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Abstract

Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) has revolutionalized 

experiments for genome-wide profiling of DNA-binding proteins, histone modifications, and 

nucleosome occupancy. As the cost of sequencing is decreasing, many researchers are switching 

from microarray-based technologies (ChIP-chip) to ChIP-Seq for genome-wide study of 

transcriptional regulation. Despite its increasing and well-deserved popularity, there is little work 

that investigates and accounts for sources of biases in the ChIP-Seq technology. These biases 

typically arise from both the standard pre-processing protocol and the underlying DNA sequence 

of the generated data.

We study data from a naked DNA sequencing experiment, which sequences non-cross-linked 

DNA after deproteinizing and shearing, to understand factors affecting background distribution of 
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data generated in a ChIP-Seq experiment. We introduce a background model that accounts for 

apparent sources of biases such as mappability and GC content and develop a flexible mixture 

model named MOSAiCS for detecting peaks in both one- and two-sample analyses of ChIP-Seq 

data. We illustrate that our model fits observed ChIP-Seq data well and further demonstrate 

advantages of MOSAiCS over commonly used tools for ChIP-Seq data analysis with several case 

studies.

Keywords

Next generation sequencing; Mappability; GC content; Negative binomial regression; Mixture 
model

1 Introduction

Studying protein-DNA interactions is central to understanding gene regulation in molecular 

biology. Significant progress has been made in genome-wide profiling of transcription factor 

binding sites, histone modifications, and nucleosome occupancy using chromatin 

immunoprecipitation (ChIP) with microarrays (Cawley et al., 2004; Kurdistani et al., 2004; 

Yuan et al., 2005). In these experiments, protein bound DNA is typically isolated as follows. 

Live cells are fixed with a DNA-protein cross-linker and lysed as part of sample preparation. 

After random fragmentation of the DNA, an antibody that recognizes the target of interest is 

used to immunoprecipitate bound DNA fragments. The cross-linker is then reversed and 

after a size selection step on fragments, resulting ChIP sample is amplified with polymerase 

chain reaction (PCR). For each ChIP sample, a matching input DNA control sample is 

prepared by following the same protocol with the exception that DNA fragments are purified 

without immunoprecipation. ChIP-Seq method has been recently developed to directly 

sequence ChIP and input DNA samples at whole-genome coverage and low cost via next 

generation sequencing technologies. The most popular sequencing platform for ChIP-Seq is 

Illumina’s Solexa sequencer (Mikkelsen et al., 2007; Barski et al., 2007; Johnson et al., 

2007; Seo et al., 2009). It works by sequencing a small region (∼ 25 − 100 bp) from one or 

both ends of each fragment and generates millions of short reads, i.e., tags. Standard pre-

processing of tags involves mapping them to the reference genome and retaining only 

uniquely mapping ones. This is followed by summarizing total tag counts in each small non-

overlapping interval of the genome (referred to as bins). Statistical analysis of ChIP-Seq 

data to detect protein bound regions, i.e., peaks, is based on these counts and can be carried 

out as a one- or two-sample analysis depending on the availability of a control sample.

Although sequencing-based technologies offer powerful ways of surveying large genomes at 

higher resolutions, they are also prone to sequencing and other sources of biases. In 

particular, tag counts in a region are affected by local sequence characteristics such as 

mappability (Rozowsky et al., 2009) and GC content (Dohm et al., 2008). Therefore, these 

counts need to be adjusted to give accurate measurements of binding signals. The methods 

that consider correcting for mappability bias are PeakSeq (Rozowsky et al., 2009) and PICS 

(Zhang et al., 2010). In the case of two-sample analysis of ChIP-Seq data, control samples, 

in particular input DNA controls, have been utilized to account for these biases. Figure 1 

displays data for a sample peak (chr2: 232219350−232220049) identified from a ChIP-Seq 
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experiment of transcription factor STAT1 in human HeLa S3 cells (Rozowsky et al., 2009). 

ChIP, input DNA, mappability, and GC content data are displayed in 50 bp bins along the 

genome. Details of data processing, mappability, and GC content calculations are provided 

in the next section.

In this paper, we utilize several publicly available next generation sequencing datasets 

including naked DNA, input DNA, and ChIP samples to understand the systematic sources 

of biases arising from the underlying data generating mechanism and pre-processing 

protocols. Naked DNA sample is derived from non-cross-linked, deproteinized, and 

sonicated DNA fragments which are expected to capture nonspecific sequencing biases. We 

use these data in motivating and developing a background model that adjusts for mappability 

and GC content biases in Section 2. In Section 3, we introduce a flexible mixture model, 

named MOSAiCS, for detecting bound regions in both one-sample (without control) and 

two-sample (with control) analyses of ChIP-Seq data. We demonstrate the pitfalls of not 

adjusting for mappability and GC content biases with specific case studies and compare 

MOSAiCS with several popular ChIP-Seq data analysis methods (Section 4). We conclude 

by discussing implications of our results and extensions of our framework.

2 A background model for ChIP-Seq data

2.1 Motivation

Mappability bias arises from standard pre-processing of ChIP-Seq data which only retains 

tags that align uniquely to reference genome. However, this issue is usually ignored by most 

existing softwares in modeling the background (or non-enriched) distribution of ChIP-Seq 

data. In their pioneering paper describing the PeakSeq algorithm, Rozowsky et al. (2009) 

illustrated the mappability bias by showing that regions proximal to transcription start sites 

are enriched for uniquely mappable bases and tend to have high tag counts in a human RNA 

polymerase II ChIP-Seq experiment (Figure 1 of Rozowsky et al. (2009)). PeakSeq operates 

by performing local permutations in pre-specified genomic windows and obtains local 

background distributions. Within each genomic window, all the nucleotides are assumed to 

have the same mappability score. A drawback of this permutation scheme is the need for 

calibrating genomic window size. A small window might result in insufficient tags for 

permutation, while a large one would downplay the effect of mappability bias. We further 

illustrate these issues in Section 4.2.

In addition to the mappability bias, observed tag counts tend to correlate with GC content 

(Dohm et al., 2008). In particular, regions with higher GC content exhibit higher number of 

tags. The GC content bias could be attributed to different melting temperatures of double-

stranded DNA in ligation sequencing (Valouev et al., 2008) or bridge amplification in 

cluster generation step.

In the next sub-section, we introduce a statistical framework that incorporates mappability 

and GC content biases systematically to overcome the shortcomings of simulation-based 

approach of PeakSeq in adjusting for mappability. We start our exposition with definitions 

of features that represent mappability and GC content. We divide the genome into small 

non-overlapping bins of size 50 bp to facilitate a data generating model for each bin. We 
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exclude bins which consist of only ambiguous base N. This exclusion reduces the fraction of 

bins with zero counts significantly (total reduction is between 2.6% and 42% across 

chromosomes for STAT1 data discussed in Section 4). In pre-processing of ChIP-Seq data, 

uniquely mapping tags are extended to the expected fragment length L to account for the fact 

that each tag represents a fragment with an average size of L (∼ 150 200 bp). The number of 

extended tags overlapping each bin are then reported as the bin-level observed counts. This 

implies that the total number of observed counts at nucleotide i could be contributed by 

forward strand tags that originate between nucleotides i − L + 1 and i or reverse strand tags 

that originate between nucleotides i and i + L −1. Therefore, we modify the definition of 

mappability at nucleotide i as follows. Let δi denote the original definition of mappability 

from Rozowsky et al. (2009) which represents if nucleotide i can be mapped uniquely by a 

30 bp sequence starting at position i. The choice of 30 bp represents the length of the 

sequence reads in the datasets that we analyze in this paper and can be longer for others. We 

define the mappability score at nucleotide i to be . The 

mappability score Mj for bin j is then the average of mi across the nucleotides of bin j. The 

GC content is defined similarly by changing the definition of δi to represent the occurrence 

of a G or C nucleotide at the i-th position in the genome.

Since both the mappability and GC content biases are characteristics of genomic DNA 

sequence, naked DNA (non-cross-linked, deproteinized) sample is a suitable dataset to study 

such biases. In the absence of sequencing biases, observed tag counts in naked DNA sample 

are expected to be uniformly distributed along genomic coordinates. Let Yj, j = 1,…, T 

denote the total number of tag counts in bin j, and Mj and GCj be the average mappability 

score and GC-content, respectively, where 0 ≤ Mj, GCj ≤ 1. Figure 2 depicts bin level 

average tag counts against M and GC for the HeLa S3 naked DNA sample (Gene Expression 

Omnibus (GEO) under accession number GSM352183 (Auerbach et al., 2009)). Each data 

point is obtained by averaging tag counts across bins with the same mappability or GC 

content and the error bars display ± 1.96× standard error intervals around the means. Mean 

tag counts display a steady increasing relationship with mappability. A similar increasing 

relationship is also observed with the GC content except for very high GC values. The bulk 

of the bins (95.5%) have GC values between 0.2 and 0.56. Overall, the trend seems more 

variable for the low and high GC values. The decreasing relationship at the high end of the 

GC content spectrum can be attributed to hampering of PCR-amplification of GC-rich 

regions by the formation of secondary structures like hairpins (Bachmann et al., 2003). In 

summary, these plots provide strong evidence that observed tag counts from naked DNA 

sample vary systematically with mappability and GC content.

2.2 Background model: A non-homogeneous negative binomial regression model

In ChIP-Seq experiments, Poisson distribution is a natural choice to model the observed tag 

counts. However, Ji et al. (2008) illustrated that a negative binomial model provides a better 

fit to count data from ChIP-Seq experiments than a constant rate Poisson model. Strong 

evidence for mappability and GC biases compels us to consider more elaborate 

parametrizations of the negative binomial model. Specifically, we propose the following 

general formulation for modeling the background (also known as unbound or non-enriched) 
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distribution for bin j: Yj ∼ Nj, Nj|μj ∼ NegBin(a, a/μj), where Nj measures background tag 

counts due to sequencing biases through μj. This model allows bins specific means μj and 

further relates bin specific distributions by a common parameter a. To ascertain if inclusion 

of Mj and GCj improves the model fit, we consider various functional forms for μj: (1) μj = 

exp(β0), (2) μj = exp(β0 + βM log2(Mj + 1)), (3) μj = exp(β0 + βGCGCj), (4) μj = exp(β0 + βM 

log2(Mj + 1) + βGCGCj), (5) μj = exp(β0 + β′GCSp(GCj)), (6) μj = exp(β0 + βM log2(Mj + 1) + 

β′GCSp(GCj)). Sp(GCj) is a vector of piecewise linear B-spline basis functions with knots at 

the first and third quartiles of the GC content. Therefore, βGC is vector valued and represents 

all the coefficients in the spline model in parametrizations (5) and (6). The functional forms 

of log2(Mj + 1) ∈ [0, 1] for mappability and Sp(GCj) for GC content are chosen among a set 

of alternatives since they provide good fit to the data. We also revisit the Poisson model and 

consider a more complex formulation of the mean parameter with μj = exp(β0 + βM log2(Mj 

+ 1) + β′GCSp(GCj)). This leads to local Poisson models across the genome. BIC scores for 

different models are reported in Table 1.

This investigation reveals that, in fact, Poisson model with a more complex mean 

parametrization ((6) Poisson in Table 1) that allows location specific rate parameters across 

the genome provides better fit than a global negative binomial model ((1) in Table 1). 

However, negative binomial model with M and GC dependent mean parametrization 

provides the best fit ((6) in Table 1). Figure 3 compares simulated data from the fitted 

Poisson and negative binomial regression models with mean parametrization μj = exp(β0 + 

βM log2(Mj + 1) + β′GCSp(GCj)) against the actual data. Poisson model is unable to capture 

high tag counts as shown by the lighter tail compared to the distribution of the actual data. In 

contrast, negative binomial model provides a better fit and is able to trace the over-

dispersion in the actual data. The outlying bins (> 30 tag counts) in the naked DNA sample 

which are not captured by negative binomial model constitute less than 0.0005% of the total 

bins and could be attributed to other sources of biases such as copy number variations.

Matching input DNA sample is the most commonly used control in two-sample ChIP-Seq 

data analysis (Mikkelsen et al., 2007; Barski et al., 2007). However, investigators might 

initially choose to generate ChIP-Seq samples without a control to reduce experimental 

costs, especially in pilot studies. As of July 2010, 40% of GEO ChIP-Seq datasets do not 

have a matching input control. This motivates us to first develop a flexible model for one-

sample analysis to account for the mappability and GC content biases. Subsequently, we 

extend our proposed model to adjust for additional factors captured by the input DNA 

control sample in the context of two-sample analysis.

3 MOSAiCS: A statistical model for one- and two-sample ChIP-Seq data

3.1 MOSAiCS for one-sample ChIP-Seq data

Count data in ChIP-Seq experiments can be considered as coming from two populations of 

genomic regions, namely, protein bound/enriched and unbound/non-enriched. We next 

develop a mixture modeling framework that accounts for these two tag populations. We will 

refer to this model as MOSAiCS: MOdel based one- and two- Sample Analysis and 

inference for ChIP-Seq. As in Section 2.2, let Yj denote observed tag counts for bin j, and Zj 

be an unobserved random variable specifying if bin j comes from enriched (Zj = 1) or non-
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enriched (Zj = 0) population of DNA fragments. Exploratory analysis in Section 2.2 

motivates a negative binomial regression model for counts from non-enriched regions. 

Therefore, we let Yj | Zj = 0 ∼ Nj, where Nj ∼ NegBin(a, a/μj) measures nonspecific 

sequencing related to Mj and GCj. Next, we let Yj | Zj = 1 ∼ Nj + Sj, where Sj represents 

signal due to enrichment, i.e., protein binding. This formulation assumes that tag count for 

an enriched bin is contributed by non-specific sequencing bias (Nj) and the actual level of 

enrichment (Sj), and ensures that P (Yj = y|Zj = 0) ≤ P (Yj = y|Zj = 1), ∀y ≥ y∗, where y∗ is a 

sufficiently large tag count. That is, for a bin with fixed Mj and GCj pair, it is more likely to 

observe a large count under the enriched distribution than the non-enriched distribution. To 

capture the complexity of Sj, we consider both a single negative binomial and a mixture of 

two negative binomial distributions, i.e., (1) Sj ∼ NegBin(b, c) + k or (2) Sj ∼ p1NegBin(b1, 

c1) + (1*#x02212;p1)NegBin(b2, c2) + k, where k is a constant that represents the minimum 

observable tag count in an enriched region. Altogether, the distribution of observed tag 

counts can be written as a mixture model as P (Yj = y) = π0P (Yj = y|Zj = 0) + (1 − π0)P (Yj = 

y|Zj = 1), where π0 represents the proportion of non-enriched bins.

3.2 MOSAiCS for two-sample ChIP-Seq data

Matching input DNA control samples are commonly utilized in ChIP-Seq experiments to 

account for the above non-specific sequencing biases. Zhang et al. (2008) remarked that tag 

counts are well correlated between ChIP and input DNA samples in the peak regions. 

Similar high positive correlation is also apparent outside the peak regions (Supplementary 

Materials Figure 1). To exploit the correlation between ChIP and input counts, we consider 

input control data as a covariate in our negative binomial regression background model.

Next, we investigate whether matching input DNA control fully accounts for the 

mappability and GC content biases. We explore the relationship between STAT1 ChIP-Seq 

and mappability and GC content within different strata of matching input DNA control 

(STAT1 ChIP-Seq and its matching input DNA control are discussed in Section 4). Figures 

4(a) and 4(b) illustrate that even when we condition on the bins with the same input tag 

count, mean ChIP tag counts vary systematically with mappability and GC content. This 

suggests that the two-sample analysis of ChIP-Seq data might benefit from utilization of 

mappability and GC content features. To capture the dependence of ChIP tag counts on 

input DNA tag counts, we consider a rich set of transformations starting from using input 

alone or together with M and GC as another additive term in the background regression 

model. Let Xj denote tag counts for bin j in the input sample. We settle on the mean 

parametrization 

, 

where s and d are tuning parameters. This parametrization provides the best goodness of fit 

for the case studies presented in Section 4. Intuitively, this functional form implies that for 

bins with small input DNA counts, mappability and GC content biases explicitly contribute 

to the background distribution, whereas, as input DNA tag counts get larger, these biases are 

dominated by the contribution of chromatin structure to input counts. In Supplementary 

Materials, we show that s = 2, 3 or 4 and d = 0.25 provide the best fit to the case studies 
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presented in this paper. Candidate fits are evaluated by the goodness of fit plots and BIC 

scores as in the case of background model for one-sample analysis.

3.3 Estimation

MOSAiCS framework for ChIP-Seq data is a mixture model; therefore maximum likelihood 

estimators of the unknown parameters can be obtained with an Expectation-Maximization 

algorithm (Dempster et al., 1977) (presented as the full E-M algorithm in Supplementary 

Materials). The distribution of the enriched bins in the MOSAiCS model is a convolution of 

negative binomials and involves the non-enriched distribution. Hence, the lack of closed 

form representation for this distribution makes the full E-M algorithm highly unappealing 

since the M-step would have to rely on time consuming numerical optimization. Instead, we 

propose and study a robust algorithm for estimating all the unknown parameters (β0, βM, 

βGC, βX, a, b1, c1, b2, c2, p1, π0), where βGC and βX are both vectors. This algorithm results 

in running times of 2 and 20 minutes for the smallest and largest human chromosomes on a 

64 bit machine with Intel Xeon 3.0GHz processor, respectively. Our estimation strategy 

involves following steps: Steps 1 & 2: Estimate parameters of the non-enriched distribution 

and proportion of unbound bins under some basic assumptions discussed below; Steps 3 & 

4: Once we estimate the parameters of the non-enriched distribution in Steps 1 & 2, we can 

utilize a generalized E-M algorithm to obtain the parameters of the enriched distribution. We 

estimate parameters of the enriched distribution in the M-step with method of moments 

estimators. To facilitate the estimation of the non-enriched distribution (Steps 1 & 2), we 

assume that bins with 0, 1, and 2 counts are from the non-enriched distribution. This is a 

reasonable assumption utilized by Ji et al. (2008). Under this assumption, we let k = 3 in Sj. 

In Supplementary Materials, we carry out extensive simulation studies to investigate the 

consequences of violating this assumption, i.e., 0, 1, and 2 can be generated from the 

enriched distribution. These studies show that the empirical false discovery rate (FDR) is 

always bounded above even under this model misspecification and is very close to the true 

(nominal) FDR for cases where the proportion of unbound bins is between 0.9 and 0.99. 

This range covers typical proportions observed for transcription factors with a small number 

of genome-wide targets as well as elongation factors such as RNA Polymerase II with larger 

number of binding targets. Next, we present our algorithm for estimating the parameters of 

MOSAiCS in the two-sample case (one-sample model is a sub-case with 

.

1. Estimation of the non-enriched distribution.

a. Round M and GC values to the nearest hundredth. Let subscript i denote 

each unique  combination, and ni be the total number of 

bins with this specific combination.

b. For each strata i, the background counts within this strata are from an 

identically distributed negative binomial regression model, i.e., Yj ∼ Ni, Ni | 

μi ∼ NegBin(a, a/μi) and  for 

j ∈ strata i. Here, function f relates mean μi to , , and input  as 

specified in Sections 3.1, 3.2 and βGC, βX are vector-valued parameters. To 

account for strata with too few bins, we develop an”adaptive gridding” 
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procedure to pool bins across similar strata. The details are given in 

Supplementary Materials.

c. Under the assumption that bins with 0, 1, and 2 counts are generated from 

non-enriched distribution, we have

(1)

Let ni0, ni1 and ni2 denote the total number of bins with 0, 1, and 2 counts, 

respectively and

Solving for ai and μi using  and , we get  and 

 as strata specific estimates of a and μi.

d. Estimate β0, βM, βGC, and βX by fitting the model 

 via weighted robust 

regression with weights . This weighting scheme assumes that 

 and sets the weights as wi = 1/Var(εi) This attenuates the 

contribution of the strata with small number of bins to the estimation 

procedure.

e.
Estimate , where  and 

denotes the q-th quantile of the strata specific estimates of a. Hence, the 

estimator for a is a trimmed weighted average of strata specific a estimates.

2. Estimation of proportion of unbound bins.

Since 0, 1, and 2 counts are from the non-enriched distribution, we have P (Yj ≤ 2) 

= π0P (Yj ≤ 2|Zj = 0). Let N(y ≤ 2) denote total number of bins with y ≤ 2 counts. 

Then, an estimate of N(y ≤ 2) is obtained by
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where estimation of 

 and 

 utilize the estimated background 

distribution.

3. Estimation of the enriched distribution.

We present the estimation procedure for the case where the signal component is 

represented by a single negative binomial distribution, i.e., Yj|Zj = 1 ∼ Nj + Sj +k, Sj 

∼ NegBin(b, c) and k is a known constant, and provide extension to a mixture of 

negative binomials in Supplementary Materials. Steps 1 & 2 above estimate 

unknown parameters in the distribution of Nj and the proportion of unbound bins, 

π0. Therefore, the following generalized E-M algorithm for estimating the signal 

component Sj utilizes the estimated Nj. The expected complete data log likelihood 

for counts Y and unobserved indicators Z is given by

Then, the E- and M-steps for the t-th iteration are as follows.

E-step:

M-step:

Since π0, a, and μj have been estimated, we estimate b and c with a method of 

moments approach by utilizing

(1)
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(2)

Solving equations (1) and (2), we have

where we plug in

with estimates of a, βM, βGC, and βX from Steps 1 & 2.

In Supplementary Materials, we illustrate with extensive data-driven simulations that this 

procedure for estimating the unknown parameters of MOSAiCS is robust. In particular, we 

demonstrate that the computationally efficient procedure for non-enriched distribution is 

comparable to the iteratively weighted least squares approach of glm.nb in R.

4 Applications and performance comparisons with case studies

We illustrate our proposed model MOSAiCS on two publicly available ChIP-Seq datasets 

and compare MOSAiCS to alternative approaches with data-driven computational 

experiments. The data are from ChIP-Seq experiments of STAT1 binding in interferon-γ-

stimulated HeLa S3 cells (Rozowsky et al., 2009) and GATA1 binding in mouse G1E-ER4 

cells (Cheng et al., 2009). Input DNA control experiments are available for both datasets. 

All data were downloaded from GEO (accession numbers GSM320736, GSM320737, 

GSM453997, GSM453998 for STAT1 ChIP and input, and GATA1 ChIP and input 

samples, respectively) and data from different lanes within an experiment were pooled 

together.

4.1 Summary of the methods compared

We present results of one- and two-sample analysis in parallel. In what follows, we compare 

the performance of MOSAiCS fitted with Mj and GCj against one-sample analysis of 

PeakSeq (Rozowsky et al., 2009), CisGenome (Ji et al., 2008) and MACS (Zhang et al., 
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2008). As discussed earlier, the first pass (one-sample analysis) of PeakSeq assumes that 

every nucleotide within a segment (default 1Mb) has equal mappability. In contrast, one-

sample analysis in CisGenome is based on an identically distributed negative binomial 

background model for all the bins and MACS one-sample model is based on local Poisson 

distributions. We refer to these one-sample methods as MOSAiCS-1S, PeakSeq-1S, 

CisGenome-1S, and MACS-1S. In their two-sample counterparts, PeakSeq and CisGenome 

utilize a null binomial distribution for counts in ChIP sample conditional on total counts 

from ChIP and input samples, whereas MACS uses local Poisson null distributions by 

estimating rate parameters from the input sample. Within the context of two-sample 

analysis, we evaluate the performance of MOSAiCS fitted with Mj, GCj, and input tag 

counts Xj (MOSAiCS-2S (Input+M+GC)) against two-sample methods of PeakSeq 

(PeakSeq-2S), CisGenome (CisGenome-2S), and MACS (MACS-2S). We also include 

MOSAiCS fitted with input tag counts only (MOSAiCS-2S (Input only)) to highlight the 

advantage of adjusting for mappability and GC content even in the presence of matching 

input.

Segment specific analysis in PeakSeq-1S obtains a set of bound regions for each segment at 

a user specified nominal FDR level (one level for all the segments). FDR is controlled by 

comparing number of peaks obtained in simulated null data of the segment to the number of 

peaks in the actual ChIP-Seq segment. Hence, the overall nominal FDR level from 

PeakSeq-1S is generally smaller than the pre-specified nominal FDR as follows. Let FRi and 

Di be the number of false rejections and declared bound regions for segment i, respectively. 

Let FDRi be the nominal FDR for segment i, and FDRi = FRi/Di ≤ α, ∀i. Let FDR be the 

overall FDR across all segments. Thus, FDRi ≤ α always implies 

 since FRi ≤ αDi, ∀i. For a comparable nominal FDR, we obtain 

the overall nominal FDR from PeakSeq-1S by employing a segment-wise nominal level of 

0.05 and use this level for both CisGenome-1S and MOSAiCS-1S. For CisGenome-1S, FDR 

is controlled by comparing the ratio of expected number of bins declared as bound under the 

negative binomial background model to the observed number of rejections (Ji et al., 2008). 

For MOSAiCS, we use the direct posterior probability approach (Newton et al., 2004) to 

control FDR. MACS-1S does not provide FDR control; therefore, we use the suggested 

default p-value cut-off of 10−5. We also include results from 10−2 cutoff which gives 

comparable number of peaks to other approaches. We use non-overlapping bins of size 50 

bp, merge contiguous bins which are within 200 bp (250 bp) of each other and filter 

singleton bins when forming peaks for STAT1 (GATA1).

4.2 Results

We start our exposition of the results by pointing out some shortcomings of PeakSeq-1S in 

utilizing mappability. We illustrate in Section 4 of Supplementary Materials that the 

performance of PeakSeq-1S using the actual mappability of the human genome and a 

constant mappability across the genome are extremely similar (Supplementary Materials 

Figure 6). The permutation-based approach of PeakSeq-1S down-weighs the effect of 

mappability in local regions of 1 Mb as follows. The fraction of mappable bases within each 

1 Mb segment utilized by PeakSeq-1S to adjust for effective segment length for permuting 

tags, is almost constant across different segments. In addition, the overlap between the set of 
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peaks obtained using the actual mappability versus constant mappability across the genome 

is as good as the overlap between two runs of PeakSeq-1S using actual mappability with 

different starting seeds for random local permutation. We observe that the effect of 

mappability is only apparent for shorter segment (e.g., 1 kb) (Supplementary Materials 

Figure 7). Therefore, one remedy is to perform local permutations using shorter segments 

such as 1 kb. However, this yields insufficient tags for permutation which, in turn, could 

result in low power for peak detection.

4.2.1 STAT1 ChIP-Seq data—We start our one- and two-sample analysis of STAT1 

ChIP-Seq data by observing mappability and GC content biases in Figures 5(a) and 5(b). We 

fit MOSAiCS on STAT1 data by considering both a single negative binomial and a mixture 

of two negative binomial distributions for the signal component Sj. Figures 5(c) and Figures 

5(d) compare simulated data from the fitted MOSAiCS models to the actual data, for one- 

and two-sample analysis, respectively. These plots indicate that a mixture of two negative 

binomials captures the observed data better in both cases. We also provide the BIC scores 

for both models in Table 2.

A total of 104827, 18962, 47014, 116428, and 123143 peaks are obtained with 

MOSAiCS-1S, CisGenome-1S, MACS-1S (p-value threshold of 10−5), MACS-1S (p-value 

threshold of 10−2), and PeakSeq-1S with median sizes of 299 bp, 157 bp, 979 bp, 783 bp, 

and 217 bp, respectively. For all the one sample methods (except MACS which does not 

provide explicit FDR control), same nominal FDR level that corresponds to segment-wise 

nominal level of 0.05 for PeakSeq-1S is used as discussed in the previous section. Two-

sample methods tend to identify smaller number of peaks (except for CisGenome) compared 

to their one-sample counterparts; however the median peaks sizes remain comparable to 

one-sample results (except for CisGenome). A total of 67426, 27642, 28458, and 97949 

peaks with median peak sizes of 249 bp, 46 bp, 982 bp, and 287 bp are obtained by 

MOSAiCS-2S, CisGenome-2S, MACS-2S, and PeakSeq-2S. The same nominal FDR level 

from PeakSeq-1S is employed for CisGenome-2S and MOSAiCS-2S to enable direct 

comparisons to one-sample models. Results for PeakSeq-2S are obtained by filtering peaks 

identified by PeakSeq-1S using a second level nominal FDR of 0.05. Sample-swap scheme 

of MACS-2S results in a genome-wide estimated FDR level of 0.016. When we consider a 

similar FDR level for MOSAiCS-2S, the total number of peaks obtained is 57600 with a 

median peak size of 249 bp. In what follows, one-sample validation that relies on using 

naked DNA sample in a two-sample analysis is the only instance where the entire peak sets 

of the methods are utilized. The rest of the comparisons focus on top 5000 peaks of each 

method.

Since both mappability and GC content biases are attributes of the underlying naked DNA 

sequence in a ChIP-Seq experiment, a reasonable computational approach to validate peaks 

from one-sample analysis is to compare them with peaks obtained from a two-sample 

analysis of ChIP-Seq data using naked DNA as the control sample. To construct a gold-

standard set of bound bins, we declare bins as bound in a two-sample analysis by a binomial 

test with p = DC/(DN + DC), where DC and DN are the sequencing depths of ChIP and naked 

DNA samples, respectively (Ji et al., 2008). Table 3 reports bin level sensitivity and 

specificity, and peak level sensitivity of each method. For peak level sensitivity, we first 
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define a gold-standard peak set over the bins that are declared bound in the two-sample 

analysis by merging contiguous bins within 200 bp of each other and filtering singleton bins. 

The performances of MOSAiCS-1S and PeakSeq-1S are comparable in terms of sensitivity 

both at the bin and peak levels and specificity. However, CisGenome-1S has lower 

sensitivity due to the over-estimation of the negative binomial background distribution as 

shown in Figure 5(c). In this comparison, we consider default MACS-1S cut-off of 10−5 as 

well as the larger 10−2 cut-off that resulted in similar number of peaks to MOSAiCS-1S and 

PeakSeq-1S. Although increasing the threshold leads to higher sensitivity for MACS-1S 

without loss of specificity, MACS-1S overall has worse performance compared to 

MOSAiCS-1S and PeakSeq-1S. When we repeat this computational experiment by using 

peaks from a two-sample analysis with input DNA control as the gold standard set of peaks, 

the relative performances of the methods remain the same (Supplementary Materials Section 

6.2).

We next perform motif analysis to elucidate differences among different sets of peaks and 

compare the two-sample analysis methods. If the peaks identified are indeed ChIP enriched 

regions, we should expect a large fraction of the peaks to contain one or more occurrences of 

the STAT1 motif and a decrease in the occurrence level with decreasing peak ranks. We 

scan ranked peaks of each method with the two STAT1 consensus binding sequences from 

the JASPAR database (Portales-Casamar et al., 2010). To avoid bias due to the variable peak 

widths identified by the different methods, we perform the motif analysis by fixing the peak 

widths (±150 bp of peak summit). For MACS and CisGenome, we use their estimated 

summit location. In MOSAiCS, the summit of a peak is defined as the midpoint of the bin 

with the largest ChIP tag count. Since PeakSeq does not provide summit information, it is 

excluded from this comparison. We also score each of these fixed width peaks using the 

FIMO tool of the MEME suite (Bailey and Elkan, 1994; Bailey et al., 2009). FIMO 

evaluates the significance of each subsequence under the STAT1 motif position weight 

matrix model and a background model. The motif analysis results using FIMO exhibit 

similar results as scanning peaks for the occurrences of the STAT1 consensus binding 

sequences. Hence, we present the results based on the consensus binding sequences. All the 

chromosomes are analyzed separately and results are summarized genome-wide. We report 

the proportion of peaks with a STAT1 motif in the top 5000 ordered peaks of each method 

in Figure 6(a). The observed pattern remains consistent for longer ranked peak lists and 

various width extensions around the summit. Overall, two-sample approaches have higher 

motif occurrence proportions compared to their one-sample counterparts. MOSAiCS-1S 

outperforms all the one-sample methods and MOSAiCS-2S (Input only) performs similar to 

CisGenome-2S. MOSAiCS-2S (Input+M+GC) outperforms all of the two-sample 

approaches.

We further explore this dataset to elucidate the differences among the peaks that are unique 

to each method. We compare peaks of MOSAiCS-1S and MOSAiCS-2S (Input+M+GC) to 

peaks from other methods in a pairwise manner. Figure 6(b) displays barplots of proportions 

of peaks with motif for peaks that are common between MOSAiCS-1S and other methods as 

well as for peaks that are unique to either MOSAiCS-1S or other methods. Figure 6(c) 

displays the same information for the two-sample comparisons. In these comparisons, peaks 
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are again constrained to ±150 bp of their summit. Both analyses reveal that peaks unique to 

MOSAiCS have motif occurrence proportions higher than peaks unique to other approaches. 

Since PeakSeq is the only other method that explicitly utilizes the mappability concept, we 

compare peaks unique to MOSAiCS-2S (Input+M+GC) with peaks unique to PeakSeq-2S in 

Figure 6(d) by considering top 1000 peaks of each approach. In this comparison, original 

peaks of each method are utilized and the differences in peak widths are taken into account 

by controlling peak level FDR at 0.1 in the FIMO results (Supplementary Materials Section 

6.3). Common peaks of the two approaches are provided as reference. Peaks with motif 

occurrences are depicted with open circles or triangles over the filled versions. This plot 

indicates that MOSAiCS-2S (Input+M+GC) is able to identify peaks with low mappability 

and/or low GC. In contrast, peaks unique to PeakSeq-2S tend to have higher mappability 

and higher GC content. Although top 1000 peaks are considered for display purposes, the 

observed pattern remains consistent for longer ranked peak lists.

We also compare peaks identified by each method with a small set of ChIP-chip target sites 

validated independently by qPCR (Euskirchen et al., 2007). Although we do not observe any 

striking diferences between the performances of different methods, MOSAiCS-1S and 

PeakSeq-1S perform better than CisGenome-1S and MACS-1S by capturing more true 

positive peaks, whereas CisGenome-2S performs slightly worse than the other two-sample 

methods (details are provided in Supplementary Materials). MOSAiCS and PeakSeq capture 

the highest number of true negatives in one- and two-sample comparisons.

4.2.2 GATA1 ChIP-Seq data—Similar to both the naked DNA and STAT1 ChIP-Seq 

data, GATA1 data from mouse exhibits both mappability and GC content biases 

(Supplementary Materials Figure 9). We compare the goodness of fit for MOSAiCS-1S and 

MOSAiCS-2S in Figures 7(a) and 7(b). Both the goodness of fit plots and BIC computations 

(Supplementary Materials Table 3) support a single negative binomial distribution for the 

signal component Sj of GATA1 ChIP-Seq data.

GATA-1 is one of the master regulators of blood cell development. A recent study on 

GATA1 (Zhang et al., 2009) showed that consensus sequence [A/T]GATA[A/G] is 

necessary for GATA1 binding but its occurrence alone does not guarantee binding of 

GATA1. Specifically, while more than 90% of GATA1-bound regions contain this motif, 

less than 1% of regions that contain the motif are actually bound by GATA1. Zhang et al. 

(2009) further showed that multiple occurrences of the consensus sequence [A/

T]GATA[A/G] strongly discriminate GATA1-bound regions from unbound regions with the 

consensus, i.e., the average number of occurrences of [A/T]GATA[A/G] is about 2.3 in 

bound regions, compared to 1.1 in the unbound regions. Therefore, we scan each peak for 

two or more occurrences of the consensus sequence [A/T]GATA[A/G]. Additional results 

are provided in Section 7.3 of Supplementary Materials. Figure 7(c) displays proportion of 

peaks with two or more GATA1 motifs in the top 3000 ordered peaks of each method. The 

observed pattern remains consistent for different number of top peaks and various width 

extensions around the summit. MOSAiCS-2S (Input only) performs similar to MACS-2S 

and outperforms CisGenome-2S. MOSAiCS-2S (Input+M+GC) outperforms all the two-

sample methods, whereas MOSAiCS-1S performs comparable to MOSAiCS-2S (Input+M

+GC). Figure 7(d) displays mappability versus GC content of peaks that are unique to 
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MOSAiCS-2S (Input+M+GC) and MACS-2S among the top 1000 peaks genome-wide 

(result are representative of other number of top peaks and peak widths are constrained to 

±150 bp of the summit). Common peaks of the two approaches are provided as reference. 

Peaks with two or more occurrences of the GATA1 consensus sequence are depicted with an 

open circle or triangle over the filled versions. This plot indicates that peaks unique to 

MACS-2S tend to have higher mappability and GC content than peaks unique to 

MOSAiCS-2S (Input+M+GC).

5 Summary and discussion

We studied data from a naked DNA sequencing experiment and showed that count data 

from ChIP-Seq experiments exhibit mappability and GC content biases. We further 

illustrated that these biases may not be fully accounted for even in the presence of a 

matching input DNA control experiment. These observations led to a negative binomial 

regression model with mappability, GC content, and input DNA counts as covariates for 

background distribution of ChIP-Seq data. We then developed a mixture modeling 

framework named MOSAiCS which utilized this background model and captured the actual 

binding signal with additional negative binomial components. We showed that the flexible 

mixture model underlying MOSAiCS fits ChIP-Seq data from both human and mouse 

genome very well, and demonstrated that this model is able to achieve good operating 

characteristics based on motif analysis.

The hierarchical model underlying MOSAiCS offers a general framework that 

accommodates bin specific distributions and sequencing biases, and allows for information 

sharing across bins. Additionally, since the biases are incorporated in a regression 

framework, other factors, such as copy number variation in cancer cells which influence the 

generation of ChIP-Seq data could be incorporated.

The sequenced tags in the datasets presented here are ∼ 30 bp long. As a result, the 

mappability feature is computed using 30mers. 79.6% of the bases in human genome are 

mappable when using 30 bp in the definition of mappability (Rozowsky et al., 2009). 

Although this percentage increases with the ability to sequence longer tags, Rozowsky et al. 

(2009) reported that 89.3% of the genome is uniquely mappable by 70 bp tags. This 

indicates that mappability bias would be still highly relevant for longer tags. In fact, we have 

recently observed that mappability bias is still apparent for 75mer reads in a mouse ChIP-

Seq dataset (Chung et al., 2011). In addition, all of the ChIP-Seq datasets submitted to GEO 

between February 2009 and July 2010 have tag length between 20 and 36 bp, indicating that 

the current state of the art for ChIP-Seq relies on short tags.

We presented data analysis results based on bin level FDR control. We recognize the 

inherent correlation structure of the observed data and refer interested reader to our work 

(Kuan et al., 2009) which incorporates the correlation structure via a hidden semi-Markov 

model (HSMM) and proposes a new meta approach for controlling FDR at peak level. 

Software implementing MOSAiCS is available at Bioconductor.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A sample peak from the STAT1 ChIP-Seq experiment of Rozowsky et al. (2009). Data for 

the actual peak is depicted with darker bars. ChIP, input DNA, mappability, and GC content 

data are displayed in non-overlapping 50 bp intervals along chromosome 2. y-axes for ChIP 

and input tracks denote tag counts.
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Figure 2. 
Mappability and GC content biases in sequenced naked DNA sample. Left and right panels 

display mean tag counts with corresponding error bars against mappability and GC content, 

respectively. 95.5% of the bins have a GC content between 0.2 and 0.56 (indicated by the 

dashed vertical lines in panel (b)). These patterns remain consistent in the absence of tag 

extension and at different bin sizes.
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Figure 3. 
Goodness of fit for the naked DNA sample. Both axes are in the log10 scale. log M + 

Sp(GC) refers to the mean parametrization of μj = exp(β0 + βM log2(Mj + 1) + β′GCSp(GCj)).
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Figure 4. 
(a) and (b) plot mean ChIP tag counts against the mappability score Mj and GC content GCj, 

respectively. Each sub panel displays mean ChIP tag counts against mappability at a fixed 

input DNA tag count/interval. Input counts/intervals are (from bottom left to upper right): 0, 

1, 2,…, 10, [11, 15], [16, 20], [21, 30], [31, ∞). y-axis within each panel is scaled to allow 

comparisons of the patterns across panels.
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Figure 5. 
Mappability and GC content biases and goodness of fit for STAT1 ChIP-Seq sample. Panels 

(a) and (b) plot mean ChIP tag counts against the mappability score Mj and GC content GCj, 

respectively. Panels (c) and (d) are the goodness of fit plots from one- and two-sample 

MOSAiCS models. Axes on both panels are in log10 scale. In panel (c), the background is 

fitted using Mj and GCj. In panel (d), the background is fitted using Mj, GCj, and Xj, or Xj 

only. Simulated data from estimated one-sample background model of CisGenome is 

displayed in panel (c).
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Figure 6. 
STAT1 motif analysis. (a) STAT1 consensus binding sequence occurrences across top 5000 

peaks of each method. Peaks are rank ordered within each method. (b) –(c) Pairwise 

comparisons of peaks of MOSAiCS-1S and MOSAiCS-2S (Input+M+GC) with other one- 

and two-sample approaches. Barplots depict the proportion of peaks with the motif. Each 

three groups of bar plots corresponds to one pairwise comparison. “Common” refers to 

peaks common to both methods. Peaks unique to MOSAiCS are represented by the first 

barplot of each group and the peaks unique to the comparison method are represented as the 

middle barplot. (d) Mappability vs. GC content values of peaks that are (i) common between 

MOSAiCS-2S (Input+M+GC) and PeakSeq-2S (represented by “+”); (ii) unique to 

PeakSeq-TS (filled circle) and (iii) unique to MOSAiCS-2S (Input+M+GC) (filled triangle). 

Peaks with a STAT1 motif are depicted by open circles or triangles overlaying their solid 

versions.
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Figure 7. 
GATA1 data analysis. Panels (a) and (b) are the goodness of fit plots from one- and two-

sample MOSAiCS models. Axes on both panels are in log10 scale. In panel (a), the 

background is fitted using Mj and GCj. In panel (b), the background is fitted using Mj, GCj 

and Xj, or Xj only. (c) GATA1 consensus binding sequence occurrences in the top 3000 

peaks of each method. Peaks are rank ordered within each method and peaks of different 

chromosomes are pooled for genome-wide representation. (d) Mappability vs. GC content 

values of peaks that are (i) common between MOSAiCS-2S (Input+M+GC) and MACS-2S 

(represented by “+”) ; (ii) unique to MACS-2S (filled circle), and (iii) unique to 

MOSAiCS-2S (Input+M+GC) (filled triangle). Peaks with a GATA1 consensus sequence 

are depicted by open circles or triangles overlaying their solid versions.
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Table 1

Model selection based on BIC scores for the HeLa S3 naked DNA sample

Model for μj (1)(NB) (2)(NB) (3)(NB) (4)(NB)

BIC 7319659 6778640 7294349 6693773

Model for μj (5)(NB) (6)(NB) (6) (Poisson)

BIC 7283675 6669991 6794413

NOTE: Each cell reports BIC score under different μj formulations. NB: Negative Binomial.

J Am Stat Assoc. Author manuscript; available in PMC 2015 October 16.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kuan et al. Page 26

Table 2

Model selection based on BIC scores for the STAT1 ChIP sample

MOSAiCS 1S (1 NB) 1S (2 NB) 2S (Input Only) 2S (Input+M+GC)

BIC 3639751 3631390 3569584 3460109

NOTE: Each cell reports BIC score for one-sample (1S) and two-sample (2S) MOSAiCS.
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