1–A4, we have

(16)

as n → ∞, where Ip is a p × p identity matrix and → denotes convergence in distribution.

(c) Under assumptions A1–A4, we have

(17)

as n → ∞.

Theorem 1 has several important applications. Theorem 1 (a) establishes the consistency of
β̂E and β̂I. According to Theorems 1 (b) and (c), we can consistently estimate the covariance
matrices of β̂E and β̂I. For instance, the covariance matrix of β̂E, denoted by Σ̂E, can be
approximated by

(18)

Moreover, we can use Theorem 1 (c) to construct confidence cones of β̂E and its functions.
Since Theorem 1 only establishes the asymptotic properties of β̂E when the sample size is
large, these properties may be inadequate to characterize the finite sample behavior of β̂E for
relatively small samples. In the case of small samples, we may have to resort to higher order
approximations, such as saddlepoint approximations and bootstrap methods (Butler, 2007;
Davison and Hinkley, 1997).

Our choices of which hypotheses to test are motivated by scientific questions, which involve
a comparison of medial representation components across diagnostic groups. These
questions usually can be formulated as testing linear hypotheses of β as follows:
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(19)

where A is an r × p matrix of full row rank and b0 is an r × 1 specified vector. We test the
null hypothesis H0 : Aβ = b0 using a Wald test statistic Wn defined by

(20)

We are led to the following theorem.

Theorem 2. If the assumptions A1–A4 are true, then the statistic Wn is asymptotically
distributed as χ2(r), a chi-square distribution with r degrees of freedom, under the null
hypothesis H0.

An asymptotically valid test can be obtained by comparing sample values of the test statistic
with the critical value of a χ2(r) distribution at a pre-specified significance level α.
However, for a small sample size n, we observed relatively low precision of the chi-square

approximation. Instead, we calibrate Wn with a critical value of , which

leads to a slightly higher precision of the F approximation, where  is the upper α-

percentile of the Fr,n−r distribution. That is, we reject H0 if , and
do not reject H0 otherwise. The reason that the F approximation outperforms the chi-square
approximation is due to the fact that the F approximation explicitly accounts for sample
uncertainty in estimating the covariance matrix of Aβ̂E.

3 Simulation studies and real data
3.1 Double directional data with covariates

We generated double directional responses as follows:

where μ0i(β) and μ1i(β) were set according to (6), in which xi,d’s were fixed at 1 and xi,c’s
were independently simulated from a N(0, 1) distribution. It is assumed that both μ0i(β) and
μ1i(β) were, respectively, centered around g5(xi,d, β5d) = (u0, v0, w0)T and g6(xi,d, β6d) =
(u1, v1, w1)T according to (1) such that

In addition, we imposed two constraints as follows:

We generated the errors ℰ0i and ℰ1i in T(0,0,−1)(S2) from a 4-dimensional normal
distribution, N(0, 0.5Σ) with Σ being specified as

Shi et al. Page 10

J Am Stat Assoc. Author manuscript; available in PMC 2013 June 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Subsequently, we rotated ℰ0i onto the tangent space Tμ0i(β) (S2) and ℰ1i onto the tangent
space Tμ1i(μ)(S2), and then we used the Exp map defined in the supplementary report to
obtain the responses s0i and s1i. We set n = 40, 80, and 120, ρ1 = ρ2 = 0.5, and then we
simulated 2000 datasets for each case to compare the biases and the root-mean-square error
of the two estimates: β̂I and β̂E. As seen in Table 1, β̂E has smaller root-mean-square error
than β̂I for every component of β, but some components of β̂E can be more biased.

We also calculated the mean of the estimated standard error estimates and the relative
efficiencies for all the components in β̂E and evaluated the finite sample performance of the
Wald statistic Wn for hypothesis testing. The results are quite similar to those from the
single directional case in the supplementary file, so we did not present them here to preserve
space.

3.2 Schizophrenia study of the hippocampus
We consider a neuroimaging dataset about the medial representation shape of the
hippocampus structure in the left and right brain hemisphere in schizophrenia patients and
healthy controls, collected at 14 academic medical centers in North America and western
Europe. The hippocampus, a gray matter structure in the limbic system, is involved in
processes of motivation and emotions, and plays a central role in the formation of memory.

In this study, 238 first-episode schizophrenia patients (53 female, 185 male; mean/standard
deviation age, female 25.1/5.69 years; male 23.6/4.55 years) were enrolled who met the
following criteria: age 16 to 40 years; onset of psychiatric symptoms before age 35;
diagnosis of schizophrenia, schizophreniform, or schizoaffective disorder according to
DSM-IV criteria; and various treatment and substance dependence conditions. 56 healthy
control subjects (18 female, 38 male; mean/standard deviation age, female 24.8/3.30 years;
male 25.3/4.21 years) were also enrolled. Neurocognitive and magnetic resonance imaging
(MRI) assessments were performed at the first visit time.

The brain MRI data were first aligned to the Montreal Neurological Institute (MNI) space.
Hippocampi were segmented in the MNI space and then their medial representations were
reconstructed from those binary segmentations (Styner et al., 2004). Subsequently, these
hippocampus medial representations were realigned by using a rigid body variation of the
standard Procrustes method. The resulting alignment leads to a shape representation that is
invariant to translation and rotation, but not to scale. Scaling information is retained for
studying changes in overall size or volume.

The aim of our study was to investigate the difference of medial representation shape
between schizophrenia patients and healthy controls while controlling for other factors, such
as gender and age. The response of interest was the hippocampus medial representation
shape at the 24 medial atoms of the left and right brain hemisphere (Figure 1). Covariates of
interest were Whole Brain Volume (WBV), race including Caucasian, African American
and others, age in years, gender, and diagnostic status including patient and control.

The covariate vector is xi = (1, genderi, agei, diagi, race1i, race2i, WBVi)T, where diag is the
dummy variable for patients versus healthy controls, and race1 and race2 are, respectively,
dummy variables for Caucasians and African Americans versus other races. For the location
component on the medial representation, we set μO(x, β) = (xT β1, xT β2, xT β3)T, where βk
(k = 1, 2, 3) are 7 × 1 coefficient vectors. For the radius component on the medial
representation, we set μr(x, β) = exp(xT β4), where β4 is a 7 × 1 coefficient vector. For the
directional components on the medial representation, we used μ0(xi, β) as defined in (6), in

which xi,d = (genderi, diagi, race1i, race2i)T, xi,c = (agei, WBVi)T,  for s0 and
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 for s1. Therefore, we have the coefficient vector .
Then we used the two-stage estimation procedure to obtain estimates of β and conducted
hypothesis testing using Wald statistics. Since the primary goal of the study is to investigate
the difference of medial representation shape between schizophrenia patients and healthy
controls, we paid special attention to the terms in β associated with diagnostic status.

First, we examined the overall diagnostic status effect on the whole medial representation
structure. The p-values of the diagnostic status effects across the atoms of both the left and
right reference hippocampi are shown in the first row (a) and (b) of Figure 3. The false
discovery rate approach (Benjamini and Hochberg, 1995) was used to correct for multiple
comparisons, and the corresponding adjusted p-values are shown in the first row (c) and (d)
of Figure 3. There was a large significant area in the left hippocampus and also some in the
right hippocampus. The significance area remains almost the same after correcting for
multiple comparisons, but with an attenuated significance level.

We also examined each component on the medial representation separately. For the radius
component of the medial representation, we presented the p-values of the diagnostic status
effects across the atoms in the second row (a) and (b) of Figure 3 and the adjusted p-values
in the second row (c) and (d). Before correcting for multiple comparisons, we observed a
significant diagnostic status difference in the medial representation thickness at the central
atoms near the posterior side in the left hippocampus and in some areas in the right
hippocampus, whereas we did not observe much of a significant diagnostic status effect after
correcting for multiple comparisons.

For the location component of the medial representation, we showed the p-values of the
diagnostic status effects in the third row (a) and (b) of Figure 3 and the corresponding
adjusted p-values in the third row (c) and (d). We observed significant diagnostic status
differences mainly located around the anterior and lateral side of the left hippocampus
though with clearly reduced significance after correcting for multiple comparisons. Similar
lateral results have also been observed by Narr et al. (2004).

Similarly, for the two spoke directions on the medial representation, the p-values of the
diagnostic status effects are shown in the last row (a) and (b) of Figure 3 and the
corresponding adjusted p-values are shown in the last row (c) and (d). Before correcting for
multiple comparisons, there was some significant area around the anterior, posterior, and the
medial side of the left hippocampus, but not much in the right hippocampus. There was still
some significance for the diagnostic status effect around the same areas in the left
hippocampus after correcting for multiple comparisons, but nothing in the right
hippocampus. The posterior orientation effect of hippocampal differences in schizophrenia
has also been shown by Styner et al. (2004) and basically constitutes a local bending change
in that region. The anterior effect is novel and located at the intersection of the hippocampal
Cornu Ammonis 1 and Cornu Ammonis 2 regions.

We also examined the overall age effect on the whole medial representation structure. The
color-coded p-values of the age effect across the atoms of both the left and right reference
hippocampi are shown in the first row (a) and (b) of Figure 4. The false discovery rate
approach was used to correct for multiple comparisons, and the corresponding adjusted p-
values are shown in the first row (c) and (d) of Figure 4. There was a large significant area
in the right hippocampus and also some in the left hippocampus. The significance area
remains almost the same after correcting for multiple comparisons, but with an attenuated
significance level.
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Additionally, we looked at each component on the medial representation separately. For the
radius component of the medial representation, the color-coded p-values of the age effect
across the atoms are shown in the second row (a) and (b) of Figure 4 and the adjusted p-
values are shown in the second row (c) and (d). Before correcting for multiple comparisons,
there was a small age effect in the medial representation thickness at the central atoms near
the posterior side in the left hippocampus and in some areas in the right hippocampus.
However, there was not much of a significant diagnostic status effect after correcting for
multiple comparisons.

For the location component of the medial representation, the color-coded p-values of the age
effect are shown in the third row (a) and (b) of Figure 4 and the corresponding adjusted p-
values are shown in the third row (c) and (d). Significant age effects were mainly located
around the anterior and lateral side of the left hippocampus though with clearly reduced
significance after correcting for multiple comparisons.

For the two spoke directions on the medial representation, we showed the color-coded p-
values of the age effect in the last row (a) and (b) of Figure 4 and the corresponding adjusted
p-values are in the last row (c) and (d). Even after correcting for multiple comparisons, we
observed significant areas around the anterior, posterior, and the medial side of the right
hippocampus and some areas in the left hippocampus.

Finally, following suggestions from a reviewer, we examined the overall diagnostic status
effect without accounting for other factors. The p-values of the diagnostic status effects are
shown in Figure 5. Inspecting Figure 5 reveals a small significant area in the left and right
hippocampi before and after correcting for multiple comparisons. Comparing with Figure 3,
we feel that such attenuation in Figure 5 may be caused by omitting other factors such as age
that are believed to be associated with the variability of the medial representation of
subcortical structures.

4 Discussion
We have proposed a semiparametric model for describing the association between the
medial representation of subcortical structures and covariates of interest, such as diagnostic
status, age and gender. We have developed a two-stage estimation procedure to calculate the
parameter estimates and used Wald statistics to test linear hypotheses of unknown
parameters. We have used extensive simulation studies and a real dataset to evaluate the
accuracy of our parameter estimates and the finite sample performance of the Wald
statistics.

Many issues still merit further research. The two-stage estimation procedure can be easily
modified to simultaneously estimate all parameters across all atoms and imposing some
structures (e.g., spatial smoothness) on the matrix of regression parameters across all atoms
while accounting for the correlations between different components of different atoms. This
generalization requires a good estimate of the covariance matrix of ℰi(β) across all atoms.
We may consider a shrinkage estimator of the covariance matrix of all ℰi(β) as a linear
combination of the identity matrix and the sample covariance matrix V(β) (Ledoit and Wolf,
2004). Moreover, for the matrix of regression parameters across all atoms, we may consider
its sparse low-rank matrix factorization to identify the underlying latent structure among all
atoms (Witten, Tibshirani, and Hastie, 2009; Dryden and Mardia, 1998; Fletcher et al.,
2004), which will be a topic of our future research. It is interesting to develop Bayesian
models for the joint analysis of medial representation data of subcortical structures (Angers
and Kim, 2005; Healy and Kim, 1996).
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Appendix: Proofs of Theorems 1 and 2
We need the following lemma throughout the proof of Theorems 1 and 2.

Lemma 1. (i) Under Assumption A1, if f(z, β) is a vector of continuous functions in β for
any β in a compact set ℬ and z, then

(21)

(ii) In addition to the assumptions in (i), if f(z, β) also satisfies supβ∈ℬ ‖f(z, β)‖2 ≤ G1(z) and
E {G1(z)} < ∞, then

(22)

(23)

(iii) In addition to the assumptions in (ii), if E {G1(z)r} < ∞ for any r > 1, then

(24)

in probability, as n → ∞.

(iv) In addition to the assumptions in (ii), if  for
any δ > 0 in a neighborhood of 0 and some constants C and ψ, then
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(25)

The assumptions and result (21) of Lemma 1 (i) correspond to Jennrich’s (1969) Theorem 2.
The results in Lemma 1 (ii) correspond to Andrews’ (1992) Lemma 3. The results in Lemma
1 (iii) correspond to Andrews’ (1992) Theorem 1. The result in Lemma 1 (iv) is a special
case of Andrews’ (1994) Theorems 4 and 5.

Lemma 2. Let E(β, β′) be E {dist(μ(x, β), μ(x, β′))2}. We assume that (i) ℬ is a compact
set; (ii) there is a point β ∈ ℬ such that D(β) < ∞ and supβ′∈ℬ E(β, β′) < ∞; (iii) E(β, β′) is
a continuous function in β and β′. Then, Iℬ is an non-empty compact set.

Proof of Lemma 2. It follows from the triangle inequality that

Using the Schwarz inequality and the assumptions of Lemma 2, we have

for any β′ ∈ ℬ. Thus, D(β) is a real continuous function of β in a compact set, which yields
that Iℬ is an non-empty set. Since ℬ is a compact set, it is trivial that Iℬ is a compact set.

Proof of Theorem 1. We prove Theorem 1 (a) in two parts. The first part proves weak
consistency of β̂E. We set f(z, β) = dist(m, μ(β))2 = ℰ(β)T ℰ(β). It follows from Assumption
A3 that supβ∈ℬ dist(m, μ(β))2 ≤ G(z)2. Thus, Lemma 1 (ii) and (iii) yield that supβ∈ℬ |
n−1Dn(β) − D(β)| → 0 in probability and D(β) is continuous in β uniformly over β ∈ Θ.
Since Iℬ is a compact set and β* is an isolated point, β̂I is a consistent estimator of β*.

Furthermore, we can show that  in
probability. Using similar arguments, we can show that β̂E is also a consistent estimator of
β*. Using the results of Lemma 1, we can show the asymptotic normality of β̂E and β̂I under
conditions A1–A4 (Andrews, 1999).

Proof of Theorem 2. Using standard arguments, we can easily prove Theorem 2.
Specifically, as n → ∞, since it follows from Theorem 1 (ii) that

, which finishes the proof of
Theorem 2.
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Figure 1.

(a) A medial representation model  at an atom, where O is the center of
the inscribed sphere, r is the common spoke length, and (s0, s1) are the two unit spoke
directions; (b) a skeleton of a hippocampus with 24 medial atoms; (c) the smoothed surface
of the hippocampus.
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Figure 2.
Graphic illustration of (a) stereographic projection and (b) parallel transport. In panels (a)
and (b), N and O denote the north pole (0, 0, 1) and the origin (0, 0, 0), respectively, and the
red dash lines are the x, y, and z-axes. In panel (a), the red point (u, v, −1) is a selected point

on the plane z = −1 and the green point  is the inverse map of the
stereographic projection mapping from (u, v, −1) back to S2. In panel (b), the point A is on
S2, LA(s) is in TAS2, and RA,NLA(s) ∈ TNS2 is the parallel transport of LA(s) from A to the
north pole N.
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Figure 3.
The coded p–value maps of the diagnostic status effects from the schizophrenia study of the
hippocampus: rows 1, 2, 3, and 4 are for the whole medial representation structure, radius,
location, and two directions, respectively: at each row, the uncorrected p–value maps for (a)
the left hippocampus and (b) the right hippocampus; the corrected p–value maps for (c) the
left hippocampus and (d) the right hippocampus after correcting for multiple comparisons.
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Figure 4.
The color-coded p–value maps of the age effect from the schizophrenia study of the
hippocampus: row 1, 2, 3, and 4 are for the whole medial representation structure, radius,
location, and two directions, respectively: at each row, the uncorrected p–value maps for (a)
the left hippocampus and (b) the right hippocampus; the corrected p–value maps for (c) the
left hippocampus and (d) the right hippocampus after correcting for multiple comparisons.
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Figure 5.
The coded p–value maps of the diagnostic status effects without accounting for other factors
from the schizophrenia study of the hippocampus: rows 1, 2, 3, and 4 are for the whole
medial representation structure, radius, location, and two directions, respectively: at each
row, the uncorrected p–value maps for (a) the left hippocampus and (b) the right
hippocampus; the corrected p–value maps for (c) the left hippocampus and (d) the right
hippocampus after correcting for multiple comparisons.

Shi et al. Page 21

J Am Stat Assoc. Author manuscript; available in PMC 2013 June 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Shi et al. Page 22

Ta
bl

e 
1

B
ia

s 
(×

10
−

3 )
 a

nd
 M

S 
(×

10
−

2 )
 o

f 
β̂ I

 a
nd

 β̂
E
 f

or
 d

ou
bl

e 
di

re
ct

io
na

l c
as

e.
 B

ia
s 

de
no

te
s 

th
e 

bi
as

 o
f 

th
e 

m
ea

n 
of

 th
e 

es
tim

at
es

; M
S 

de
no

te
s 

th
e 

ro
ot

-m
ea

n-

sq
ua

re
 e

rr
or

. F
or

 e
ac

h 
pa

ra
m

et
er

, t
he

 f
ir

st
 r

ow
 is

 f
or

 β̂
I a

nd
 th

e 
se

co
nd

 is
 f

or
 β̂

E
. M

or
eo

ve
r,

 th
e 

co
ns

tr
ai

nt
s 
β 5

c,
1 

=
 β

6c
,1

 a
nd

 β
5c

,2
 =

 β
6c

,2
 a

re
 im

po
se

d.

n 
= 

40
n 

= 
80

n 
= 

12
0

B
ia

s
M

S
B

ia
s

M
S

B
ia

s
M

S

β 5
d,

1 
=

 1
.2

3.
15

13
.2

6
4.

35
10

.0
4

4.
22

7.
75

3.
40

13
.1

0
4.

36
9.

82
3.

98
7.

60

β 5
c,

1 
=

 β
6c

,1
 =

 1
9.

29
19

.1
9

1.
74

12
.7

6
7.

43
10

.3
1

8.
93

18
.0

2
0.

89
12

.0
9

7.
27

9.
81

β 5
d,

2 
=

 1
.2

9.
44

13
.6

9
2.

05
10

.1
9

0.
86

7.
80

9.
81

13
.2

9
0.

88
9.

59
0.

43
7.

69

β 5
c,

2 
=

 β
6c

,2
 =

 1
6.

90
18

.5
5

5.
00

13
.0

8
0.

64
10

.5
3

6.
74

17
.5

0
5.

67
12

.4
4

0.
62

9.
99

β 6
d,

1 
=

 0
.8

5.
18

16
.8

5
3.

23
9.

74
2.

49
7.

93

5.
69

12
.9

1
3.

10
9.

65
2.

69
7.

76

β 6
d,

2 
=

 0
.8

2.
34

14
.8

4
1.

31
9.

78
0.

86
8.

47

1.
32

13
.0

6
0.

98
9.

71
0.

91
8.

07

J Am Stat Assoc. Author manuscript; available in PMC 2013 June 19.


