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Abstract
In randomized studies, treatment comparisons conditional on intermediate post-randomization
outcomes using standard analytic methods do not have a causal interpretation. An alternate
approach entails treatment comparisons within principal strata defined by the potential outcomes
for the intermediate outcome that would be observed under each treatment assignment. In this
paper, we develop methods for randomization-based inference within principal strata. The
proposed methods are compared with existing large-sample methods as well as traditional intent-
to-treat approaches. This research is motivated by HIV prevention studies where few infections are
expected and inference is desired within the always-infected principal stratum, i.e., all individuals
who would become infected regardless of randomization assignment.
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1 INTRODUCTION
1.1 Principal Stratification

Sometimes in randomized studies, treatment comparisons conditional on intermediate post-
randomization outcomes are of interest. For example, in vaccine studies, a common question
of interest is whether infections in vaccinated individuals are more or less severe than
infections in unvaccinated individuals (Hudgens and Halloran 2006). Unfortunately, the
estimands underlying standard methods typically employed for these comparisons do not
have a causal interpretation (Rosenbaum 1984). To address this deficiency, Frangakis and
Rubin (2002) proposed a general framework for comparing treatments adjusting for the
intermediate post-randomization outcomes. In particular, they defined causal effect
estimands within strata determined by a cross-classification of individuals defined by the
joint potential intermediate post-randomization outcomes under each of the treatments being
compared. Since these “principal strata” are not affected by treatment assignment, they can
be conditioned on just as any pre-treatment covariate. Accordingly, causal effect estimands
within principal strata do not suffer from the complications of standard post-randomization
adjusted estimands.

The simple framework of principal stratification has a wide range of applications. For
example, in HIV prevention studies an objective is understanding the effects of a preventive
treatment (e.g., vaccine administered prior to infection) on post-infection events, such as
severe disease or death. Assessing a treatment’s effect on post-infection outcomes is
challenging since such outcomes may only be defined for infected individuals and standard
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comparisons between infected treated individuals and infected controls are subject to
selection bias (Halloran and Struchiner 1995; Hernán, Hernández-Díaz and Robins 2004).
Moreover, because the set of individuals who would become infected if assigned treatment
is likely not identical to the set of those who would become infected if not assigned
treatment, comparisons that condition on infection do not have a causal interpretation.
Recently, methods have been developed to assess causal treatment effects on post-infection
outcomes in the principal strata of individuals who would be infected regardless of treatment
assignment (Hudgens, Hoering and Self 2003; Gilbert, Bosch and Hudgens 2003; Mehrotra,
Li and Gilbert 2006; Shepherd, Gilbert, Jemiai and Rotnitzky 2006; Shepherd, Gilbert and
Lumley 2007). Similarly, in studies to prevent mother-to-child HIV transmission the
outcome of interest is long term HIV infection status among infants not infected at or shortly
after birth (Chasela et al. 2010). When infants are randomly assigned treatment at birth, the
principal stratum of interest is individuals who would not be infected shortly after birth
regardless of treatment assignment. Other settings where principal stratification has been
applied include treatment noncompliance (Angrist, Imbens and Rubin 1996; Baker,
Frangakis and Lindeman 2007), truncation by death (Robins 1995; Zhang and Rubin 2003)
and evaluation of surrogate endpoints (Gilbert and Hudgens 2008; Joffe and Greene 2009).

Methods for inference within principal strata often appeal to large sample frequentist or
Bayesian theory. Assumptions typically used to aid in the identification of principal strata
membership and draw inference within strata include the stable unit treatment value
assumption, independent treatment assignment and monotonicity. However, additional
assumptions are needed in order to completely identify principal strata membership in the
both treatment groups. For example, assumptions in the form of selection bias models have
been suggested to attain identifiability (e.g., see Gilbert et al. 2003; Shephard et al. 2006).
These models are helpful if one can elicit prior information regarding the selection bias
model parameter (Scharfstein, Halloran, Chu and Daniels 2006; Shepherd, Gilbert and
Mehrotra 2007). Alternatively, large sample bounds of the distribution of the outcome of
interest in the control group and therefore of treatment effect can be obtained assuming
maximum possible levels of positive and negative selection bias (Zhang and Rubin 2003;
Hudgens et al. 2003; Imai 2008). These upper and lower bound estimates of treatment effect
provide the full range of estimates consistent with the observed data. To draw inference
about these estimates, large sample frequentist methods such as profile likelihood CIs
(Hudgens and Halloran 2006) or bootstrap tests (Gilbert et al. 2003; Mehrotra et al. 2006)
have been employed.

1.2 Randomization-Based Inference
Randomized studies are the clinical trial gold standard for evaluating treatment effects
because randomization (i) produces in expectation comparable groups with respect to
measured and unmeasured covariates and (ii) provides a basis for statistical inference.
Regarding (ii) randomization inference is based on distributions created from the
randomization process rather than assuming random sampling of individuals from an infinite
population (Koch, Gillings and Stokes 1980; Rubin 1991; Rosenbaum 2002a).
Unfortunately, the benefits of conducting a randomized study are lost when conditioning on
an intermediate post-randomization outcome, as the treatment and control groups are no
longer comparable. Ideally one would like to conduct randomization-based inference within
principal strata determined by the set of intermediate potential outcomes. However, while
randomization inferential methods have been proposed in the instrumental variable setting
(Rosenbaum 1996; Rosenbaum 2002a; Imbens and Rosenbaum 2005; Hansen and Bowers
2009), to date a general approach to randomization inference within principal strata has not
been developed.
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Another benefit of randomization-based inference is that the methods are exact, allowing for
inference in small to intermediate sample size settings where methods based on asymptotic
approximations may be inappropriate (Imbens and Rosenbaum 2005). In the HIV vaccine
setting, small trials are often employed to screen possible vaccines for larger Phase III
efficacy studies (Rida, Fast, Hoff and Fleming 1997). For instance, Mehrotra et al. (2006)
describe a proof-of-concept (POC) efficacy trial where the study is ceased after just 50 HIV
infections are observed in the vaccine and placebo arms combined. In these small sample
settings, Bayesian inference about treatment effects within principal strata may not be ideal
if investigators are hesitant to make assumptions regarding prior distributions. On the other
hand, large sample frequentist methods may lead to incorrect inferences in such settings. For
example, simulation studies have demonstrated inflated type I error of bootstrap tests and
under-coverage of bootstrap and Wald based confidence intervals (CIs) when the principal
stratum of interest is small (Hudgens et al. 2003; Gilbert et al. 2003; Shepherd et al. 2007;
Jemiai, Rotnitzky, Shepherd, and Gilbert 2007). It will be seen that the proposed method
lifts these limitations.

1.3 Outline
This paper considers randomization-based methods for inference within principal strata. The
main development is an exact test for a causal treatment effect within principal strata. In
section 2, the principal stratum exact test (PSET) is developed. Section 3 presents simulation
results comparing the PSET to a large sample frequentist approach for testing a treatment
effect within principal strata. In Section 4 the PSET is applied to two studies on mother-to-
child transmission of HIV. Section 5 provides some empirical comparisons between the
PSET and intent-to-treat (ITT) based tests. Section 6 describes an extension of the PSET to
allow for adjustments for covariates. In Section 7 exact CIs for treatment effect are derived
by inverting the PSET. Section 8 concludes with a discussion and the Appendix includes
several proofs.

2 PRINCIPAL STRATUM EXACT TEST
2.1 Assumptions and Notation

Suppose there are n individuals assigned to treatment or control. Assume:

A.1 Stable Unit Treatment Value Assumption (SUTVA) (Rubin 1980)—Treatment
assignment of one individual does not affect another individual’s outcomes (no interference)
and there are not multiple versions of treatment.

Under SUTVA, let si(z) denote the potential intermediate post-randomization out-come and
yi(z) denote the outcome of interest of the ith individual given treatment assignment z, where
z = 0 for control and z = 1 for treatment. Assume the intermediate post-randomization
outcome is binary. For ease of presentation, assume the intermediate outcome represents
infection status. As such, si(z) = 1 if the ith individual is infected when assigned treatment z
and si(z) = 0 if uninfected. The principal strata are formed by classifying individuals
according to their pair of infection potential outcomes (si(1), si(0)). The always-infected (AI)
principal stratum is defined as the individuals with si(0) = si(1) = 1, i.e., individuals who
would be infected regardless of treatment assignment. Similarly the harmed stratum is
defined as those individuals with si(0) = 0, si(1) = 1; the protected stratum by si(0) = 1, si(1)
= 0; and the immune (never-infected) stratum by si(0) = si(1) = 0.

The goal of this paper is to develop a principal stratum exact test of treatment effect on a
post-infection outcome, y, among individuals within a principal stratum. Assume the stratum
of interest is the AI stratum such that the desired comparison is between {yi(1): si(0) = si(1)
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= 1} and {yi(0): si(0) = si(1) = 1}. While motivated by infectious disease settings where the
AI stratum is of interest, the PSET is applicable to alternative strata such as the immune
stratum as well as other settings. For example, if the intermediate variable represents
compliance status, the principal strata of interest might be those that are always compliant
regardless of assigned treatment (Angrist et al. 1996). Likewise, if the intermediate variable
is survival status, the principal strata of interest might comprise those that always survive
regardless of treatment assignment (Zhang and Rubin 2003). These other applications are
discussed further in Section 8.2.

To develop a PSET of treatment effect on the post-infection outcome, consider testing the
sharp null hypothesis

(1)

where  ≡ {i: si(1) = si(0) = 1} is the set of individuals in the AI stratum. Using
terminology of VanderWeele (2008), the null (1) corresponds to no principal stratum direct
effect. An exact test requires the resulting p-value, p, be exact in the sense that Pr[p ≤ α] ≤ α
for each α ∈ [0, 1] under the null (Casella and Berger 2002).

While each individual has four potential outcomes (si(1), si(0), yi(1), yi(0)), only two of
these outcomes are observed dependent on treatment assignment, either (si(1), yi(1)) or
(si(0), yi(0)). Let Zi denote the treatment assignment for individual i and let Z = (Z1, …, Zn).
To make inference about treatment effect, the treatment assignment mechanism must be
specified or modeled. This paper uses randomization inference whereby the randomization
distribution induced by the experimental design forms the basis for statistical inference
(Rubin 1991). In particular, the potential outcomes are considered fixed features of the finite
population of individuals while Zi is considered a random variable. Let

 denote the observed intermediate post-randomization outcome
and define  analogously. Both  and  are random variables since they depend on
Zi. To develop a test of (1), assume independent treatment assignment:

A.2 Independent treatment assignment—Pr[Z = z] = Pr[Z = z′] for any z, z′ such that

 where z = (z1, …, zn),  are treatment assignment vectors.

If principal stratum membership was known, for the AI stratum in particular, the
development of an exact test of (1) would be straight forward. As assumptions A.1 and A.2
are generally not sufficient to identify principal stratum membership, an additional
assumption often made is that treatment does not cause infections:

A.3 Monotonicity: si(1) ≤ si(0) for all i ∈ {1, …, n}—Assumption A.3 identifies AI
stratum membership for individuals assigned to treatment. Specifically, A.3 implies infected
treated individuals (i.e., ) would have become infected if assigned control (i.e.,
si(0) = 1) and are therefore members of the AI stratum i.e., .
Unfortunately, A.1–A.3 do not identify AI stratum membership for individuals in the control
group because infected control individuals are a mixture of members of the AI and protected
strata.

In Section 2.3 the PSET of (1) is developed under A.1-A.3. In infectious disease settings A.1
may be violated due to interference between individuals, although this is unlikely in certain
settings such as mother-to-child transmission studies. A.2 generally holds in randomized
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studies. While A.3 cannot be verified from the observable data, it has testable implications.
For example, A.3 implies a non-negative average causal treatment effect on infection, i.e.,

. Should the data provide evidence to the contrary, A.3 can be
rejected. Even if the proportion infected is not higher in the treated arm, the veracity of A.3
may be questionable in some settings. For example, results from a recent HIV vaccine trial
(Buchbinder et al. 2008) suggest certain vaccine recipients were more likely to be infected
than placebo recipients. Similar concerns arise in vaccine development for other viruses
(Greenwood 1997, Tirado and Yoon 2003). A vaccine that causes many infections is likely
of no utility, making inference about post-infection endpoints moot. However, if a vaccine
causes a few infections but prevents many more, then effects on post-infection endpoints are
of interest but invoking A.3 may be dubious. Violations of A.3 are discussed further in
Sections 3 and 4.

2.2 Example with Binary Outcome
Suppose for now that yi(z) is a binary variable where yi(z)=1 if the event of interest occurs
(e.g., death or severe disease), 0 otherwise. To test (1), first imagine we know exactly which
individuals are in . Then the following 2 × 2 table can be constructed

(2)

where m ≡  1 is the number of individuals in . Under the sharp null, 
implying (2) can equivalently be written as

(3)

For randomization-based inference, the potential outcomes are fixed features of the finite
population. The column totals of (3) depend only on the potential outcomes and thus can be
considered fixed. Therefore, conditional on the row totals, (1) can be tested by applying
Fisher’s exact test to (2) where the p-value is obtained by calculating the probability of each
possible table using the hypergeometric distribution.

Because principal strata membership is not completely known, we cannot construct (2).
Instead the following table of infected individuals is observable

(4)

where here and in the sequel Σ denotes the summation over i = 1, …, n.
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To develop an exact test of (1), information from (4) can be used to make inference about
the unobservable table (3). Under A.3,  implies i ∈ . Thus assuming A.3, under
(1) the observable table (4) can be written as

(5)

Table (5) differs from (3) only in that the principal stratum membership of control recipients
who become infected is unknown. This problem is analogous to conducting a test in the
presence of nuisance parameters. The following section will detail how an exact p-value for
testing (1) can be obtained by conducting exact tests over a range of plausible values of the
nuisance parameters and defining the exact p-value as a function of the largest p-value from
this set of exact tests.

2.3 PSET Development
Now assume that yi(1) and yi(0) are any type of event and not necessarily binary. Let

 and  and define  as the p-value
for an exact randomization-based test of (1) assuming AI membership were known. For
example, if no ties exist in ( ) then the usual exact Wilcoxon rank sum test could be
employed to compute .

As illustrated in Section 2.2, the set of AI stratum membership indicators for the infected
control individuals can be viewed as unknown nuisance parameters. Analogous to Barnard’s
test, an exact test can be constructed by conducting a test for each possible AI subset of the
infected control individuals and reporting the largest p-value (Barnard 1947). Unfortunately,
this approach is overly conservative because it almost always fails to reject (1). Specifically,
the set of possible AI subsets from infected control individuals includes subsets comprising
only one individual. Provided there is at least one infected control individual with a post-
infection outcome yi(0) that is not significantly different from {yi(1): si(1) = 1, Zi = 1}, (1)
will not be rejected. Furthermore, this approach ignores information available about the AI
stratum. While the observed data do not identify which infected control individuals are in
the AI stratum, the data do provide some information about the number of control
individuals in the AI stratum. Thus an alternative approach is to view the number of control
individuals in the AI stratum as the nuisance parameter and to obtain bounds for possible
values of this nuisance parameter based on the observed data.

Let M0 ≡  (1 − Zi) and M1 ≡  Zi be the number of individuals in  assigned control
and treatment such that M0 + M1 = m. Since the number of individuals in  does not
depend on Z, m is fixed, whereas M0 and M1 are random variables. Under A.3,

 is observable. In contrast, M0 is not observable.

Suppose contrary to fact that M0 is observed. Then an exact p-value could be obtained by
performing an exact test for all possible selections of M0 individuals from {i: Zi = 0, }
and taking the maximum of the resulting p-values. Define this p-value as
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(6)

where Ω(M0) of size equals the set of subsets of { } of size M0.

Although M0 is not observed, it is bounded above by . Moreover, the
observed M1 provides information about m and thus M0. Specifically, conditional on the
total number assigned treatment ΣZi, under assumption A.2 an exact 100(1 − γ)% CI for m,

say Cγ ≡ [Lm, Um], can be computed based on  using standard results
about simple random sampling (e.g., Thompson 2002). Then, following Berger and Boos
(1994), define

(7)

The following proposition indicates that  is an exact p-value for testing (1).

Proposition 1—For any γ ∈ [0, 1],  for all α ∈ [0, 1] under H0 (1).

The choice of γ should be made prior to looking at the data in a formal hypothesis testing
scenario as the proposition holds only assuming γ is fixed. Section 3 presents simulation
studies which provide empirical evidence suggesting γ = α/2 may be recommended in
certain settings. For tests where pai(m̃ − M1) tend to decrease as m̃ increases, letting

 and computing a one-sided (1 − γ)% CI for m to obtain Lm should result in a
test with higher power compared to using a two-sided CI.

2.4 Computations
Calculating pai(M0) can be computationally intensive as it requires performing

 exact tests corresponding to Ω(M0). In many settings, the computation
requirements can be reduced by implicitly determining  without
having to calculate  for each Y0 ∈ Ω(M0). The proposition below shows how
pai(M0) can be implicitly determined for a particular class of test statistics.

First consider the situation where AI membership is known such that the exact p-value
 can be calculated. Let j1, j2, …, jm denote the labels of individuals in AI such that

 = {j1, …, jm} and . Let yai denote the vector

( ), which is fixed under the null (1), and correspondingly let Zai = (Zj1,
Zj2, …, Zjm). Following Rosenbaum (2002a), let t(Zai, yai) denote the test statistic
corresponding to . Assuming large values of t(Zai, yai) are considered evidence
against the null (1), the exact one-sided p-value is calculated as
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(8)

where |A| denotes the number of elements in the set A and  denotes the set of possible
treatment assignment vectors of length m with M1 ones and M0 zeros.

Define the test statistic t(zai, yai) to be effect increasing (Rosenbaum 2002a) if t(zai, yai1) ≥ t

(zai, yai2) for two possible response vectors yai1 and yai2 whenever 
for j = 1, …, m where in general uj denotes the jth element of vector u. Informally, t is effect
increasing if the value of the statistic increases when responses for the treated group are
increased and the responses for the control group are decreased. Next define t(zai, yai) to be

invariant if  for all j, k, where in general ujk denotes the vector formed
by interchanging the jth and kth elements of u. In words, t(zai, yai) is invariant if permuting
the labels of individuals does not change the value of the statistic. Many common statistics
such as Fisher’s exact test statistic and the Wilcoxon rank sum statistic are invariant and
effect increasing (Rosenbaum 2002a). According to the proposition below, for invariant and
effect increasing statistics  can be determined by calculating a
single p-value.

Proposition 2—If t(zai, yai) is invariant and effect increasing, then
 where  is the set of M0 largest values of

{ }.

2.5 Positive Effect
The choice of test statistic used for conducting the PSET of (1) will be dictated by the type
of post-infection outcome (e.g., whether y is binary, ordinal, continuous, etc) and alternative
hypothesis of interest. One possible alternative hypothesis is that treatment has a positive
effect (Rosenbaum 2002; see also Lehmann 1998) in the AI stratum, i.e.,

(9)

where the inequality in (9) is strict for at least one i ∈ . In words, treatment has a positive
effect if it increases y for at least one individual and does not decrease y for any individual in
AI. The additivity model yi(1) − yi(0) = δ for all i ∈  and constant δ > 0 is a special case
of (9). If the test statistic t is effect increasing, the following proposition shows the PSET is
an unbiased test of (1) against (9), i.e., the PSET is at least as likely to reject H0 at the α
significance level when HA holds as compared to when H0 holds.

Proposition 3—If t(zai, yai) is effect increasing, then .

2.6 Plug-in P-value Alternative
An alternative testing approach that has been proposed for addressing the presence of
nuisance parameters entails conditioning on estimates of the unknown parameters; the
resulting p-value is sometimes referred to as the “plug-in p-value” (Bayarri and Berger
2000). For example, a plug-in p-value approach has been advocated as an alternative to
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Fisher’s exact test (Storer and Kim 1990). Plug-in p-values are computationally straight
forward and asymptotically exact under certain assumptions about the form of the test
statistic (Robins, van der Vaart, and Ventura 2000). Considering m to be a nuisance
parameter when testing (1), a plug-in type p-value can be defined by conditioning on an
unbiased estimate M ̂ = nM1/ΣZi (Thompson 2002) of m:

Unfortunately such an approach does not take into account uncertainty about m and

therefore  is not guaranteed to be exact. For example, consider the following population
of 8 individuals with potential infection and post-infection outcomes si(z) and yi(z) where
yi(z) = * indicates the post-infection outcome is not defined if si(z) = 0. Suppose by design
Pr[ΣZi = 4] = 1.

i si(0) si(1) yi(0) yi(1) i si(0) si(1) yi(0) yi(1)

1 1 1 8 8 5 1 1 4 4

2 1 1 7 7 6 1 0 3 *

3 1 1 6 6 7 1 0 2 *

4 1 1 5 5 8 1 0 1 *

Suppose a one-sided Wilcoxon rank sum test is used to test (1), where

 with  denoting the rank of  among { } and the p-

value is computed by (8). Then for α = 0.05,  because  for 5

of the  possible treatment assignment permutations.

3 SIMULATION STUDY
A primary objective of preventive HIV vaccine trials is to assess whether vaccination has an
effect on viral load in individuals who become infected. Gilbert et al. (2003) and Hudgens et
al. (2003) developed bootstrap tests of the null hypothesis that vaccination has no effect on
viral load in the AI principal stratum. To evaluate the operating characteristics (type I error
and power) of these proposed tests, they conducted simulation studies of HIV vaccine trials
with 2000 HIV negative individuals randomized 1:1 to either vaccine or placebo under
various assumptions regarding the rates of infection in the vaccine and placebo arms. In
settings where the expected number of observed infections was moderate or large, the
proposed tests preserved the nominal type I error probability. However, in settings where the
expected number of observed infections was small (45 infections in the placebo arm, 31.5 in
the vaccine arm), the bootstrap tests demonstrated inflated type I error. Therefore we
conducted a simulation study under identical assumptions to assess how the PSET performs
in comparison.

Let z = 0 for placebo individuals and z = 1 for vaccinated individuals. For assignment z, si(z)
= 1 if an individual is infected and yi(z) is the log-transformed viral load when si(z) = 1.
Thus, the null (1) corresponds to the vaccine having no effect on viral load in the AI
principal stratum. It is of interest to test the null against the one-sided alternative that viral
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load is higher when vaccinated, given concerns that an HIV vaccine may actually increase
viral load in breakthrough infections (Hudgens et al. 2003).

The following steps were performed for each trial simulation. First, si(0) was set equal to 1
for i = 1, …, 90 and si(0) = 0 for i = 91, …, 2000. For i = 1, …, 90, yi(0) was randomly
generated from a normal distribution with mean 4.5 and standard deviation 0.6. Next,
selection bias was simulated by setting si(1) = 1 for the 63 individuals with the largest values
of yi(0) and si(1) = 0 otherwise. Thus vaccination caused a 30% reduction in the number of
infections, with only individuals who would have low viral load if not vaccinated being
protected from infection by vaccine. Vaccine effect on viral load was simulated by letting
yi(1) = yi(0) + δ for i ∈ . Finally, 1000 individuals were randomly assigned placebo, the
remaining 1000 assigned vaccine and the observed outcomes were selected from (si(1), si(0),
yi(1), yi(0)) accordingly.

For each simulated dataset, the PSET, nonparametric mean bootstrap test of Hudgens et al.
(2003) and plug-in p-value from Section 2.6 were calculated. For the PSET, we used a one-
sided 100(1 − γ)% CI of m to obtain Lm and a Wilcoxon rank sum test to compute the
conditional p-value pai(M0) in (6). Simulations using a two-sided 100(1 − γ)% CI to obtain
Lm and Um resulted in reduced power compared to the one-sided approach (results not
shown). Table 1 gives the empirical type I error and power of the PSET for various values of
γ and significance level α, based on 10,000 simulations per combination of γ and α. As
expected, in all scenarios the empirical type I error of the PSET was less than α. In contrast,
for α = 0.05 the empirical type I errors of the bootstrap test and plug-in p-value were 0.11
and 0.19 respectively, i.e., over twice the nominal level. For α = 0.05 the power of the PSET
was highest for γ = 0.030. For α = 0.10, γ = 0.05 yielded the greatest power. Thus, choosing
γ = α/2 may be recommended in this setting.

Additional simulation studies were conducted to compare the power of the PSET to the
bootstrap test when the AI stratum sample size was increased. Specifically, the simulations
studies described above were repeated twice, but with 90 and 135 expected observed
infections in the placebo arm and vaccination causing a 30% reduction in the number of
infections in both scenarios. For 90 expected placebo arm infections, the empirical type I
error and power for δ = 1/3 and 2/3 were 0.004, 0.426, and 0.990 and 0.057, 0.742, and
0.999 for the PSET and bootstrap tests respectively. For 135 expected placebo arm
infections, the empirical type I error and power for δ = 1/3 and 2/3 were 0.005, 0.664, and
0.999 and 0.039, 0.908, and 1.00 for the PSET and bootstrap tests respectively. Thus for
larger AI stratum the bootstrap test controlled the type I error and had greater power than the
PSET for small δ.

As discussed in Section 2.1, the veracity of A.3 may be of concern in some settings. To
assess the robustness of the PSET when A.3 is violated, additional simulations were
conducted where some individuals infected under vaccine belong to the harmed stratum.
Data were simulated as described in the original scenario (where 90 individuals were
infected if not vaccinated), except that 6 (10%) of the 63 individuals infected if vaccinated
were from the harmed stratum. In particular, for each trial, si(0) and yi(0) were generated as
described above. Selection bias was simulated by setting si(1) = 1 for a random selection of
57 of the 63 individuals with the largest values of yi(0). Vaccine effect on viral load in the
AI stratum was simulated by letting yi(1) = yi(0) + δ for these individuals. Harmed
individuals were then simulated by setting si(1) = 1 for i = 91, …, 96 and generating yi(1)
from the same normal distribution used to generate yi(0). All subsequent steps of the
simulation were the same as before. The PSET empirical type I error and power for δ = 1/3
and 2/3 were 0.003, 0.108, and 0.649. That is, the PSET type I error was less than the
nominal α despite A.3 not holding, and the PSET power was slightly diminished relative to
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simulations where A.3 holds. Similar results were obtained when 20% and 30% of
individuals infected when vaccinated were members of the harmed stratum.

4 APPLICATIONS
4.1 Zambia Exclusive Breastfeeding (ZEB) Study

The ZEB study was a randomized study to evaluate whether abrupt weaning at 4 months as
compared to continued breastfeeding increases survival of children of HIV infected mothers
(Kuhn et al. 2008). The trial was conducted in 958 HIV-infected women and their infants in
Lusaka, Zambia with 481 children randomized to the intervention and 477 randomized to
standard practice of continued breastfeeding. Randomization occurred at one month post-
partum to allow for sufficient preparation time for weaning at 4 months. Kuhn et al. present
an analysis of the effect of weaning on survival through 24 months based on a log-rank test
comparing survival between randomization groups for the subset of infants who became
HIV-infected prior to 4 months but survived more than 4 months. A total of 62 individuals
in the intervention arm were HIV-infected and alive at 4 months, 39 (63%) who died prior to
24 months. Likewise, 70 in the standard practice arm were HIV-infected and alive at 4
months, 32 (46%) who died prior to 24 months. The log-rank p-value was 0.007, leading
Kuhn et al. to conclude that there is evidence of a harmful effect of weaning on survival
among HIV positive infants alive at 4 months.

Because the reported analysis conditions on infection and survival status at 4 months, the
results do not necessarily have a causal interpretation and could be due to selection bias.
Specifically, any differences between the study arms during months 1–4 could affect
infection and survival status at 4 months. For instance, at month 2 women in the intervention
group were counseled on techniques for weaning and given a three month supply of infant
formula and fortified weaning cereal. This may have caused women in the intervention
group to wean earlier than had they been randomized to the control group, in turn perhaps
impacting HIV acquisition. In fact, more women in the intervention arm weaned by 4
months (37 versus 18) and, possibly because of this, fewer infants in the intervention arm
became HIV positive at or before 4 months (71 versus 81).

The principal stratum of interest is the AI stratum, defined as all individuals who would be
HIV-infected and alive at 4 months regardless of randomization assignment. The PSET was
used to test the null hypothesis of no effect of the intervention on death in the AI stratum. To
compute (6), a one-sided Fisher’s exact test was used where each individual was classified
as having died or not. An exact log-rank test might be preferable for calculating the
conditional p-values, however the individual death and censoring times were not reported by

Kuhn et al. For γ = 0.025, the PSET resulted in  suggesting no evidence of a
harmful effect of weaning on survival for the AI stratum. The one-sided CI for m, i.e., the
total number of infants in the AI stratum, is 104 to 132. Figure 1 plots the p-values from
Fisher’s exact test conditional on m = m̃ for each m̃ ∈ Cγ = [104, 132]. While a Fisher’s
exact test using all available data and ignoring the potential for selection bias is less than α =
0.05 (p-value= 0.0355), 27 of the 29 conditional p-values are greater than 0.05. Additionally,

even testing the hypothesis using the plug-in p-value (i.e. m = M ̂) results in .
In order reject to (1) based on the PSET for α = 0.05 and γ = 0.025, 58 of 62 individuals
would have had to die in the intervention arm compared to the 32 of 70 in the standard

practice arm ( ).
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4.2 Breastfeeding, Antiretroviral and Nutrition (BAN) Study
The BAN study was a randomized trial of infants of HIV infected mothers to evaluate
whether daily administration of nevirapine (NVP) to the infant through 28 weeks decreased
risk of HIV transmission via breastfeeding to infants when compared to a control arm
receiving no antiretroviral therapy (Chasela et al. 2010). A total of 668 mothers and their
infants were randomized to control while 852 were randomized to infants receiving NVP.
Fewer mother-infant pairs were randomized to control because the data and safety
monitoring board (DSMB) stopped enrollment in this arm early. The effect of NVP on
infection status through 28 weeks was assessed using a log-rank test that compared infection
between treatment groups for all infants who were not infected at two weeks. Of the 632
infants not infected at two weeks in the control arm, 32 (5.1%) were infected by 28 weeks.
Likewise, of the 815 infants not infected at two weeks in the NVP arm, 12 (1.5%) were
infected by 28 weeks. The log-rank p-value was < 0.001, suggesting NVP prevents
breastmilk transmission of HIV. However, these results do not have an immediate causal
interpretation and could be subject to selection bias because the analysis conditions on a
post-randomization outcome: HIV infection status at two weeks. To guard against this
Chasela et al. also reported results from an ITT analysis of all infants randomized, including
those infected before two weeks. However, a primary objective of BAN was to investigate
the effect of NVP to prevent breastmilk transmission. Thus the investigators were primarily
interested only in infections occurring after two weeks, as infants who were HIV positive by
two weeks may have been infected in utero or during birth. Because daily NVP from birth
could potentially effect infection status at two weeks, the groups of infants not infected at
two weeks in each study arm may not be comparable.

The principal stratum of interest is the never-infected (NI) stratum, defined as individuals
who would be HIV uninfected at two weeks regardless of randomization assignment. The
PSET can be used to test the null of no treatment effect on infection by 28 weeks in the NI
stratum. In contrast to the AI stratum, membership in the NI stratum is known for control
individuals not infected at two weeks since by A.3 infants not infected at two weeks when
assigned control would also not be infected at two weeks when assigned NVP. On the other
hand, membership in the NI stratum is unknown for infants assigned NVP not infected at
two weeks. Thus the PSET can be conducted in the NI stratum with the roles of the treated
and control individuals reversed relative to conducting the PSET in the AI stratum. For
given γ, denote the PSET p-value for the test of no principal stratum direct effect in the NI

stratum by , which is computed analogous to (7). Because enrollment was stopped early

in one arm, we compute  using only data available prior to the DSMB decision. These
data include all the control arm infants described above but only 670 of the infants in the
NVP arm, 639 of who were not infected at two weeks. Of these 639 infants, 10 (1.6%) were
infected by 28 weeks. Because the BAN study was a multi-arm trial, the analysis plan
stipulated that tests between the NVP and control arms be conducted at the α = 0.025
significance level. Letting γ = 0.0125 and using a one-sided Fisher’s exact test, the PSET

resulted in  indicating a benefit of NVP among infants who were immune to
infection at two weeks. Using an exact log-rank test with Monte Carlo sampling (Mehta and

Patel 2007) yielded a similar result with .

4.3 Sensitivity Analysis
As discussed in Sections 2 and 3, A.3 is a key assumption of the PSET. In the BAN study,
comparison of infection rates at two weeks provides no evidence that monotonicity is
violated, with the proportion infected at two weeks slightly lower in the NVP arm.
Additionally, multiple other studies (Mofenson 2009) have shown daily administration of
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NVP protects infants from breastmilk transmission of HIV and to date there is no evidence
suggesting NVP may cause HIV transmission. Nonetheless, when A.3 may be of concern, a
sensitivity analysis can be conducted.

To illustrate one possible sensitivity analysis, suppose there was concern about A.3 in the
BAN study. Without A.3 the 632 control arm infants uninfected at two weeks are not all
necessarily members of the NI stratum. Rather, some of these infants may belong to the
harmed stratum, i.e., they may have been infected by two weeks if randomized to NVP.
Suppose h of the 632 are from the harmed stratum. If these h infants could be identified, the
PSET could be conducted based on the remaining 632 − h control arm infants uninfected at
two weeks. Because the h infants cannot be identified without additional assumptions, the
sensitivity analysis entails considering different scenarios. Specifically, divide the h infants
into h1 from the 600 control arm infants not infected by 28 weeks and h2 = h − h1 from the
32 control arm infants infected by 28 weeks. Then conduct the PSET for different
combinations of (h1, h2). For the BAN study the PSET p-value (based on a one-sided
Fisher’s exact test) is more sensitive to changes in h2 than h1. For example, for γ =0.0125, h1

= 8 and h2 = 0 yields , while h1 = 0 and h2 = 8 yields . Holding h1 = 0

fixed,  for h2 = 0, 1, 2, …, 7 and  for h2 > 7. In words, NVP was
beneficial in the NI stratum at the 0.025 significance level provided no more than 7 of the 32
control arm infants infected by week 28 were from the harmed stratum.

5 COMPARISONS WITH ITT APPROACHES
Principal stratification provides a method for dealing with possible selection bias induced by
conditioning on an intermediate post-randomization outcome. Alternatively, an ITT based
approach can be employed. The ITT principle generally refers to analyzing all individuals
according to randomization assignment. ITT has become the gold standard in clinical trials
as it ensures the validity of testing the null hypothesis of no treatment effect (assuming
perfect compliance) and helps minimize bias such that observed differences in outcomes
between the groups can be attributed to the treatment under study. The ITT approach does
however have some potential drawbacks. For instance, in the infectious disease setting,
unlike principal stratification the ITT approach does not clearly differentiate treatment
effects on infection and post-infection outcomes. Also, it is conceptually challenging to
define post-infection outcomes for non-infected individuals. Similarly, quality of life
outcomes may be considered undefined in individuals not alive (Rubin 2006).

To obviate the latter problem, Chang, Guess and Heyse (1994) proposed an ITT-based
burden of illness (BOI) test for assessing treatment effect on disease severity by assigning
burden of illness scores to each incident infection, with individuals who escape infection
receiving a score of zero. Denote the observed disease severity scores by  where

 if  and  if . Then define
 and  as the p-value for an exact

randomization-based test comparing  and . As opposed to (1), the null hypothesis
of the randomization BOI test is H0: wi(1) = wi(0) for all i ∈ {1, …, n}. Assuming 
whenever , it follows that the null hypothesis of the BOI test is equivalent to testing
the composite hypothesis:

(10)
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Because the BOI test may have poor power when infections are rare, Follmann, Fay, and
Proschan (2009) proposed the chop-lump test as an alternative ITT test of (10). For this
method, a test statistic is calculated based on a subset of the data obtained by removing (or

“chopping”)  observations where  from
each randomization group such that the remaining data from at least one of the groups has
no observations where . The test statistic (e.g., difference in means between groups)
is computed based on this subset. Randomization-based p-values are obtained in the usual
fashion, i.e., by considering all possible randomization assignments of the n individuals and
computing the test statistic for each possibility.

For the simulation scenario of Section 3, the power was < 0.05 for the BOI for all δ and
0.181, 0.370 and 0.483 for the chop-lump for δ = 1/3, 2/3 and 1 respectively. For these tests,
let  for uninfected individuals ( ) and  for infected individuals
( ). Then for both tests the Wilcoxon rank sum test statistic was used to compare 
and one-sided p-values were computed corresponding to the vaccine causing higher viral
load. The lack of power for the ITT tests in this setting is partially due to the opposite
direction of vaccine effects on infection and viral load, i.e., for δ > 0 the vaccine is
protecting some individuals but causing a higher viral load in the AI stratum.

To compare the BOI, chop-lump and PSET when the vaccine only effects the post-infection
outcome, additional simulations were conducted similar to that described in Section 3 except
we let si(1) = si(0) for all i such that the expected number of observed infections was 45 for
each arm. For α = 0.05, the empirical type I error and power for δ = 1/3, 2/3 and 1 were
0.049, 0.061, 0.062 and 0.063 for the BOI test; 0.048, 0.365, 0.747 and 0.898 for the chop-
lump; and 0.002, 0.100, 0.644 and 0.978 for the PSET (with γ = 0.025). That is, the PSET is
markedly more powerful test than the BOI approach for all δ and comparable in power to the
chop-lump for larger values of δ. Mehrotra et al. (2006) presented similar findings when
comparing large-sample frequentist based principal stratification tests with a BOI test.

The PSET is unambiguously better for testing principal stratum direct effects than the BOI,
chop-lump and other ITT-based tests in settings where treatment z has an effect on infection
s but not on the post-infection outcome y. For then the ITT-based tests may reject (10) even
though the null hypothesis of interest (1) is true (i.e. treatment has no effect on the post-
infection outcome y). For example, consider the scenario described in Section 3 where
vaccine causes a 30% reduction in the number of infections, there are 45 expected infections
in the placebo arm, and δ = 0 (i.e., (1) is true). Suppose the alternative hypothesis of interest
is that the vaccine reduces viral load. In this scenario, one-sided BOI and chop-lump tests
reject (10) at the α = 0.05 level of significance for over 50% of the simulated data sets. In
other words, the BOI and chop-lump tests do not have the correct size for testing (1) when
there is a treatment effect on s.

6 ADJUSTING FOR COVARIATES
Covariate adjustment is often used in analysis of randomized experiments to account for
chance imbalances that may exist between study arms, thereby allowing for more precise
inference. Following Rosenbaum (2002b), in this section we consider extending the PSET to
incorporate baseline (i.e., pre-randomization) covariates. This approach entails first
regressing the outcomes of interest on covariates and then conducting an exact test on the
residuals. Ideally, the residuals obtained from the regression model are less variable than the
original outcomes of interest, resulting in increased power of the PSET. The appeal of this
approach is no distributional assumptions about the response nor the selected regression
model are required. As before, randomization inference is employed such that the potential
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outcomes as well as the covariates are assumed to be fixed features of the finite population
and not affected by treatment assignment.

6.1 PSET Development Adjusting for Covariates
Let xi represent the baseline covariate value for individual i. Denote the function that creates
residuals from yi(z) and xi by g such that g(yi(z), xi) = ei(z) where ei(z) is the residual for the
ith individual when assigned treatment z. Under the null hypothesis (1), yi(1) = yi(0) and
therefore ei(1) = ei(0) for all i ∈ . Therefore, a test of (1) can be constructed using the
residuals.

The covariate-adjusted PSET is constructed in a similar fashion to the PSET from Section
2.3 except  is replaced with the observed residuals, . The exact
randomization-based test used to obtain  need not be the same test used on the
residuals as the choice of tests depends on the characteristics of yi(z), xi and g(,). For
example, consider the logistic regression setting where yi(z) is binary, xi has no ties and g(y,
x) = y − exp(β ̂0 + β ̂1x)/{1+exp(β ̂0 + β ̂1x)} where β ̂0 and β ̂1 are obtained by maximum
likelihood estimation. Resulting values for ei(z) will typically have no ties. Accordingly,
Fisher’s exact test could be used to obtain  while a Wilcoxon rank sum test could
be used on the residuals.

6.2 Simulations
To assess the power of the covariate adjusted PSET, the simulation scenario described in
Section 3 was updated to include baseline CD4 count, a measure of immune function.
Baseline CD4 count xi was assumed to be normally distributed with mean 850 and standard
deviation 300. For all individuals who would be infected if assigned control, CD4 count xi
and post-infection log viral load when receiving control yi(0) were simulated under various
levels of correlation (ρ = 0.0, 0.1, …, 0.9). Residuals were obtained using

 where β ̂0 and β ̂1 are solutions to the normal equations for the
linear regression model of  on xi for all i with . A one-sided 100(1 − γ)% CI was
computed to obtain Lm and a one-sided Wilcoxon rank sum test of the residuals was used to
obtain the conditional p-values pai(M0) in (6).

Results of the simulations for α = 0.05 and γ = 0.025 are displayed in Table 2. Comparing to
Table 1, adjusting for xi increased the power of the PSET when ρ > .5, markedly so for the
larger value of δ. For weak levels of correlation, an increase in power was not observed; for
ρ=0 there was a slight loss of power when adjusting for the covariate. While the covariate-
adjusted PSET is not guaranteed to increase power compared to the unadjusted PSET, it is
still guaranteed to be exact.

7 CONFIDENCE INTERVALS
The PSET can be used to form an exact CI for a principal stratum direct effect. Suppose
treatment effect in the AI stratum is additive such yi(1) − yi(0) = δ0 for all i ∈ . Then a CI
for the principal stratum direct effect δ0 can be obtained by inverting a generalized version
of the PSET developed in Section 2.3. The CI is constructed by conducting the generalized
PSET for all possible values of δ0 and forming the set of values where the test is not rejected
(Lehmann 1959, Rosenbaum 2002).

The first step is to adapt the PSET to allow for testing a more general null hypothesis. For
some constant δ not necessarily equal to zero, consider testing:
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(11)

Note under (11) that  is constant.
Thus the PSET of (11) can be constructed as in Section 2.3 except  is replaced with

 for individuals where Zi = 1 (Rosenbaum 2002a). A one-sided 100(1 − α)% CI for
the true δ0 is formed by the set of all δ where a one-sided test of (11) is not rejected.

More specifically, let  denote the one-sided p-value from an exact
randomization-based test of (11) using  for individuals where Zi = 1, and let

 and . Let δmin and
δmax denote the lower and upper limits of the range of possible values for δ0. Following
Mehta and Patel (2007), define the lower bound of the 100(1 − α)% one-sided CI of δ0 by

 . If there does not exist δ such that  for all δ̃ < δ then
 is set to δmin. The upper bound of the CI is set to δmax. According to the following

proposition, the interval [ , δmax] is an exact one-sided 100(1 − α)% CI of the principal
stratum direct effect δ0 because the probability of covering the true value of δ0 is at least (1
− α).

Proposition 4

For γ ∈ [0, 1] and α ∈ [0, 1], .

8 DISCUSSION
8.1 Summary

In randomized studies, comparisons between randomized groups that condition on
intermediate post-randomization outcomes generally do not have a causal interpretation. An
alternate approach entails comparisons within principal strata defined by the intermediate
potential outcomes that would be observed under each randomization assignment. In this
paper, we develop exact, randomization-based methods for inference about the treatment
effect within a principal stratum. The three key assumptions for the PSET are SUTVA (A.1),
random treatment assignment (A.2), and monotonicity (A.3); no assumptions are required
about random sampling or that particular parametric distributions hold. Simulation studies
indicate the PSET can be as or more powerful than ITT approaches when treatment has no
impact on the intermediate post-randomization outcome. The power of the PSET can be
increased by adjusting for baseline covariates and exact CIs for the principal stratum direct
effect can be obtained by inverting the PSET.

8.2 Other applications
This work is motivated by infectious disease prevention studies where the treatment is some
preventive measure (such as a vaccine), the intermediate variables s is infection, and the
outcome of interest y is a post-infection endpoint (such as death). Two other settings where
principal stratification methods are typically employed include truncation by death (Zhang
and Rubin 2003) and non-compliance (Angrist et al. 1996). For the truncation by death
problem, the PSET can readily be employed. In this setting, the intermediate variable s is
death (0 for alive, 1 for death), the outcome of interest y is some measurement such as
quality of life that is only well defined when individuals are alive, and the principal stratum
of interest is the set of individuals who would be alive under either treatment assignment.
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The stratum of interest {i: si(0) = si(1) = 0} is directly analogous to the never infected
principal stratum discussed in Section 4.2. Here the monotonicity assumption A.3 indicates
no individuals would die due to treatment.

In the non-compliance setting, the intermediate variable s is compliance to randomization
assignment z and the goal is to make inference about the outcome of interest y for those
individuals who would comply under either randomization assignment. Following Angrist et
al. (1996), let si(z) = 1 if individual i actually receives treatment and si(z) = 0 if individual i
receives control when assigned z. If individual i always complies with their randomization
assignment then si(z) = z. Thus the principal stratum of interest, the compliers, is {i: si(0) =
0, si(1) = 1}. Typically a form of monotonicity is assumed such that there are no individuals
who always defy their randomization assignment, i.e., {i: si(0) = 1, si(1) = 0} is empty.
Additionally, often it is assumed that randomization assignment has no effect on individuals
who ignore treatment assignment, i.e., yi(0) = yi(1) if si(0) = si(1). Under this exclusion
restriction and assuming monotonicity, the principal stratum direct effect null

(12)

will be true if and only if the ITT null

(13)

is true, so that the usual randomization tests of (13) can be used to test (12), as suggested by
Rosenbaum (1996).

If one is not willing to make the exclusion restriction assumption above (e.g., see Jo 2002),
then (12) and (13) are not equivalent and thus the usual randomization (ITT) tests will
generally not have the correct size for testing (12), since effects of randomization on y in
non-compliers can lead to rejection of (13) even though (12) is true. In certain settings
treatment may not be available to individuals randomized to control (e.g., see Ten Have et
al. 2003, Little et al. 2009), so that si(0) = 0 always. In this setting and assuming
monotonicity, the PSET applies; individuals with  must be compliers (just as
infected treated individuals must be in the AI stratum) and individuals with  are a
mixture of compliers and never takers (just as infected controls are a mixture of individuals
from the protected and AI strata).

8.3 Future Directions
We close by mentioning five possible avenues of future research. (i) The development of the
PSET as an exact test of (1) arose from viewing individuals’ principal stratum memberships
as partially unknown nuisance parameters and then employing the approach developed by
Berger and Boos (1994). Other approaches to testing in the presence of nuisance parameters
might be adapted to the principal stratification setting, giving rise to exact tests of (1)
different from the PSET in this paper. (ii) Extensions to observational settings where
assumption A.2 does not necessarily hold could be considered. For examples of permutation
inference in observational studies see Rosenbaum (1984 Rosenbaum (2002). (iii) A method
for obtaining an exact CI of the principal stratum direct effect by inverting the PSET was
presented in Section 7. This method assumes the treatment effect is additive (i.e., constant)
within the principal stratum of interest. Future research could entail relaxing this
assumption. Similar to Rosenbaum (2001), one approach might entail extending the PSET to
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the more general null hypothesis H0: yi(1) − yi(0) = δ0i for i ∈  where the individual
treatment effects δ0i may differ between individuals; this extended PSET could then,
perhaps, be inverted to obtain a CI for the average principal stratum direct effect
(VanderWeele 2008). (iv) As discussed in Sections 2, 3 and 4, the monotonicity assumption
may be dubious in certain settings. Additional investigation is needed into weakening
assumption A.3. (v) Covariate adjustment was considered in Section 6 as a method for
possibly increasing the power of the PSET. Alternatively, baseline covariates could be used
to predict principal stratum membership (e.g., see Roy et al. 2008) and perhaps this
information could somehow be incorporated within the randomization-based inference
framework.
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APPENDIX: PROOF OF PROPOSITIONS

Proof of Proposition 1
Proof

Suppose H0 (1) is true. Fix γ ∈ [0, 1] and α ∈ [0, 1]. If γ > α, then

. Therefore . If γ ≤ α, then

where the 2nd inequality holds because max{pai(m̃ − M1): m̃ ∈ Cγ} ≥ pai(m − M1) when m ∈
Cγ and the 4th inequality holds due to the following Lemma.

Lemma
pai(m − M1) is an exact p-value, i.e., Pr[pai(m − M1) ≤ α] ≤ α for each α ∈ [0, 1] under the
null (1).

Proof of Lemma
Suppose H0 (1) is true.
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where the 1st inequality holds because  and the 2nd

inequality holds because  is an exact p-value under (1).

Proof of Proposition 2
Proof

Assume t is an invariant and effect increasing statistic. The proposition is proved if we can
show  for all Y0 ∈ Ω(M0). Let Y0 be an element of Ω (M0) and

define the labels k1,…, km such that . Let 
and Zai1 = Zk1, Zk2, …, Zkm.

Since t is invariant, we can assume without loss of generality that the labels k1,…, km are

defined such that  for j = 1, …, M1;  otherwise; and  if j ≤ k and

. In other words, the elements of Zai1 are in descending order and the elements of
Yai1 are in descending order within fixed levels of Zai1. Similarly define the labels l1, …, lm
such that . Let  and define Zai2

analogously. Assume the labels l1, …, lm are defined similar to k1, …, km such that Zai2 =

Zai1 and  if j ≤ k and .

Note the first M1 elements of Yai1 and Yai2 are the same, such that if , then .
On the other hand, if , then  because (i) Yai2 and Yai1 are both in descending
order within fixed levels of Zai2 = Zai1 and (ii) Yai2 contains the M0 largest values of

{ }. This implies  for j = 1, …, m. Since t is an
effect increasing statistic, it follows t(Zai1, Yai1) ≥ t(Zai2, Yai2), which implies

.

Proof of Proposition 3
Proof

Fix γ and α. Let Z denote a randomly selected treatment assignment vector and let  denote
the resulting PSET p-value. By Proposition 2, there exists an m̃ ∈ Cγ such that

. Similar to the proof of Proposition 2, define the labels l1,…,

lm̃ such that . Let  and
define Zaim̃ analogously. Let  be the vector of potential outcomes if
individuals l1, …, lm were all assigned control. Note if zlk= 1 then lk ∈  and thus

 under (1) or (9). On the other hand, by construction the lk element of
Yaim̃ and the lk element of  are equal if zlk = 0. Because t is effect increasing, it follows

 when either (1) or (9) hold. Therefore
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(14)

The left side of (14) equals  under HA where as the right side of (14)
equals  under H0. Therefore

which implies , i.e., the probability of rejecting the null is at
least as likely given (9) as compared to given (1).

Proof of Proposition 4
Proof

Let δ0 be the true (unknown) value of the principal stratum direct effect. Fix γ ∈ [0, 1] and α
∈ [0, 1]. If γ > α then the PSET does not reject (11) for any choice of δ. Therefore,

. If γ ≤ α then

where the 3rd inequality follows from the definition of  (i.e.,  implies ) and
the 4th inequality follows for reasons analogous to the proof of Proposition 1.
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Figure 1.
Plot of the 29 conditional p-values, pai(m̃ − M1), for mother-to-child HIV transmission
weaning study. Horizontal reference line indicates significance level α = 0.05. Vertical

reference line indicates  where m̃ = M ̂ = nM1/ΣZi = 123
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Table 1

Empirical type 1 error and power for α significance level, 100(1 − γ)% CI for m, and δ increase in log10 viral
load in the AI stratum, where δ = 0 under the null hypothesis (1)

α γ δ = 0 δ = 1/3 δ = 2/3

0.05 0.005 0.001 0.09 0.65

0.05 0.010 0.002 0.12 0.72

0.05 0.020 0.003 0.16 0.77

0.05 0.025 0.004 0.16 0.77

0.05 0.030 0.005 0.17 0.78

0.05 0.040 0.003 0.15 0.77

0.05 0.045 0.002 0.13 0.73

0.10 0.010 0.004 0.18 0.79

0.10 0.050 0.009 0.29 0.89

0.10 0.090 0.009 0.25 0.86

0.10 0.095 0.005 0.21 0.84

J Am Stat Assoc. Author manuscript; available in PMC 2012 June 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Nolen and Hudgens Page 25

Table 2

Empirical type 1 error and power for α = 0.05, γ = 0.025, and δ increase in log10 viral load in the AI stratum,
where δ = 0 under the null hypothesis (1), when adjusting for baseline CD4 count at various levels of ρ
between viral load and CD4 count

ρ δ = 0 δ = 1/3 δ = 2/3

0.0 0.004 0.16 0.76

0.1 0.004 0.16 0.76

0.2 0.004 0.16 0.77

0.3 0.003 0.16 0.78

0.4 0.003 0.16 0.80

0.5 0.002 0.17 0.82

0.6 0.002 0.18 0.85

0.7 0.001 0.21 0.90

0.8 0.001 0.27 0.96

0.9 < 0.001 0.50 > 0.99
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