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Abstract

An inverse regression methodology for assessing predictor performance in the censored data setup
is developed along with inference procedures and a computational algorithm. The technique
developed here allows for conditioning on the unobserved failure time along with a weighting
mechanism that accounts for the censoring. The implementation is nonparametric and
computationally fast. This provides an efficient methodological tool that can be used especially in
cases where the usual modeling assumptions are not applicable to the data under consideration. It
can also be a good diagnostic tool that can be used in the model selection process. We have
provided theoretical justification of consistency and asymptotic normality of the methodology.
Simulation studies and two data analyses are provided to illustrate the practical utility of the
procedure.

Keywords
right censored data; accelerated failure time; sufficient dimension reduction

1 Introduction

An objective of analyzing survival data via regression is to develop a predictive model given
covariates. Often this is done under semiparametric considerations when the covariate
effects are summarized in a linear manner as in the Cox (1972) model. An important step in
formulating the model involves variable selection. Most of the variable selection techniques
used for analyzing censored data are extensions of the regression methodology for
uncensored data. Stepwise deletion and best subset selection are the most popular ones in
this context. Selection of the influential predictors is critical and becomes complicated if the
data has many high dimensional covariates, as is often the case in clinical trials and more
recently in microarray studies. In addition to selection, assessment of predictor performance
is also crucial. It is therefore very beneficial to efficiently select a subset of significant
variables which is sufficient for inference on the response and then to model those variables
effectively.

A variety of variable and model selection procedures have been proposed to address these

issues in the censored setup. Tibshirani (1997) suggested the Lasso for variable selection in
the Cox model. This approach minimizes the log partial likelihood subject to the sum of the
absolute values of the parameters being bounded by a constant. The nature of the constraint
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shrinks coefficients and produces some coefficients that are exactly zero. Tibshirani gives
the example of the veteran's lung cancer data set, but the assumption of proportional hazards
is unreasonable for nominal covariates such as cell type and Karnofsky score. Hence, the
Lasso is not applicable when the proportional hazards assumption is not valid. Fan and Li
(2002) proposed variable selection via penalized likelihood for Cox's proportional hazards
and frailty models. Selection of significant variables and estimation of regression
coefficients is done simultaneously in this method. As in the case of the Lasso, this
procedure is applicable only for variable selection in Cox models. Keles et al. (2004)
developed a model selection method to select among predictors of right censored outcomes
in the context of prediction and density/hazard estimation problems. This procedure is
applicable for estimating data-based parameters such as the conditional mean, conditional
density, etc.

In many applications the assumptions made for model based inference may not be valid, and
consequently the results can be biased. As a result, nonparametric methods are becoming
increasingly popular. Recently, there have been several nonparametric alternatives for
uncensored data that address the issue of variable selection without assuming an underlying
model. Li (1991) introduced sliced inverse regression (SIR) and Cook (2004) developed a
procedure for testing predictor contributions via SIR. In addition to these approaches, there
have also been Bayesian based techniques in variable and model selection.

Li et al. (1999) extended SIR for censored data. They proposed methods of finding low
dimensional projections of the data for visually examining the censoring pattern. A double
slicing procedure that requires dimension reduction for both T, the failure time, and the
censoring time C using principal component analysis was introduced. The example used to
illustrate the procedure is the primary biliary cirrhosis of the liver (PBC) data collected at
the Mayo clinic between 1974 and 1986. In the example, the authors use only 6 of the
original 17 predictors for their analysis and the justification for the proposed method is via a
comparison with the parametric analysis done by Fleming and Harrington (1991). Li's paper
provides a background on implementing SIR for censored data and opens up avenues for
further research in the area.

Cook (2004) formulated a methodology for testing predictor contributions using SIR. He
introduced tests of hypothesis of no effect for selected predictors in regression for
uncensored data, without assuming a model for the conditional distribution of the response
given the predictors. The sufficient dimension reduction approach (hereafter SDR) via
inverse regression was subsequently introduced by Cook and Ni (2005). They improve on
the methodology developed by Cook (2004) using a more efficient approach. In their paper,
a family of dimension reduction methods, the inverse regression family, is developed by
minimizing a quadratic objective function. An optimal member of this family, the inverse
regression estimator (IRE) is proposed, along with inference methods and a computational
algorithm. An example on lean body mass regression is provided as also simulation studies
which show the effectiveness of the method. A simulation comparison between SIR and IRE
and theory supports the claim that SIR is a suboptimal member of the inverse regression
family.

The purpose of this paper is the development of SDR for censored data without requiring
semiparametric restrictions on the form of the censoring distribution. Let T be the failure
time and let Z denote the p x 1 vector of covariates. We are interested in inferring about
log(T)|Z. The conditional distribution of T|Z does not need to be modeled explicitly in order
to identify a low dimensional representation of the covariate effect. We incorporate the
inverse probability of censoring in our procedure which ensures that censoring is accounted
for and also ensures computational ease.
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SDR is based on a population meta-parameter, the central subspace (CS) (Cook (1996)). We
represent it by Stjz and define it as the intersection of all subspaces S < R” having the
property T 1 Z|P,Z where L indicates independence and Pg is the orthogonal projection
onto S in the usual inner product. Therefore, the statement translates as T is independent of Z
given PsZ. The CS is a uniquely defined subspace of R” when it exists (Cook (1998)). If the
central subspace exists, the statement

log(T) L ZIn Z (1)

can be thought of as a dimension reduction model, where 7 is a p x dim(St|z) basis for the
CS. The CS allows reduction of the predictor from Z to »'Z without loss of information. »'Z
is therefore referred to as a “sufficient” predictor.

Our contribution to SDR for censored data is twofold. Firstly, we introduce inverse
regression (IR hereafter) for censored data using inverse regression estimators with a
quadratic objective function. Secondly, we utilize the inverse probability of censored
weighting so that inference is based on the variable of interest T after adjusting for the
censoring variable C. See Rotnitzky and Robbins (2003) for a reference on inverse
probability of weighting. This ensures a simpler implementation than the one described in Li
et al. (1999) in SIR for censored data since it bypasses the need to take the two variables’
structure into account. For this approach, no underlying model assumptions are required for
T or C except for some weak nonparametric smoothness assumptions on the density of C to
be described shortly. This provides flexibility in assessing the variable contribution based
purely on the data driven technique developed herein. The procedure is easy to implement
and computationally fast. We use bootstrap methods to obtain the structural dimension of
the regression. Therefore, we address the issue of variable selection in a nonparametric
context, thus augmenting the literature beyond Fan and Li's and Tibshirani's papers.

The data setup and assumptions that are required for obtaining the model given in equation
(1) are presented in Section 2. The assumptions are mainly needed to ensure proper
inference on the meta-parameter. The proposed estimation procedure and the sample
estimators are discussed in Section 3. A nonparametric Kaplan-Meier estimator is utilized to
address the issue of nonparametrically estimating the distribution function of C. This
facilitates computing the inverse probability of censored weighting. A minimum discrepancy
approach is utilized for inverse regression, and bootstrap methods are developed for
dimension selection and predictor testing. Theoretical properties of proposed methods are
discussed in Section 4. The proofs of the theorems and lemmas in Section 4 are provided in
the appendix. Simulation studies and data analyses demonstrate the applicability of the
method in Section 5. The simulation studies look at dimension reduction for data drawn
from the Cox model and the accelerated failure time model. The method is illustrated on the
diffuse large B-cell lymphoma (DLBCL) data. We also provide an illustration on the PBC
data to compare with Li et al. (1999). Finally, we discuss future research and open questions
in Section 6.

2 The data setup and structure

2.1 Data assumptions

The observed data (Xj, dj, Zj, i =1, ..., n), consist of n i.i.d. realizations of (X, J, Z), where
X =min(T, C)and 6 = I(T < C), T being the failure time and C the right censoring time. Z is
the p x 1 vector of covariates and is assumed to be restricted to a known, compact subset

Z C RP. Let Y = log(X) for notational convenience.
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Let Fz and Gy denote the conditional distribution functions of T and C given Z respectively.
We denote the respective conditional survival functions by Sz and L. We make the
following additional assumptions:
(A1) P[C=0]=0, P[C = 7|Z] = P[C =1|Z] > 0, almost surely, and censoring is
independent of T given Z.

(A2) C is either discrete or continuous w.r.t a Lebesgue measure.
(A3) The vector of covariates Z is assumed to be time independent.
(A4) Lz(t)>0forall —-oo<t<rzand Lz(t)=0fort>rz.

(A5) Assume that {71 (T < 1), TI(T=1)} L Z Z. More specifically, we require,

h. () =g, (1), V1 €(0,7]

o+
k =8y 2)

where hy(t) is the density of (T|Z = z) and i} =P (T>7|Z=z) where g and g* are some
functions. We also assume h is Lipschitz continuous uniformly over Z, i.e.,
suplh; (1) = h; (22) | < Kolt; — 1]

€Z

, for some K < oo,

2.2 Additional assumptions for dimension reduction

The most important assumption for dimension reduction is that the central subspace exists.
For our setting, the dimension of the CS may be smaller than the dimension of the CS if
log(T) were fully known. Inverse regression relies on an assumption about the marginal
distribution of Z. The linearity condition requires that E(Z|»'Z = u) is linear in u, where the
columns of  form a basis for Sjog(1)z (Cook 1998, Proposition 4.2). This condition connects
the central subspace (CS) with inverse regression of Z on log(T). When it holds, E[Z|log(T)]

€ Siog(m)jz and hence S pan (Cov (E (Z|log (T)))) C S ... This condition has been discussed
in several places and is required for SIR as well. However, the performance of any of the
dimension reduction methods is not sensitive to this condition. In view of the fact that most
low-dimensional projections of high-dimensional data often appear like normal distributions
(Diaconis and Freedman (1984)), Hall and Li (1993) argue for the generality of this
condition in high-dimensional situations. On the other hand, reweighting and subsampling
methods can also be applied to obtain this condition. This condition allows us to infer about
a proper subset of the CS.

In order to guarantee the existence of the CS, we need to make assumptions on the
predictors. We can make the assumption of elliptically contoured predictors for which the
linearity condition holds. However, since this condition is more restrictive, we can relax the
assumption and instead assume that the marginal distribution of the Z's has convex support.
In this case, the CS is unique when it exists (Cook (1998)).
Therefore, we need to make just the following two assumptions:

(B1) The marginal distribution of the vector of covariates Z has convex support.

(B2) E(Z|#'Z = u) is linear in u.
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2.3 Assumptions needed for asymptotic properties of the basis estimator

In order for sufficient dimension reduction to be applicable for censored data, we outline
more conditions required as part of the assumptions needed for the methodology to be
effective.

We are dealing with a data structure of the form (X, J) to make inference on log(T)|Z. To
adjust for the censoring variable C, we use inverse probability of censoring weighting. This
inverse weighting approach is incorporated in the nonparametric estimation of the weighted
Kaplan-Meier estimator for the censored time, the Kaplan-Meier estimator for the failure
time, and also in the estimation of the sample estimators. To ensure that this inverse
weighting preserves the inherent nature of the methodology, we need the following
conditions:

We define a collection of sets and related assumptions that will be necessary for the
theoretical explanation of the construction of the weighted Kaplan-Meier estimator of the
censoring time. We make the following assumptions:

(C1) For some y € (0, 1] and some K1 < oo, the probability function P(T>C,C <t|Z =
z) = f(z, 1) satisfies supe(g, lf(z1, t) — f(z2, t)] < Kyllzg — 2,17

(C2) For the same y as in (C1) and some Ky < oo, the probability function P(T > t, C >
t|Z =z) = g(z, t) satisfies supie(o, 1719(z1, 1) — 9(z2, V)| < Kallzy — 2,lI7.

(C3) We also assume that the conditional survival function for the censoring time is

. . . . . L. - L. ()| <K -
Lipschitz continuous uniformly over Z, i.e., S:EI < (1) = L ()| 3 "2|, for some

K3 < 0o,

(C1)—(C3) are needed to ensure asymptotic consistency of the weighted Kaplan-Meier
estimator of the conditional censoring distribution and for establishing the convergence rate.

3 Methodology

3.1 Inverse regression

In this section, we discuss inverse regression and the minimum discrepancy approach. We
begin by outlining the idea of inverse regression for censored data. The primary variables of
interest are the failure time, T, and the vector of covariates, Z. We want to infer about
log(T)|Z using inverse regression. First, we begin by defining some of the main terms of
interest. Since inverse regression is based on constructing sample versions of E(Z|log(T)),
we proceed by partitioning the log of the failure time T into equal non-overlapping intervals
Ui =, +2],J=1, ..., h, where t, = z < co. This partition is one of many possible partitions
and as n increases, the partition is allowed but not required to become finer. X is the
covariance matrix of the predictor vector Z.

Define the working meta parameter,

h
S,;:ZS pan (Eu,) ,

J=1

where,

£,=37" (E| Zl10g () € u;| - E[2])
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Let d = dim(S) and let 8 € RP*{ be a basis of Sz We also define a vector y; such that &,=4y*
for each t. An estimate of 4 provides an estimate of the basis of S: under linearity, but
inference about S¢ itself does not require linearity. Define

é:: (_{:ll] 90 e ?é:ll/,) :ﬁy*s

where Y= (Y1, 75,). Letf= (fuy, . . ., fy)', where f,, = P(Iog(T) € up). The intrinsic
location constraint gives &f = gy* f = 0.

Following Cook and Ni (2005), we obtain the basis estimate first and then link it with a
testing procedure to select d, the structural dimension of the regression. The structural
dimension of the regression is defined as the smallest number of distinct linear combinations
of the predictors required to characterize the conditional distribution of the response given
the predictors.

In this paragraph, we give a brief idea of the minimum discrepancy approach that we will be
using. It is natural to estimate Sy with a d-dimensional subspace that is closest to the
columns of the sample estimator of & There are many ways to define “closeness”. Letting
vec(:) denote the operator that constructs a vector from a matrix by stacking its columns, we
consider quadratic discrepancy functions of the form

Fq(B.K)=(vec (£Ry,) - vec (BK))I Vo (vec(€R,) - vec (BK)), @)

where v, ¢ RP>P! s a positive definite matrix. The columns of B € RP<d represent a basis for
Span(¢Ry); and K € R™! which is used only in fitting, represents the coordinates of ¢R,,

relative to B. The matrix g, e ®">! decides how we organize the columns of E The
subspace of R? spanned by a value of B that minimizes Fg4 provides an estimate of a subset
of S, depending on (R, Vy,). One such pair corresponds to a dimension reduction method.
These methods are called the IR family. Given (Ry, Vy), solutions of this minimization are
not unique due to overparametrization, however this nonindentifiability is not an issue,
because any complete basis suffices to specify Se. It is possible to impose constraints to
make the parametrization unique, but the overparametrized setting is more intuitive and
generally easier to treat analytically.

Now we move on to obtaining the sample estimators for dimension reduction.

3.2 Estimators required for inverse regression

In this section, we obtain the estimators required to carry out inverse regression based on the
observed data . We need to obtain a basis for S- as well as a way to determine the dimension
d of the basis. In order to do this, we first need to describe the sample estimates that will be
required before we proceed to the actual basis estimation.

An important thing to note here is that since T is not observed we make use of the inverse
probability of censored weighting to incorporate the information from the censored
observations. We use the notation Y = log(X) to denote the transformed variable.

Since the failure time is not observed, we partition Y as enumerated earlier. Let uy denote the
interval (tj, tj+1] which contains y and let Z; denote the jih observation on Z in interval Uy, J =
1,...,ny,y=1,...,hand 2y ny=n. The mesh size should be fine enough to capture the
dependency structure (as a function of 5'Z), but it need not converge to zero. We therefore

J Am Stat Assoc. Author manuscript; available in PMC 2012 March 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Nadkarni et al.

Page 7

assume hereafter that the mesh size is fine enough to capture the needed structure. Let Z_ be
the overall average of Z, and Z, denote the average of the ny points with Y € uy. We
estimate E[Z[log(T) € uy] by Zy such that the missing information from censoring is
incorporated. The theoretical justification is given in detail in Section 4.

In order to estimate the conditional expectation such that it is accurate and unbiased, we
weight the sum in each interval by the inverse of the estimated probability P(C > T|Z). This
probability is estimated using a kernel conditional Kaplan-Meier estimator (Dabrowska
(1989)).

Therefore, the estimator of E[Z| log(T) € uy] can be expressed as,
5Z1(Yeuy)
Py [)F:arfz» ]

P, [gue)] )

Z,=

The weighted Nelson-Aalen estimator for the cumulative hazard of the censoring time is
defined as:

-, P
Az ®) :f()sz/Yz’ (5)

where Y, and N, denote weighted processes of number at risk and events for censoring. Let
Ny (r)and Y7 (¢) denote the counting process and at risk process respectively for the ith
observation: N7 (r) =1 (Y; < £,6;=0), ¥ (1) =1 (Y;>1). Then,

n

I W SUSERRHO)

NZ: n ;
K (= /B

(6)

n WY K (lz - zill/R) Y (2)
- i=1
YZ=

n
n h=d Y K (||lz = zill/h)
i=1 (7)

Here K is a kernel function and h is the bandwidth. p is the dimension of z, d is the number
of covariates that are continuous, with p — d being the number of discrete-valued covariates.
Different types of kernel functions can be used with little difference in the results. When the
dimension of the covariate space is high, we propose a simplification of the kernel function
as h™ K(lix — xjll/h), with x defined as the first r < d principal component of the d-
dimensional covariates. Consequently, the weighted Kaplan-Meier estimator can be written
as:

w7t EHK = 2l aN; (5)

ZZ (t) :¢ _f:) n ’
n! .Z]h_dK (Ilz = zill/R) Y7 (s) ©
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1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Nadkarni et al.

Page 8
where ¢ is the product integral functional.
Let fuj' = Sz(tj+1) - Sz(tj), where
dN;(s)
o L, (s—)
A 0=fosTm
7,0 ©

is the estimate of the cumulative hazard for the failure time and S is the resulting survival
function estimate of the failure time. Let 3¢ be the usual sample covariance matrix for Z.

- _"‘_1 — i — )
Then, the sample version of &, is & => (Z,\r - Z) which ensures that &,, € RP".

We compute the survival function for T by inversely weighting the Kaplan-Meier with the
corresponding probability P(C > T|Z) in the algorithm. After these probabilities have been
computed, Zy, can be obtained easily.

We would like to mention here that Dabrowska (1989) has shown uniform consistency of a
kernel conditional Kaplan-Meier estimate. This estimate is similar to ours, but is structured
as a proper kernel estimate and requires more stringent conditions than the ones we specify
for proof and implementation.

3.3 Basis estimation

We now discuss basis estimation. We consider inverse regression using a quadratic
discrepancy function as outlined earlier. The basis for S¢ is estimated with a d-dimensional

subspace that is closest to the columns of &.

The choice of an optimal discrepancy function depends on the choices of R, and V.. We
choose Ry, to be nonsingular which, when incorporated into the discrepancy function,
simplifies to:

vec (éR,) - vec (BK) =R, ® 1, (vec(€) - vec(BKR;")).

Because we will be eventually minimizing Fy(B, K), K is redefined as K r;, ' without loss of
generality.

Let Dy denote a diagonal matrix with the elements of the vector v on the diagonal and
construct a nonstochastic matrix A € R"**=1 such that A’ A = I;,_; and A’ 1;, = 0. Then

D7(A, 1) € R"" is nonsingular and can be used as the choice for R,,. However, .fADfl/qZO

due to the intrinsic location constraint and, consequently §D7(A, 1x) = (ED_;A, 0). Since the
last column is always zero, we will lose no generality by using the reduced data matrix

¢ =E&D7A in the construction of the discrepancy functions,

’

F;(B,K) :(Vec (Z) — vec (BK)) V, (Vec (4:) —vec (BK)),

J Am Stat Assoc. Author manuscript; available in PMC 2012 March 1.
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where B € R K € R™"=D and V, has yet to be specified. The optimal choice of V, in

this version of the discrepancy function depends upon the asymptotic distribution of vec (?)
We verify later that 7 converges in probability to = gy* DA = Bv, where v = y* D A.

We now suggest an estimate for V, that seems reasonable since the asymptotic variance of
the basis estimate is diffcult to compute. Define h random variables Jy such that Jy equals
the probability of falling in uy if an observation is in uy and 0 otherwise,y = 1, ..., h. Then,

E(Jy) = fy. Also define the random vector €*=(ET, e 67;), where its elements, €, are the
population residuals from the ordinary least squares fit of Jy on Z, where Z is the

~ -1
A S-1/2 * A
Cov (‘ ec (E Ze ))) as our sample estimate of

standardized version of Z. We will use (
Vn.

Now we consider minimization of the discrepancy function given V,,. This can be done by
using the alternating least squares algorithm (Cook and Ni (2005)) to obtain basis estimates.

3.4 Dimension selection using the bootstrap

In order to test hypotheses of the form d = dg versus d > dg, we utilize the limiting
distribution of nFy, where Fy is the minimum value of Fy(B, K). If nF, exceeds a selected
quantile of the asymptotic distribution of nFy under the null, then the hypothesis is rejected.

It is difficult to derive this limiting distribution in our case. However, the limiting
distribution of nFy under the null hypothesis can be approximated using the bootstrap. Let
Y*, 0*, Z* denote a resampling of Y, J, Z drawn randomly. Recall that

F4(B.K) =(vec (Z) — vec (BK )) Va (\’ec {) = vec(BK )). The bootstrap estimate vec(*) —
vec(BK), denoted as U*, is computed based on the resample. Bootstrap estimates are
centered by subtracting their mean U* to reflect the null hypothesis. We then obtain the

critical value from the bootstrap value of nF; under the null, which can be calculated as
n(U* — U*)'V,(U* — U*). The proof of this centered bootstrap approach follows along the
lines of the proofs of Theorem 7 and 8 in Kosorok and Song (2007), after incorporating the
results for kernel type estimates as described in Hall (1991). The details of the proof are
omitted.

A series of such tests can be used to estimate d as follows. First, starting with dp = 1, test the
hypothesis d = dg. If the hypothesis is rejected, then increase dg by one and test again,
stopping when the first non-significant result is obtained. Note that we start testing with dg =
1. Consequently, failing to reject dg = 1 does not necessarily imply that the one predictor
contributes to the regression, because the predictor may be independent of the failure time.
However, testing of full independence is beyond the scope of this paper, although this issue
is an important one for future research.

3.5 Predictor testing using the bootstrap

The main hypothesis tests of interest would be those for which dimension is not specified
yet the predictor contribution is tested robustly. More precisely, we wish to deal with tests of
conditional independence,

TLP,Z10,Z,

J Am Stat Assoc. Author manuscript; available in PMC 2012 March 1.
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where H is an r-dimensional user-specified subspace of the predictor space. We require r <

p-dim(Stz). This can be accomplished by partitioning Z= (Z;,Z'_,), where we wish to test
the hypothesis that r selected predictors do not contribute to the regression. In this case,

H=Span (H), with basis H=(7,.0).

For the case of censored data, we are interested in developing the following Marginal
Predictor tests:

Marginal Predictor Hypotheses: P»S -, =Op versus P»S ., # Op,
The marginal predictor hypothesis is equivalent to the hypothesis HT = 0, where H is a p x
r basis for H. The test statistic,

T (H) :nvec(H?)/{(Ih‘l ® H')FZ oy ® H)}_Ivec (H?) ,

can be used for this procedure. To determine if a predictor is significant, we can choose H to
be ek, where e is the p x 1 vector with 1 in the kth entry and 0 elsewhere. Then the test
statistic is

TkznekTa(l},q ® ek’)/f?(ll,_l b2 ek)}‘]gek.

Cook and Ni (2005) have used backward selection based on the chi-squared tests in order to
select the variables for testing. To elaborate, marginal predictor tests were first carried out
and p-values for each test obtained. In the second step, backward elimination is used with
the variable having the most insignificant p-value in the marginal test being eliminated first
and so on. However, in our case, it is hard to derive the null distributions for the above
statistics. Fortunately, as we did previously, we can apply the bootstrap to center the test
statistics to reflect the null hypothesis and to obtain critical values. In the marginal test

setting, we compute &* from resampling and then subtract the £*s” mean. The 77's are then
calculated using these centered quantities. Critical value are obtained from the bootstrap

quantiles of 7;.

4 Asymptotic properties

In this section, we will mainly discuss the theoretical background that is required for the
methodology. To obtain a consistent estimate of the basis of the central subspace, we have to
ensure that all of the sample estimators are consistent for their population counterparts. In
our derivations, we have shown consistency of all of the estimators. We also use some
earlier results from Cook and Ni (2005) and Shapiro (1986) to prove that the basis estimate
is a consistent estimator for the basis of the underlying central subspace.

4.1 Consistency of the estimators

We show that the consistency of the weighted Kaplan-Meier estimator holds under the
assumptions we have already outlined in Section 2. In addition, we impose certain
assumptions on the kernel function, including that the kernel function K(-) > 0 has a support
on [0, 1], and range [0, 1]. It also satisfies | K(u)du = 1, [ uK(u)du = 0.

Theorem 1: The weighted Kaplan-Meier estimator for the censoring distribution is consistent
for Gz(t) under the assumptions outlined and achieves an optimal convergence rate

J Am Stat Assoc. Author manuscript; available in PMC 2012 March 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Nadkarni et al.

Page 11

Op(n™7/2@*)) when h = Op(n~2/2(4+7)), where Op(1) is a quantity bounded above and below
in probability in the limit.

Lemma 1: The inversely weighted estimator of the survival function of T is consistent for Sy
with the same rate of convergence as the weighted Kaplan-Meier estimator.

The sample covariance matrix 5 of the vector of covariates Z is V7 consistent for its

population counterpart X. The overall average of the Z's is also Vn consistent for the true
value by the law of large numbers.

We have proved consistency of both the weighted estimators for the survival distributions of
the censoring time and the failure time. Since the weighted Kaplan-Meier estimator of the
conditional censoring time is incorporated in the calculation of Zy , we need to prove that
this estimator is also consistent.

Lemma 2: The sample estimator Z,, is consistent for E(Z|Y € uy) with rate Op(n™7/2(+),

Since all the sample estimators are consistent now we need to prove the consistency of the
basis estimate. In the implementation of the alternating least squares algorithm, the inverse
probability of the censored weighting scheme is utilized to adjust for the loss in information
due to censoring.

Since A is a constant matrix, we consider only (VeC (,fD;-) —vec (,BVDf)). In order to prove
consistency, we need to incorporate the results in Shapiro (1986) on asymptotics of
overparametrized discrepancy functions and two other supplemental results that need to be
derived based on his main results. We also utilize results from Cook and Ni (2005) to
conclusively prove consistency of the basis estimate. The proofs are given in the appendix.

Theorem 2: The first term of the discrepancy function vec (ng) is asymptotically normal
with rate Op(n~72(4*7)) and with mean=py*Ds and some variance covariance matrix I'z.

Theorem 3: The estimate of the basis using the discrepancy function is consistent.

4.2 Validity of the bootstrap

We develop a measure to assess the accuracy of the estimation in data analysis via the
bootstrap. Hall (1991) shows that the bootstrap approximation is valid for kernel density
estimators. In our setting, the source of variation mainly comes from the kernel-type Kaplan-
Meier estimate. Though this kernel type estimator does not achieve root-n consistency, the
bootstrap can be shown to consistently approximate the limiting distribution of the
discrepancy function, using arguments such as those given in Hall (1991). In particular, the
bootstrap method is asymptotically valid for obtaining critical values in structural dimension
determination and predictor selection, once we center the bootstrap estimates to reflect the
null hypothesis.

5 Simulation studies and data analysis

Simulation studies are carried out to assess the performance of the estimator. For this
section, we first report simulation studies to illustrate how our approach works in estimation
and testing. Then we apply our method on the Diffuse large B-cell lymphoma data and the
PBC data.
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5.1 Basis estimation given d

We aim to compare performance between SIR using the double slicing estimator and our
estimator of Sz when d is known. Both accelerated failure (AFT) models and Cox regression
models for the failure time are considered for the simulations.

Model 1. First, we take p = 6 and generate z = (z4, - - -, Zg) from the standard normal
distribution. The true survival time YO is generated from

YO=exp (z1+23) €1, (10)

where ¢ follows the exponential distributions with parameter 1. Censoring time Cy is
generated from

C1 ~exp(z1+22+23) A 4, (11)

which is a constant conditional on regressors. The censoring percentages is 45%
approximately.

We vary the sample size from 50 to 100, 200, 400 and 800 to study the effect of sample size
on estimation. Also, we study the performance of two estimators as the regressor dimension
p gets larger. We increase p from 6 to 10, 15 and 20, and keep the same sample size of n =
200. The added predictors follow a standard normal distribution. For each simulation run,
we compute the angle between S and its estimate. The angle between two vectors a and ¢ is
computed as 180 cos~1(jaTc|/llalllicl)z. In Model 1, the basis of the true central subspace is
(1,0,1,0,0, 0). The leading direction obtained from the SIR method is set to be the SIR
estimate, and by is our estimate using the method described in Section 3 by fixing the
dimension of B to be 1.

Figures 1(a) and 1(b) show mean angles from 100 simulation runs in each case for different
sample size or different numbers of parameters. As anticipated, we obtain biased estimates
when the sample size is small, and the average angle converges to 0 as sample size grows.
Our procedure did better than SIR with the double slicing procedure. Both estimators
deteriorate gradually as p increases and are close. Increasing the number of covariates does
not seem to have a significant effect on angle estimation.

Model 2. Similar to Model 1, the failure time follows (10) and the censoring time follows
(14). For the covariates z1, zo and z3, we draw one of them from a Rademacher distribution
and the remaining two from a normal distribution. A Rademacher random variable X
satisfies P(X = —1) = P(X = 1) = 0.5 and is equivalent to a Bernoulli random variable with
success probability 0.5 but standardized to have mean 0 and variance 1, corresponding to the
first two moments of a standard normal distribution. We apply this to three different
scenarios: failure time dependent on the binary variable, censoring time dependent on the
binary variable or neither failure nor censoring time dependent on the binary variable. The
purpose of these simulations is to evaluate the influence of a binary variable on the
estimation of the basis. The simulation results suggest that our estimators have a better
performance compared to SIR estimators from moderate to large sample sizes, although the
SIR estimators can have better small-sample behavior. We also compare the two estimators’
performance for different numbers of parameters. The sample size n is kept at 500, and the
number of parameters is increased from 6 to 10, 15, and 20. According to the simulations,
our estimators have less bias compared to SIR estimators in all scenarios, see Figures 2 to 4.
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Model 3. We take p = 6 and generate z = (z4, - - -, zg) from the standard normal distribution.
The true survival time Y? is generated from

Y= (~log (e2) /exp (z1+23)),

where & follows the uniform distribution on [0,1]. Note that the Cox model holds for this
model. The censoring time C; is generated from

Ci ~ exp (z1+22+lz3]) A 2. (12)

We then compare two estimators for different sample sizes and different numbers of
parameters. As shown in Figure 5, our estimators do not perform as well as the SIR
estimators for the Cox regression model, although our estimators improve with increasing
sample size.

5.2 Estimation of d

Using the methodology described in Section 3.4, we consider the following example for n =
400: let z4, - - -, zg be generated from the standard normal distribution.

YO=exp ((z1+24) exp (z3+25)) €1;  C ~ exp (z2) A 4,

In this case, the basis for the central subspace is (1,0,0,1,0,0) and (0,0,1,0,1,0) with the true
dimensiond = 2.

Here is how to execute our procedure in this setting:

«  Beginning with d = 1, the test statistic nFy is 119.9 Using 1000 bootstraps of the
centered nFy, we obtain that the 95% quantile is 54.8. Therefore, the hypothesis
that d = 1 is rejected.

+ Increasing to d = 2, we obtain nF»,=1033.2. Using 1000 bootstraps of the centered
nF,, we obtain that the 95% quantile is 1884.9. The result is not significant and we
do not reject the hypothesis that d = 2.

Simulating this process 100 times, the hypothesis d = 1 is rejected 92 times. Whend = 1 is
rejected, we proceed to test the hypothesis d = 2. It is then rejected 29 times. In other words,
the procedure identifies the true dimension 63 out of 100 times. The power improves as we
increase the samplesize. When we repeat the procedure for n = 600, it identifies the true
demension 97 out of 100 times.

5.3 Predictor test

We numerically compare the performance of the smoothly clipped absolute deviation
(SCAD thereafter, Fan and Li (2002)), adaptive Lasso (ALASSO thereafter, Zhang and Lu
(2007)) and the proposed method, where SCAD and ALASSO are existing model selection
methods applied to survival data via penalized likelihood. These two methods are, however,
based on the Cox proportional hazards model (frailty model) assumption. Under any other
conditions, they might not be optimal. We have the following questions for investigation:
how does the sample size or model sparsity affect performance of the methods? What is the
influence of correlation between predictors in the selection results? Intuitively, tests are
more powerful with larger sample size or with less sparse models, and the effectiveness
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might deteriorate from increased correlation between covariates. We perform several
simulations to evaluate these issues.

We test the significance of the predictors from 100 simulated data sets with the true survival
time from

YO=exp (z1+z3+exp (2 (z1+23))) €1 (13)

where ¢ follows an exponential distribution withmean 1, ag=1.z=(z¢, - - -, Zg) IS
generated from the standard normal distribution. The censoring time C; is generated from

Ciexp (z1+22+z3) A 4. (14)

Note here that neither the proportional hazard or frailty model assumptions are satisfied. The
sample size is varied from 100, 200, 400 to 800. Percentages of selecting important variables
(z1 or z3) out of 100 simulation runs versus selecting non-important ones are shown in
Figure 6 under different scenarios, for each variable selection method. Note that the
proposed approach performs comparatively the best, in the sense that it generally yeilds
lower percentage of non-important variables while also selecting significant covariates more
frequently.

Keeping the simulation mechanism the same for failure time and censoring time, we
increase the total number of parameters to 10, 15, 20 respectively, where additional
predictors are simulated from the standard normal distribution independently. Figure 5.3
shows simulation results as the number of parameters p varies. As anticipated, increasing p
leads to an increase in proportions of falsely selected non-significant variables. While the
other two methods failed to select significant predictors correctly most of the time, the
power of the proposed method stays above 0.8 under all scenarios. To investigate how the
three methods perform when covariates are correlated, we let the correlation between
different predictors p range from 0.2, 0.5 or 0.9. The sample size is set to be 200. The
proposed method again outperforms SCAD and ALASSO, as seen in Figure 5.3. Though the
power of the proposed test is reduced as p increases, it is overall higher than the other two.
Also, the proposed approach is less likely to select non-important variables. The other two
methods, however, do not work reliably in this context. We conclude this section by
reporting simulation results from varying the coefficient of variation (CV), where ¢, = o/u, o
and u refer to standard deviation and mean respectively. Figure 5.3 suggests that SCAD and
ALASSO perform better as CV increases, whereas varying the CV has little impact on the
proposed method.

5.4 Data analysis

For the analyses done in this paper, we handle categorical variables by introducing dummy
variables as in regular regression. First we illustrate the method on the diffuse large B-cell
lymphoma data and then consider the PBC data for comparison with Li et al. (1999).

5.4.1 Diffuse large B-cell lymphoma

The diffuse large B-cell lymphoma (DLBCL) data was first analyzed by Rosenwald et al.
(2002). This data set consists of 240 patients with DLBCL including 138 patient deaths
during the follow-up. For our analysis purposes, we have excluded those observations for
which the time to death is zero. That leaves us with 235 observations. The other variables in
the data set include the three gene expression subgroups of DLBCL, gene expression
signatures (i.e., germinal center B-cell signature, major-histocompatibility-complex (MHC)
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class Il signature, lymph node signature and the proliferation signature), value for the BMP6
gene (a member of the transforming growth factor 5 superfamily of genes), the outcome
predictor score, and the international-prognostic-index component (IP1) subgroup. We have
excluded the IP1 subgroup variable because there are a lot of missing values for it. Since the
gene expression sub group is categorical, we use two dummy variables instead of the
variable itself. Thus, there are eight covariates.

The marginal predictor test suggests that the gene expression subgroups are important
predictors. This is consistent with the view of Rosenwald et al. (2002) that the overall
survival after chemotherapy differed significantly among the three subgroups. According to
the dimension test of d = dg, we obtain that the central subspace dimension is one, since the
F value under the null d = 1 is smaller than bootstrap critical value. The estimates, however,
suggest that aside from the gene expression subgroups, some gene-expression signatures,
especially the outcome predictor score, which is a linear combination of the different
signatures and the value of the BMP6 gene as taken from the analysis by Rosenwald et al.
(2002), also contribute to the linear combinations. This validates the premise of Rosenwald
et al. that the outcome predictor score is a good indicator of the outcome of chemotherapy.
See Table 1 for the estimates and bootstrap standard errors.

5.4.2 Primary biliary cirrhosis of the liver

The following briefly describes data collected for the Mayo Clinic trial in primary biliary
cirrhosis (PBC) of the liver conducted between January 1974 and May 1984 comparing the
drug D-penicillamine (DPCA) with a placebo. The first 312 cases participated in the
randomized trial of D-penicillamine versus placebo, and contain largely complete data. The
variables in the data set include case number, the number of days between registration and
the earlier of death or study analysis time in 1986, censoring indicator, treatment code (1=
DPCA, 2=placebo), age in years, sex (0=male, 1=female), presence of ascites (0=no, 1=yes),
presence of hepatomegaly (0=no, 1=yes), presence of spiders (0=no, 1=yes), presence of
edema, serum bilirubin, serum cholesterol, albumin, urine copper, alkaline phosphatase,
SGOT, triglycerides, platelet count, prothrombine time, and histologic state of disease. We
first make log transformations of the covariates serum bilirubin, albumin, serum cholesterol,
prothrombine time following original publications (Fleming and Harrington (1991)). For the
sake of simplicity, we will be considering the histologic state of disease to be numerically
valued.

Two sets of analysis are carried out on the data. One is with only 6 covariates as in Li et al.
(1999) and the other one with all 17 covariates.

We conduct the analysis with the 6 covariates first. Observations with missing data are
discarded, leaving 308 observations. These covariates are zq =age, z, =presence of edema, z3
=serum bilirubin, z4 =albumin, z5 =platelet count and zg =prothrombin time. Fleming and
Harrington (1991) concluded that five baseline covariates—age, albumin, serum bilirubin,
presence of edema and prothrombin time—are significant, and the true lifetime depends on x
through the variable Q = 0.0333z; + 0.7847z, + 0.8792 log z3—3.0553 log z4+3.0157 log zg.
Using our proposed marginal predictor test, we identify covariates age, albumin, presence of
edema and prothrombin time to be important. Survival time is independent of serum
bilirubin (platelet count) given the other covariates. Different from previous results, serum
bilirubin is not significant after adjusting for other variables. The dimension tests indicate
that the central subspace dimension is two. Specifically, starting from d = 1, the test statistic
is larger than the bootstrap critical value and we reject the null hypothesis. We do not reject
the null when testing d = 2. Li et al. (1999) performed SIR separately for the failure time and
the censoring time under the assumption that both the failure time and the censoring time are
functions of the estimated predictors and an unknown error, while our approach is
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independent of this model assumption. The two lifetime SIR directions obtained in Li et al.
(1999) are (0.02, 0.90, 0.09, -0.62, -0.00, 0.38) and (0.03, -2.3, 0.20, -0.28, -0.00, -0.68).
The basis estimates and bootstrap standard error of the corresponding covariates are given in
Table 2. We can see that basis estimates from both approaches have higher coefficients for
edema, albumin and prothrombin time but edema contributes less to the linear combination
using our proposed procedure.

Now we redo the analysis with all 17 predictors. 276 cases remained after discarding
observations with missing data. We perform a similar procedure to the one described above.
Using the marginal predictor test, we identify the covariates age, serum bilirubin, albumin,
prothrombin time, sex and spiders to be important. The dimension test of d = dg indicate that
the central subspace dimension is two yet again. The basis estimates and bootstrap standard
error of corresponding covariates when d = 2 are given below in Table 3. From the table, we
find that some covariates such as edema have high coefficients even if they are not identified
as significant using a marginal test. This is probably because they contribute very little
marginally but have higher impact when entering jointly. Fitting a cox proportional hazards
regression model, we also list the estimates in Table 3. Our basis estimates reflect low
effects from age, serum bilirubin, platelet, copper, alkaline phosphatase, SGOT,
triglycerides and serum cholesterol, which is consistent with Cox regression estimates.

6 Future research and additions

We have shown the asymptotic normality of the discrepancy function. Future theoretical
derivation of the variance of this limiting distribution of the discrepancy function can
potentially improve efficiency in estimation. Namely, we can set V,, in the discrepancy
function equal to a consistent estimate of the inverse of the basis estimate's asymptotic

variance I7. In the context of dimension determination and variable selection, approaches
have been developed based on the bootstrap procedure. However, we can also potentially
develop methods for central subspace dimension determination and variable selection using

the theoretical variance I'z, which could reduce the computational burden significantly. In
addition, we are interested in developing a conditional predictor test of

PHS;‘Z:O,, given d versus P,HS}Z;EOP given d.

Conditional predictor hypotheses should have greater power than the marginal tests if we
know the true dimension of the central subspace. Conditional on the dimension of the central
subspace being d, we can obtain the basis estimate Bpxg. To determine if a predictor is
significant, we can utilize the difference in minimum discrepancies to carry out conditional
testing, i.e.,

T (Hld) =ni':[,.H - nl?d,

which has a well-defined distribution. Currently, we have difficulties implementing the
conditional test since the F value obtained under our setting does not follow a chi-square
distribution, but is a mixture of chi-square distributions. This problem should be solved if

we can obtain the true limiting variance Iz of the discrepancy function.

The goal of this paper is to augment current methodology for variable selection and for
selecting significant predictors. This work should prove to be a useful tool that will aid in
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analysis of survival data. An R (http://www.r-project.org) package is being developed for
practical implementation of the entire proposed methodology.
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Appendix
A.1l. Proof of Theorem 1

To prove consistency of the estimator for Gz(t), we first show that the weighted version of
the Nelson-Aalen estimator is consistent. Since the weighted Kaplan-Meier can be re-
expressed as a continuous functional of the Nelson-Aalen estimator, consistency of the

Nelson-Aalen estimator will suffice. Therefore, we will show that K; (#), the weighted
version of the Nelson-Aalen estimator of the cumulative hazard is consistent for A(t).

2
Since the class {Z > ag tbztcia,b,c € R}

_ 2,12,
{5 = llz—ull”/h"u € R, h>0} is a VC class by Lemma 9.6 of Kosorok (2008). Since the
square root function is monotone, the class {z = llz — ul|/h:u € R, h>0} is also VC by Lemma
9.9(viii) of Kosorok (2008). Therefore, we have K (liz — ull/h) is Donsker and bounded since

K is monotone and bounded. Thus both K (|lz — z|l/#) N; (t) and K (||lz — zil|/h) Y} (¢) are
Donsker since products of bounded Donsker classes are Donsker. Hence

is a vector space of dimension 3, the class

@, - P K (AN (5)=0, (n"1?),
®, - P)K (I52) v (5)=0, (n"'?).

Let

(P, - P)h~ "K(“” IZ”)N‘( )+ Pi-dK(”‘ hZ”)N‘ (5)=E [N (s)|Z=2] £, (2) =I+I1.

(15)

Now we evaluate each of | and Il separately. | can be re-expressed as 1 = O (n‘l’z)h d=
Op(n~Y2h~9). Note that if iz — ull > h, then K(llz — ull/h) = 0. We then have

Ph_dK(”z;,ﬂ)N( (S) = f“ —u<h ‘JK( L‘“”)N(? (S) dF (M)
= n u1l<h _dK( [ )E(NC (s) |z=u) dF (u)

= [ K (5 P (€ <1, T>0) f (W) du.

(16)

Also,

EN“(s)|Z=2) f (2) P (C<1t,T>C)f(2)

- - llz=ull
= [ K (5H) P.(C <, T>0) £ (2) du

In order to obtain the rate of I, we proceed as follows:
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noo= [k (5 P, < T50) ( F@+ F @ e~ 2l du
J IIz—uIIshh_dK (”:Z“”) P.(C <t,T>C) f(z)du
K (554) (P (C < 1.T>C) = P.(C < 1,T>0)) f () du
* S K (%L e — =l f @) du
S PR (”:Zu”) cllz = ul’du=0,, (h).

This implies that I + 11 = Op(n*mh*d + h?). Using similar arguments as the ones used
before, we can conclude that,

1[Iz =Z]]
P,h'K
: ( _

) Y (s) = E (Y (5)12=2) f (2) =0, (™ /2h~+Y).

Therefore, by the Hadamard differentiability of the map (A, B) — ff)dA () /B (s),

I P, K (lz=ZlIk) _ dN“(s)-dE[N°(s)/Z=2)f, ()+dE[ N (s)1Z=2), 2)
0" B K (= ZIMY<()~El Ye(5)Z=21 1, )+ E[ Y*(5)Z=211,, (2)

0, (n_]/zh_d-khy) .

AL (1) = A (1)

- Az (f)

Hence, the estimator of the cumulative hazard is consistent. By applying the product integral
to the Nelson-Aalen estimator, we obtain the Kaplan-Meier estimator. Since the product
integral is Hadamard differentiable, the desired uniform consistency of the Kaplan-Meier
follows (van der Vaart (1998) Theorem 20.8 and Lemma 20.14), i.e.

IL, (5) = L, () =0y (n™ P H=+17).

By letting n~1/2dh~@=1 + rhy=1 ~ 0, we obtain the optional h ~ n~1/2(@*), with optimal
convergence rate n~/2(d+)),

A.2. Proof of Lemma 1

To show that the estimator of the survival function of T is consistent, we first prove

consistency of the weighted Nelson-Aalen estimator. Let XT (1) be the estimator of the true
cumulative hazard A+(t). Consider,

dN;(s)
—
Ly(s-)

A=A =[5 — A (D).

Ly(s-) 17)

Therefore we have,
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dN;(s) dN;(s) dN;(s)

— —ZL( ZL (]
L -) l\ ) 7 5-
AT (t)_AT (’) = f() Y(; Y5 L Y0 _Ar (t)
2 7(s=) Z[/, ) 2‘1113)
le L,(s=)-L,(s-) dN,
t -z L, 1?—»L u/) ) +Z L7‘: ))
= -A, (D)
f() T .

el BT
z" (18)

Ly (s-)Ly(s-)

Since we have already proved the consistency of the weighted Kaplan-Meier estimator for
C, the above form reduces to

Z‘ dN;(s)

1 L 1 ) 0, —y

f }Z(\) AT 0} +OE, 7] (n }/2(zl+)’))
7( )

ﬂ ‘”V()+0[0 TJ( —7/2(d+7))
0y Yo ’

A, () —A, (1)

(19)

where 0'%is a quantity bounded in probability uniformly over t € [0, 7], and where

N () =P,[I(T <1, T <C)/L,(t-)]and y (1)=P, [I1 (X > 1) /L, (+—)] are respectively the
weighted number of events and number at risk. Therefore, the above expression reduces to

= dN (I_/ -‘YO)
f;d N deo 3 A + OE)(J,TJ (n—)//Z(d+y))’
Y Y Yo (20)

where, N(t) — Ng(t) can be written as

+1(C > s)dG(s)]

P,-P
( )[fo L,(s-) (21)

Note that I(C > T) and I(T < t) belong to Donsker classes. L(s) is a Lipschitz continuous
function and therefore bounded. We can thereby argue that N — Ng can be represented as
#(N, Lz), where ¢ (H,L,) =ff)dH/LZ. Since the standard Nelson-Aalen estimator for
censored data is V7 consistent, and ¢ is Hadamard-differentiable, we can apply the
functional delta method to this functional, and thus obtain V2 consistency for N. In an
identical fashion we can argue that ¥'— Yg is also v consistent. Hence, the weighted

estimator of the cumulative hazard based on known Lz(t—) is Vi consistent. We obtain the
Kaplan-Meier by applying the product integral to the Nelson-Aalen estimator. Since the
product integral is again Hadamard differentiable (van der Vaart (1998)), the weighted
Kaplan-Meier estlmator is n7/2(d+7) consistent for the true survival function of T . Hence, fuj
= S(tj+1) — S(t). j = , h, is also Op(n™7/2(@*)) consistent for fy;. Therefore, we have

P(ve u,,) - P(Y € u),) _O:PO 7] ( YD)

A.3. Proof of Lemma 2

Consider,
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. Zs1(Y € uy) |z (rew) P(reuw)
T, 00P(re )] L ooP(rew) P(re )} '

(22)
Now, we have ,
P(Yeu,) _ P(Yeuy)
P(Yeuy) T P(Yeuy)+0,(n-v/2d+)
_ 0, (w712 -1
= [y
= 1+0, (11_7’/ 2(‘1+7’)) .
Therefore the equation (22) reduces to
ZoI\Y € u, R
n | = ( ") (1+0P (n_"/ ‘(d+"))).
L,(Y-)P(Y € u) -

Z51(Y € uy)
L,(Y-) P(Y € u),) is eventually contained in VVC class. Hence, the

Since A is a VC class,
above form reduces to

Z51(Y € uy)
L,(Y-)P(Y € u)

+0, (724,

(24)
Now, consider,
Z51(Yeuy) _ z o1(Yeuy)
[L (Y- )P(Yeu\)] - P[P(Yeu))E[ L,(Y-) Z” ]
Z
Pl ey )P(YE)E[(SI(YE 1y |Z]V|
E[ A2 ’1 Yeuv].
L) (¥ ew) (25)
We have 6 = I(C > T'), and hence, E[6Z/Lz(Y —)[Y € uy] can be re-expressed as:
ZPY € u,|Z
g =P (2IY € uy).
P(Y €uy) (26)
So, we can conclude that,
ZoIY € uy
| = (A ) =P|2IY € uy|+0, (n7/24*).
L,(Y-)P(Y eu) @7)
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Using similar but simpler arguments we can say the same when uy = (z, ©). Hence we can
conclude that Zy is consistent for E[Z]Y].

A.4. Proof of Theorem 2

Let u be the expected value of Z_ and uy be the expected value of Z, . Let Z be the .
standardized value of Z and e* the residual from the weighted regression of J, on Z.

Consider,

o =tk = REN2-2)- 1= (1)

= fE (i_v, - Z..) — Fu = iy = 1) + £, =7ty — 1) = fu, =71 (y — 1)
= R[5 (2-2) - )| (B - ) (s - )
)

- (R 2] o [P 7)o} )

(28)

Therefore, using arguments similar to those in Hall (1991), we can claim that the limiting

distribution of vec (ED‘,?) is asymptotically normal with rate n™y/2(d+y). Hence, we can
further claim that the limiting distribution of Fy, the discrepancy function, is a mixture of
chi-squared distributions with the same rate.

A.5. Proof of Theorem 3

To prove this theorem, we make use of Proposition 3.1 and 4.1 in Shapiro (1986). Shapiro's
results are applicable for fixed V , and thus we need to modify for when V is random. We
use Cook and Ni's results for random V to show that the results hold. Lemma A.3 in Cook
and Ni (2005) permits connecting minimum discrepancy functions with fixed inner products
to those with random inner products. We can then claim that the basis estimate is consistent
for the true value, and, provided we use a consistent estimate for V , the asymptotic
properties of the discrepancy function are preserved. The desired results now follow since
the minimization of Fy4 always provides a consistent estimate of vec(fv) for any sequence Vp,
> 0 that converges to V > 0.
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Figure 1.

Mean Angles between S: and both the SIR estimate and proposed procedures under 100
simulation runs of Model 1: (a) Different sample sizes and (b) Different numbers of

parameters.
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Figure 2.

Mean Angles between S: and both the SIR estimate and proposed procedures under 100
simulation runs when z; is Rademacher distributed: (a) Different sample sizes and (b)

Different numbers of parameters.
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Figure 3.

Mean Angles between S: and both the SIR estimate and proposed procedures under 100
simulation runs when z, is Rademacher distributed: (a) Different sample sizes and (b)

Different numbers of parameters.
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Figure 4.

Mean Angles between S: and both the SIR estimate and proposed procedures under 100
simulation runs when z, is Rademacher distributed: (a) Different sample sizes and (b)

Different numbers of parameters.
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Figure 5.

Mean Angles between S: and both the SIR estimate and proposed procedures under 100
simulation runs of Model 2 for different sample sizes: (a) Different sample sizes and (b)
Different numbers of parameters.
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Percentage of selecting significant/non-significant variables for different sample sizes using

SCAD, ALASSO and the proposed method
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Figure 7.

Percentage of selecting significant/non-significant variables for different numbers of
parameters using SCAD, ALASSO and the proposed method
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Percentage of selecting significant/non-significant variables for different correlations
between predictors using SCAD, ALASSO and the proposed method
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Percentage of selecting significant/non-significant variables for different CVs using SCAD,

ALASSO and the proposed method

J Am Stat Assoc. Author manuscript; available in PMC 2012 March 1.



1duasnuey Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

Nadkarni et al.

Estimates of the basis for d = 2 for the DLBCL data. Bootstrap standard errors are given in parentheses.

Table 1

Basis estimate

Covariate

0.020(0.537)
0.029(0.640)
-0.251(0.161)
-0.212(0.152)
0.201(0.267)
0.267(0.216)
-0.266(0.187)
-0.842(0.248)

ABC

GCB
B-cell sig.
Lymph sig.
Prolif. sig.
BMP6
MHC sig.

Out.pred.score
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Table 2

Estimates of the basis for d =2 for the PBC data with 6 original covariates. Bootstrap standard errors are given
in parentheses.

Basis estimate 1 | Basis estimate 2 Covariate
0.012(0.018) -0.004(0.023) Age
-0.807(0.300) -0.076(0.363) Edema
0.034(0.047) -0.000(0.056) Serum bilirubin
0.486(0.511) 0.473(0.646) Albumin
0.003(0.065) 0.000(0.061) Platelet
-0.332(0.532) 0.878(0.587) Prothrombin time
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Table 3
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Estimates of the basis for d =2 for the PBC data with 17 original covariates, with bootstrap standard errors

given in parentheses, along with estimates (standard errors) using Cox regression.

Basis estimate 1 | Basis estimate 2 | Cox Model Estimate Covariate
-0.015(0.066) -0.027(0.015) 0.025(0.010) Age
-0.025(0.112) 0.266(0.338) 0.711(0.460) Edema
0.085(0.010) 0.173(0.029) 0.072(0.166) Serum bilirubin
-0.313(0.230) 0.799(0.674) 2.651(1.030) Albumin
0.033(0.009) 0.049(0.017) 0.002(0.001) Platelet
-0.880(0.269) -0.306(0.268) 0.743(1.270) Prothrombin time
0.137(0.048) -0.115(0.199) 0.268(0.203) Treatment
-0.031(0.080) 0.121(0.291) 0.987(0.431) Sex
0.039(0.010) 0.059(0.020) 0.001(0.001) Copper
0.044(0.011) 0.064(0.021) 0.000(0.000) Alkaline phosphatase
0.044(0.011) 0.064(0.021) -0.001(0.002) SGOT
0.043(0.011) 0.062(0.022) -0.002(0.002) Triglycerides
0.048(0.012) -0.072(0.023) -0.001(0.001) Serum cholesterol
0.150(0.033) -0.115(0.122) 0.137(0.136) Histologic stage
0.139(0.124) 0.145(0.367) 0.610(0.469) Ascites
0.003(0.051) 0.256(0.194) -0.207(0.226) Hepatomegaly
-0.216(0.057) -0.124(0.214) 0.158(0.236) Spiders
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