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Abstract
In this paper we define a hierarchical Bayesian model for microarray expression data collected
from several studies and use it to identify genes that show differential expression between two
conditions. Key features include shrinkage across both genes and studies, and flexible modeling
that allows for interactions between platforms and the estimated effect, as well as concordant and
discordant differential expression across studies. We evaluated the performance of our model in a
comprehensive fashion, using both artificial data, and a “split-study” validation approach that
provides an agnostic assessment of the model's behavior not only under the null hypothesis, but
also under a realistic alternative. The simulation results from the artificial data demonstrate the
advantages of the Bayesian model. The 1 – AUC values for the Bayesian model are roughly half
of the corresponding values for a direct combination of t- and SAM-statistics. Furthermore, the
simulations provide guidelines for when the Bayesian model is most likely to be useful. Most
noticeably, in small studies the Bayesian model generally outperforms other methods when
evaluated by AUC, FDR, and MDR across a range of simulation parameters, and this difference
diminishes for larger sample sizes in the individual studies. The split-study validation illustrates
appropriate shrinkage of the Bayesian model in the absence of platform-, sample-, and annotation-
differences that otherwise complicate experimental data analyses. Finally, we fit our model to four
breast cancer studies employing different technologies (cDNA and Affymetrix) to estimate
differential expression in estrogen receptor positive tumors versus negative ones. Software and
data for reproducing our analysis are publicly available.

1 Introduction
Microarray technologies that simultaneously measure transcriptional activity in a very large
number of genes have been widely used in biology and medicine in the last decade, and the
resulting data is often publicly available. To increase the reliability and efficiency of
biological investigations, it can be critical to combine data from several studies. However,
when considering multiple studies, variation in the measured gene expression levels is
caused not only by the biological differences of interest and natural variation in gene
expression within a phenotype, but also by technological and laboratory-based differences
between studies (Irizarry et al., 2005; Consortium et al., 2006; Kerr, 2007). Two of the most
important difficulties are the presence of both absolute and relative expression
measurements, depending on the technology, and the challenges associated with cross
referencing measurements made by different technologies to the genome and to each other
(Zhong et al., 2007). Despite these difficulties, the results of combined analysis clearly
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demonstrate the potential for increased statistical power and novel discovery by combining
data from several studies (Wu et al., 2002; Rhodes et al., 2002; Tomlins et al., 2005).

Most statistical work to date on combining microarray studies has focused on identifying
genes that exhibit differential expression across two experimental conditions or phenotypes.
We consider this problem here as well. There is now a substantial literature on Bayesian
approaches to assessing differential expression across two or more experimental conditions
within a single study. Both empirical and fully Bayesian models have been proposed,
including parametric (Baldi and Long, 2001; Newton et al., 2001; Lönnstedt and Speed,
2002; Pan, 2002; Tseng et al., 2001; Bröet et al., 2002; Ibrahim et al., 2002; Townsend and
Hartl, 2002; Gottardo et al., 2003; Ishwaran and Rao, 2003; Kendziorski et al., 2003;
Ishwaran and Rao, 2005), semi-parametric (Newton et al., 2004) and non-parametric (Efron
et al., 2001; Do et al., 2005) models. In each of these papers, a critical issue is shrinkage,
and in particular borrowing strength across genes when estimating the gene-specific
variance across samples. It is well established that shrinkage of the variance estimates
provides worthwhile enhancements to single study analysis of differential expression (Liu et
al., 2004).

There are several natural approaches for combining information from multiple microarray
studies. One is to compute, separately for each study, statistics that summarize the
relationship between each gene and the phenotype of interest. These may then be combined
using methodologies such as those originally devised to integrate published results in meta-
analysis (Hedges and Olkin, 1985). While initial efforts in this direction have considered
combination of p-values (Rhodes et al., 2002), subsequent papers have focused on the more
efficient strategy of combining effect sizes (Ghosh et al., 2003; Wang et al., 2004; Garrett-
Mayer et al., 2007). At the opposite extreme of study combination are cross-study
normalization methods (Wu et al., 2002; Parmigiani, 2002; Shen et al., 2004; Rhodes et al.,
2004; Hayes et al., 2006; Johnson et al., 2007; Choi et al., 2007; Shabalin et al., 2008) that
consider directly the sample-level measurements within each study, and merge these into a
single data set, to which standard single-study analysis can be applied. A third approach,
intermediate between the two above, is to integrate information about differential expression
from the available studies using a joint stochastic model for all the available data (Choi et
al., 2003; Conlon et al., 2006; Jung et al., 2006; Conlon, 2007; Conlon et al., 2007), in which
only selected features of each study, such as parameters that capture the relationship
between genes and phenotypes, are assumed to be related across studies. This perspective
has the potential to offer additional efficiency over integration of summary statistics, and to
allow for a more comprehensive treatment of uncertainty. At the same time it models the
cross-study integration in a way that is tailored to the problem of interest, and potentially
relies on fewer assumptions than direct data integration.

In this article we adopt this latter, intermediate approach, and propose a fully Bayesian
hierarchical model to identify genes that exhibit differential expression between two
experimental conditions, and across multiple studies. In this context, use of a fully Bayesian
model has several desirable features. The model borrows strength across both genes and
studies and can thereby provide better estimates of the gene-specific means, variances and
effects. The model yields, through simulation, posterior probability distributions for all
unobserved quantities. These distributions can be used to quantify the uncertainty of any
parameter in the model, or to make joint inferences about multiple genes. Lastly, for each
gene, the model yields the posterior probability that the gene is differentially expressed.

While the work of Conlon and colleagues considers several of these issues, its primary
strength is in the combination of multiple studies from the same technology. We expand this
and related work to address multi-platform analysis via several technical generalizations that
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are described in detail in the methods, and reviewed in the discussion. These include:
modeling of study-specific indicators of differential expression; modeling of overall cross-
platform correlations to allow shrinkage to be stronger across pairs of studies that are
generally more concordant; modeling of both the mean of a gene and its phenotypic
interactions with sufficient flexibility to avoid distributional modeling of the main effects;
allowing for interactions between the technology and the effect; modeling of an adaptive,
smooth dependence between effects and the variance terms.

Perhaps the most radical difference between our approach and its predecessors is the
attention given to discordant differential expression. This occurs when a gene is more highly
expressed in one phenotype than the other in some studies, while the opposite is observed in
other studies. Earlier approaches would discount the gene: the high cross-study variance and
cancellation of overall effects would likely position it with the uninteresting genes.
However, across many meta-analyses, we have observed an excess of these discordant genes
compared to what would have been predicted by chance alone, as captured by permutation
of phenotype labels. When implementing shrinkage strategies, reliable assessments of
concordant differential expression, which is typically of primary interest, must therefore
account for the possibility of discordant differential expression across studies. We
implement this by introducing a gene-specific indicator of whether a gene is different across
conditions in all of the studies, but then we allow these differences to be gene and study
specific.

While concordant differentially expressed genes remain the primary focus of the analysis,
discordant genes can reveal important biological or technological information, and it is
useful to identify them and report them. This is for at least two reasons: first, given the
heterogeneous experimental designs that are encountered in microarrays, a discordant effect
for a set of important genes may be the result of genetic heterogeneity of the samples across
studies. For a simple example, consider the comparison of administering or not
administering a certain drug in two studies which, unbeknown to the investigators, use
strains of animals where the sets of biochemical pathways activated by the drug are not the
same. Then certain genes' expression may be increased by the drug in one strain and
decreased in the other. Another reason discordance is important is that the cross-referencing
of transcripts across studies is typically gene-centric. However, as many as 40 to 60% of
genes are able to produce multiple alternative transcripts (Modrek and Lee, 2002), whose
expression may be positively or, as is common, negatively correlated. For example one
transcript may be made primarily under normal conditions, while the other may be made
mainly in response to stress. When two technologies measure a gene's expression by
targeting portions of that gene that are associated with different transcripts that are
negatively correlated with each other, discordant effects will be observed. In either case,
important insight about technology, study designs and potentially the genetics of alternative
splicing can be gained by following up on discordant genes.

The paper is organized as follows. In Section 2 we describe our Bayesian model and in
Section 3 we define a Markov chain Monte Carlo algorithm for simulation from the
resulting posterior distribution. Section 4 describes statistics from the Bayesian model that
can be used to quantify differential expression, as well as alternative approaches for
quantifying differential expression in the context of multiple studies. The datasets used in
the simulation and experimental data example are described in Section 5. Sections 6 and 7
present results when applying our model to simulated and real data with comparisons to
alternative methods. Concluding remarks are in Section 8. The software for fitting our
Bayesian model is open source and freely available from Bioconductor (Gentleman et al.,
2004).
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2 Bayesian hierarchical cross-study model
In this section we introduce some basic notation and our Bayesian model. We refer to the
resulting method for cross-study assessment of differential expression by the R package
name, XDE.

2.1 Notation and basic assumptions
In what follows we use p and q to index studies (i.e. data sets), g to index genes, and s to
index samples (arrays) within each study. Let xgsp denote the observed expression value for
gene g and sample s in study p. Let P denote the number of available studies, G the number
of common genes and Sp the number of samples in study p. Thus the observed expression
values are

We assume that each study has been suitably normalized (and if necessary log-transformed)
so that the mean expression value for each study is zero and the expression values for a
given gene are approximately Gaussian under each condition. We restrict our analysis to the
set of common genes in the available studies, though our model formulation can easily be
extended to a situation in which there is substantial overlap, but not complete agreement,
between the gene sets in different studies.

In the model described below, each sample is assumed to belong to one of two possible
conditions or phenotypes. Let ψsp ∈ {0, 1} denote the phenotype of sample s in study p. (An
example in which ψsp represents the estrogen receptor status of breast tumors is presented in
Section 7.) In order to model differential expression, we assume that, for a subset of the
available genes, the expression value xgsp has a different mean value in samples where ψsp =
0 than in samples where ψsp = 1. We have implemented two versions of the Bayesian model:
one with study-specific indicators of differential expression, δgp ∈ {0, 1} for studies p ∈ {1,
… , P}, and a second with a single indicator, δg ∈ {0, 1}, that assumes a gene is
differentially expressed in all of the studies or in none of the studies.

2.2 Bayesian model
We define a hierarchical Bayesian model for the expression values xgsp. In the following
discussion, the graphical model representation in Figure 1 can be used as a reference.

At the lowest level we assume the expression values xgsp, conditional on some unobserved
parameters, are independent and have a Gaussian distribution. For genes that are not
differentially expressed, νgp denotes the mean value of xgsp, i.e., the mean value may be
different for different genes and studies, but is the same for all samples in the same study.
By contrast, differentially expressed genes have different means under the two phenotypic
conditions. When δgp = 1 the mean of gene g in study p is equal to νgp − Δgp and νgp + Δgp
for samples with ψsp = 0 and ψsp = 1, respectively. Thus Δgp represents half the average
difference between expression levels across phenotypes for gene g in study p. By allowing Δ
to depend on both g and p we acknowledge that the measured magnitude of an effect may
depend on the technology. We impose no restriction that the Δgp should have the same sign
across studies, thereby allowing for the possibility of discordant differential expression. We
also allow the variance of xgsp to depend on the gene g, the study p, and the phenotypic

condition ψsp. Let  and  denote the variances of xgsp for samples with ψsp = 0 and
ψsp = 1, respectively. Our basic model may be written as follows:
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(1)

At the next level in the model specification, prior distributions are selected for the model
parameters. We begin by discussing the priors for

which represent, respectively, the means and offsets for gene g. The vectors νg and Δg are
assumed to be independent across genes, and independent of each other. Furthermore, for
every gene g, it is assumed that νg and Δg have a multi-Gaussian distribution. In the context
of single studies, the choice of a Gaussian prior for modeling the mean expression value for
a gene has been used in other settings (e.g., Baldi and Long (2001)), though many other
choices are possible (Berger, 1993). As we have required that the expression values of each
gene be centered around zero, we set the mean of νg and Δg equal to zero as well. Let Σg and
Rg denote the covariance matrices of νg and Δg, respectively, so that

(2)

To specify the covariance matrices of Σg and Rg we adopt the strategy advocated in Barnard
et al. (2000), namely, to assign independent prior distributions to the standard deviation and
the correlation matrix of each quantity (see below for more details).

When modeling normal location and scale parameters in a hierarchical way, as we do here,
two modeling choices are common. One is independence between scale and location, and
the other is conjugacy. The latter is computationally more convenient, as it allows analytical
expressions for the full conditional distribution. However, which of these two specifications
fits better can vary from experiment to experiment, and in microarray analysis the fit is
sensitive to the technology and normalization method used, see Liu et al. (2004). Recently,
Caffo et al. (2004) proposed a more general family of models, one that encompasses both
independence and conjugacy, by including a single parameter that indexes the distribution of
location given scale. Here we extend this idea by introducing separate parameters for each
individual study, and setting a common relative scale for Σg and Rg in each study. More
specifically, the diagonal elements of Σg and Rg are given as follows:

(3)

Here , the parameters ap, bp ∈ [0, 1], and the parameters  are such that

. Thus γ2 and ap control the overall scale and conjugacy of νg, respectively,

while c2 and bp play analogous roles for Δg, and  control the relative scales of the
different studies.

The correlation structure of Σg (and Rg) is assumed to be the same for all genes g. Let

 and  denote the correlation matrices corresponding to Σg and Rg,
respectively. Following Barnard et al. (2000), the prior distribution for [ρpq] is obtained by
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beginning with a covariance matrix having an inverse Wishart distribution with νρ degrees
of freedom, and then integrating out its component variances. The prior distribution for [rpq]
is of the same form, with νr degrees of freedom, and independent of the prior for [ρpq].

At the next level in the hierarchical model specification, priors are placed on the

hyperparameters γ2, c2, , ap and bp. To enforce model parsimony, the prior distributions
for ap and bp place positive probability mass at the values 0 and 1, corresponding to
independence and conjugacy between location and scale, respectively. More specifically,
independently for each study p, we let

(4)

and

(5)

Independent vague priors are assigned to the remaining hyper-parameters. For γ2 we use an
(improper) uniform distribution on (0, ∞), and for c2 a uniform distribution on (0, ).
Note that an improper prior can not be used for c2 as this may result in an improper posterior

distribution. For  we assign a joint (improper) uniform distribution under the

natural restrictions , p = 1, … , P and .

In order to have a fully defined Bayesian model, it remains to specify prior distributions for

the differential expression indicators δgp, and for the variances  used to define . For
the indicators δgp we have implemented two prior models. In prior model A, we assume that
δg1, … , δgP are a priori independent given a hyperparameter ξp with

(6)

independently. In prior model B, we set the restriction δg1 = … = δgP = δg and assume that
the G indicators are a priori independent, given a hyperparameter ξ, with

The variances  are assumed to be independent for different genes g and studies p, given

the other hyperparameters. However,  and  should be correlated for the same gene g
and study p. To obtain this, we set

(7)

where  and φgp have independent gamma prior distributions with ,

, E[φgp] = λp and Var[φgp] = θp. At the next level we assign independent
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(improper) uniform distributions on (0, ∞) for each of the hyper-parameters lp, tp, λp, θp,
independently for p = 1, … , P.

The above prescriptions fully define the hierarchical Bayesian model visualized in Figure 1.
The observed quantities are the expression values xgsp and the conditions ψsp. Conditioning
on the observed values we get a posterior distribution for the unobserved parameters ξp, δgp,

ap, ρpq, γ, , νgp, c2, rpq, bp, Δgp, , φpg, lp, tp, λp and θp. Hyper-parameters that have to be
specified by the user are αa, βa, αb, βb, , , , , νρ, νr, αξp, βξp and . Default
hyperparameters provided in the R package XDE work well in most instances (see Table 1).

3 Posterior simulation
In order to evaluate the properties of the resulting posterior distribution, we adopt the
Metropolis–Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) to generate
realizations from it. Nice introductions to the Metropolis–Hastings algorithm can be found
in Smith and Roberts (1993) and Dellaportas and Roberts (2003). The algorithm is iterative,
and each iteration consists of two parts. First, potential new values for one or a number of
parameters are proposed according to a proposal distribution. Second, the proposed values
are accepted with a specified probability. Depending on the mathematical form of the
distribution of interest, different proposal mechanisms can be employed. In our posterior
distribution we have seventeen types of parameters and to update these we combine seven
types of proposal mechanisms. In the following we specify each of the proposal strategies
used. In the description we use tilde to denote potential new values, e.g. δgp and δ̃gp are the
current and potential new values of the differential expression indicator for gene g in study
p, respectively. Note that we restrict attention to the proposal distributions, as the acceptance
probabilities are then uniquely defined by the Metropolis–Hastings setup. Preliminary runs
show that the parameters Δg, c2 and γ2 are often highly correlated with other parameters in
the model. To cope with this strong posterior dependency and improve mixing, multiple
block updates are given to the Δg, c2 and γ2 parameters. As with many Metropolis–Hastings
proposal strategies, several of our proposal distributions include a “tuning” parameter that
measures the amount of change proposed. In the following we consistently use the same
symbol ε to denote all the tuning parameters, but, as the values used in our examples in
Sections 6 and 7 suggest, one can of course use different values when updating the different
parameters.

1. The full conditionals for νg, Δg, γ2 and ξp have standard forms and we therefore use
Gibbs steps (see the references given above) to update each of these separately. The
full conditionals for νg and Δg both are multiGaussians, the full conditional for γ2 is
an inverse gamma distribution, and for ξp it is a beta distribution.

2. Separately, for each of the parameters ap and bp, we use a “truncated” random walk
proposal. In particular, for ap we do the following: if ap = 0 we draw ãp from a
uniform distribution on [0, ε]; if ap = 1 we draw ãp uniformly on [1 − ε, 1]; and if
ap ∈ (0, 1) we draw U from a uniform distribution on [ap − ε, ap + ε] and set ãp =
min(1, max(0, U)). We note that this is a reversible jump type of proposal, and to e
get the correct acceptance probability, one needs to use the theory introduced in
Green (1995).

3. Separately, for each of the parameters , φgp, lp, tp, λp and θp, we propose a

multiplicative change. In particular, for  we set , where U is sampled
from a uniform distribution on the interval [1/(1 + ε), 1 + ε].
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4.
When updating  we must ensure that the product of the proposed new
values equals unity. We do this by randomly selecting two of the components, p
and q say, drawing U from a uniform distribution on [1/(1 + ε), 1 + ε], and setting

 and 

5. A block Gibbs update is used for c2 and all the Δg's for genes that have δgp = 0.

6. Separately for each g = 1, …, G, a block update is used for (δg1, …, δgP) and Δg.
First, potential new values for δg1, …, δgP are set. For prior model A we do this by
inverting the current value of δgp for a randomly chosen study p, i.e. δ̃gp = 1 − δgp,
and keeping the other indicators unchanged. For prior model B (δg1 = … = δgP =
δg) we invert all the indicators. Second, a potential new value for Δg is sampled
from the associated full conditional (given the potential new values δ̃g1, …, δ̃gP ).
The proposed values are then accepted or rejected jointly.

7. A block update is used for [ρpq] and γ2.

A similar block update is used for [rpq] and c2. For [ρpq] and γ2, potential new values for
[ρpq] are obtained via the transformation

Here [Tpq] is a correlation matrix which with probability one half is generated from the prior
for [ρpq], and with probability one half is set equal to unity on the diagonal with constant off
diagonal elements. In the latter case, the value of the off diagonal elements is sampled from
a uniform distribution on (−1/(P − 1), 1). Thereafter, the potential new value for γ2 is
sampled from the associated full conditional (given the potential new values [ρ̃pq]). The
proposed values are then accepted or rejected jointly.

4 Estimation of differential expression
In assessing the differential expression of genes across multiple studies, one naturally
encounters a difficulty that is not present in single study analyses. This difficulty arises from
the fact that a single differentially expressed gene g may be up-regulated in one or more
studies, and down-regulated in others. When this occurs, we say that g is discordantly
differentially expressed. If g is up-regulated in every study, or down-regulated in every
study, we say that g is concordantly differentially expressed. Although concordant
differential expression is the norm, discordance can arise from biological differences in the
sample populations of each study, or from technological effects related to the design and
implementation of specific array technologies. Discordance appears to be an unavoidable
(and inconvenient) feature of multi-study analyses, one that comprehensive multi-study
analyses should take into account.

4.1 Bayesian estimation
We have developed two implementations of our Bayesian model: a single indicator model
that assumes differential expression occurs in all of the studies or in none of the studies, and
a multiple indicator model that allows study specific indicators, δgp, of differential
expression.

Single indicator implementation—In the following discussion we discuss the single
indicator implementation of the Bayesian model for differential expression. Note that the
indicator δg summarizes information across studies. The basis for our cross-platform
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analysis of differential expression is the posterior mean of δg, equivalently the posterior
probability that gene g is differentially expressed. This posterior mean is not analytically
available, so in practice we have to generate samples from the posterior distribution, as
discussed in Section 3, and estimate the posterior mean by the empirical mean of the
simulated δg's.

Let PMε(g) denote the posterior mean of δg. We view PMε(g) as a measure of the evidence
for the overall differential expression of g. In particular, one may classify a gene g as
differentially expressed whenever PMε(g) > a for some threshold a > 0. Concordant and
discordant differential expression can also be addressed in a direct way in the context of the
Bayesian model described above. A gene g for which δg = 1 is concordantly differentially
expressed if each of its offsets Δgp, p = 1, …, P has the same sign, and is discordant if its
offsets include both positive and negative values. Thus, indicators for concordant and
discordant differential expression can be defined by

(8)

and

(9)

respectively.

Multiple indicator implementation—For each gene, we compute the number of positive

(N+) and negative (N−) signed offsets. Specifically,  and

, where I{·} takes the value 1 when {·} is true and 0 otherwise. Then
concordant and discordant indicators for differential expression are given by the
relationships

where m is the minimum number of studies for which the gene is differentially expressed.
The posterior mean of each indicator can again be estimated by the empirical mean of the
corresponding simulated quantities. Let PM (g) and PM (g) denote the corresponding
posterior mean values. Then a gene g may be classified as concordantly or discordantly
differentially expressed whenever PM (g) > a or PM (g) > a for some threshold a > 0.

4.2 Alternative methods
We consider three alternatives to XDE for estimating differential expression: the
implementation of the Choi et al. (2003) random effects model in the R package GeneMeta
(Gentleman et 2005), and cross-study summaries of t- and SAM-statistics. While a
comparison with the Conlon et al. (2006) paper would be interesting, software for fitting this
model to expression data is not readily available.

The study-specific statistics from which we derive cross-study summaries of differential
expression are the Welch t-statistic (tgp), SAMgp (Tusher et al., 2001), and a standardized
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unbiased estimate for effect size, zgp (Hedges and Olkin, 1985), discussed by Choi et al.
(2003) in the context of a cross-study microarray analysis. The Welch t-statistic allows for
unequal variances between the phenotypes, whereas the z statistic uses a pooled estimate
that assumes equal variance between the phenotypes. In contrast to the t- and z-statistics, the
SAM statistic downweights genes with small variance, favoring genes with larger effect
sizes. We hereafter generically denote the study-specific statistics by Ug = (Ug1, …, UgP),
and cross-study summaries of differential expression by non-negative statistics u*(g), where
the subscript indicates whether the statistic measures overall differential expression (),
concordant differential expression ( , or discordant differential expression ( . A gene g
may then be classified as being appropriately differentially expressed if the corresponding
statistic u*(g) exceeds a fixed constant a > 0.

For evaluating overall differential expression, we follow the discussion of Garrett-Mayer et
al. (2007), and combine the elements of Ug in a linear fashion to obtain a statistic suitable
for assessing differential expression:

(10)

Here L is the covariance loading from the first principal component of the vectors Ug, and Sp
is the number of samples in Study p. Summary measures of concordance for tgp and SAM
were obtained by

As an alternative, we also used the combined (across studies) estimate of effect size from the
random effects model proposed by Choi et al. (2003) directly. We denote this statistic by
z (g). The ‘borrowing of strength’ in the estimation of z (g) is strictly across studies (as
opposed to across genes and studies), as the study-specific effect sizes for a given gene are
assumed to be a draw from a Gaussian distribution in the second level of the random effects
model. Assessments of discordant differential expression using the tgp, SAM and z statistics
are obtained by

5 Datasets and Software
The R package XDE contains the software used to fit the Bayesian hierarchical model, as
well as convenient methods to compute the alternative statistics described in this paper.

Lung cancer datasets
The following lung cancer studies are referred to by institution: Harvard (Bhattacharjee et
al., 2001) (203 samples on the Affymetrix Human Genome 95A platform containing 12,453
probesets), Michigan (Beer et al., 2002) (108 samples on the Affymetrix HuGeneFL
Genome Array platform containing 6663 probesets), and Stanford (Garber et al., 2001) (68
samples on the cDNA platform containing 23,100 probes). The simulation described in
Section 6 uses the normalized and merged platform annotations made publicly available
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from the authors of a previous cross-study analysis (Parmigiani et al., 2004). Briefly,
Parmigiani et al. (2004) applied a robust multichip average (Irizarry et al. (2003)) separately
to the two Affymetrix platforms (Harvard and Michigan). Intensity ratios from the Cy5 and
Cy3 channels for the Stanford (Garber et al., 2001) dataset (23,100 features on the cDNA
platform) were log-transformed. Following normalization, probesets (Affymetrix) and image
clone identifiers (cDNA) in each platform were mapped to UniGene identifiers. Many-to-
one mappings (multiple probes map to one UniGene identifier) were averaged and one-to-
many mappings were excluded. The studies were then merged by Uni-Gene identifiers,
resulting in a common set of 3,171 features. The normalized and merged datasets were
obtained from the R package lungExpression available on the Bioconductor website
(http://www.bioconductor.org).

Breast cancer datasets
Four breast cancer studies containing phenotypic data on estrogen receptor (ER) status
(Sorlie et al. (2001), Huang et al. (2003), Hedenfalk et al. (2001), and Farmer et al. (2005))
were normalized according to platform type. In particular, Affymetrix platforms (the Farmer
and Huang datasets) were normalized by RMA, whereas cDNA platforms (Sorlie and
Hedenfalk) were normalized using the methods described in Smyth and Speed (2003) and
implemented in the R package LIMMA. Following normalization, platform-specific
annotations were mapped to Entrez-gene identifiers and the resulting lists merged to obtain a
set of 2064 genes.

6 Validation
This section, comprised of two parts, extensively evaluates two implementations of the
Bayesian model. In the first part of this section, we assess the single indicator and multiple
indicator implementations using two simulation scenarios: one that simulates differential
expression in all of the studies or none of the studies through a single indicator , and a
second that simulates differential expression in a subset of the studies through study-specific
indicators of differential expression, . As the set of genes that are differentially expressed
is known through simulation, we assess the performance using diagnostics such as the area
under the ROC curve (AUC). In the second part of this section, we evaluate the shrinkage
properties of the Bayesian model by applying XDE to multiple splits of a single study.
Comparisons of XDE to alternative methods for cross-platform analysis are discussed
throughout.

6.1 Simulation
6.1.1 Experimental Data—Our simulations are based on three publicly available lung
cancer datasets that we refer to by institution: Harvard (Bhattacharjee et al., 2001) ,
Michigan (Beer et al., 2002), and Stanford (Garber et al., 2001). See Section 5 for a brief
description of these datasets. We begin by describing an approach for generating artificial
datasets for which the true set of differentially expressed genes is known. We append the
superscript ‘⋆’ to parameters used in the simulation to distinguish the true values from the
corresponding variables in the Bayesian model. The simulation uses only stage I or II
adenocarcinomas in the Harvard (n=83), Stanford (n=11), and Michigan (n=61) studies. Late
stage adenocarcinomas were excluded, as the heterogeneity of these tumors is typically
much greater. From each available study we randomly select S samples, and then randomly
assign the clinical variable φ⋆ = 0 to half of the samples in the study, and φ⋆ = 1 to the
remaining half. Although there is non-trivial heterogeneity within the adenocarcinomas,
these differences become small (on average) after random assignment into classes, and
provide a background noise that would be difficult to simulate de novo.
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 simulation: Independently for each gene, we simulate  from a Bernoulli
distribution with parameter ξ⋆ that is common to all genes. For genes with  we

thereafter generate “true” offsets  from a multivariate normal distribution

(11)

where sg1, sg2 and sg3 are the empirical standard deviations for the adenocarcinoma samples
in Harvard, Michigan, and Stanford, respectively, and k⋆, c⋆ and r⋆ are parameters in the
simulation procedure. Letting xgsp denote the original adenocarcinoma expression values,
we generate the corresponding artificial data as

(12)

We consider a gene g as differentially expressed if . Differential expression is
concordant if  have the same sign in all studies and discordant if  have opposing signs.
Concordant and discordant differential expression are special cases of differential expression
that we consider separately. Note that the simulation parameters r⋆, c⋆, and k⋆ control the
proportion of differentially expressed genes that are concordant in the simulation. For
instance, increasing r⋆ and c⋆ has the effect of increasing the percentage of concordantly
differentially expressed genes. Table 1 provides a complete listing of the simulation settings
evaluated. Table 2 illustrates the possible patterns of differential expression for P = 2 studies
and G = 4 genes.

 simulation: We modified the algorithm to simulate study-specific differential expression

as follows. First, we simulated Δ⋆ for all of the genes. Secondly, for genes with  greater

than the 0.9 quantile of the  distribution, we set . Notice that correlation between
the elements of  induces a correlation between the elements of . Finally, we simulated
Δ⋆ a second time to obtain Δ⋆ independent of δ⋆. The simulated expression data was
generated as in Equation 12, replacing  with study-specific indicators, . Following the
above algorithm, we generated four datasets using the settings of Simulations A, F, J, and O
in Table 1.

6.1.2 Evaluation procedures—For each of the Simulations A-R in Table 1, we develop
summary measures, referred to as scores, to quantify concordant ( , discordant ( , or the
union of (differentially) expressed () genes. Section 4 discusses the summary statistics
proposed for the Bayesian model, as well as alternative methods for summarizing
differential expression. We emphasize that for a gene g, g, g, and g are defined on a set
of studies, as opposed to differential expression in a single study.

Let score*(g) denote any of the scores defined in Sections 4.1 (PM*) and 4.2 (u*) for a gene
g. If, for a fixed threshold a > 0, we classify each g as being (overall, concordantly or
discordantly) differentially expressed if score*(g) > a, then we obtain a standard two-by-two
table containing the number of false negatives FN*(a), false positives FP*(a), true negatives
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TN*(a), and true positives TP*(a) for that particular value of a. For example, in the case of
differential expression () the number of true negatives is given by

(13)

and the remaining entries of the table for differential expression are defined in a similar
fashion. The false positive and true positive rates associated with the statistics score*(g) and
threshold a are given by

(14)

respectively. Plotting FPR*(a) against TPR*(a) as a varies produces the standard receiver
operating characteristic (ROC) curve associated with the statistics score*(g). The area under
the ROC curve, AUC, is a nonparametric measure of the quality of the statistic, with values
close to unity (i.e., a statistic that simultaneously achieves FPR close to zero and TPR close
to one) being the best.

As an alternative to ROC curves, which are based on false and true positive rates, we also
considered the false discovery rate (FDR) of the statistics score*(g) as a function of the
number of genes determined to be differentially expressed. Specifically, for each threshold

a, we plotted the number of discoveries, , against

As expected, the FDR increases as the number of overall discoveries increases. Curves close
to the horizontal axis are preferable to those having a more rapid increase of FDR with the
number of discoveries. Similarly, we plotted the number of non-differentially expressed

genes, , against the missed discovery rate

Again, curves close to the horizontal axis are preferable to those having a more rapid
increase of MDR with the number of negative discoveries.

6.1.3 Results—Following the algorithm for simulating , we generated artificial datasets
for Simulations A - R in Table 1. Initial model parameter values for single indicator
implementation of XDE were chosen to specify little prior knowledge: αa = βa = αb = βb = 1,

, νρ = νr = 4 and αξ = βξ = 1. The values for the tuning parameters in the
Metropolis–Hastings algorithm were chosen to achieve a robust algorithm, not to optimize
convergence and mixing properties for this particular data set. In all updates of type (3) we

used ε = 0.01. For updates of type (4) we used ε = 0.5 in updating  and φgp, and ε = 0.1 in
updating lp and λp. In updates of types (5), (6) and (7) we used ε = 0.1, ε = 0.05 and ε = 0.02,
respectively. To monitor convergence and mixing properties, we inspected trace plots of the
various simulated variables, as in Supplementary Figure 1. We observed that most
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parameters converge relatively quickly, and that the model parameters coincide in many
cases with the true values in the simulation. For instance, 10% of the genes were simulated
to be differentially expressed in Simulation A (ξ* = 0.10) and traceplots of the ξ parameter
in the Bayesian model show that this parameter has converged to a value near 0.12.

For each simulated dataset, performance of the cross-study scores were assessed by the
AUC, FDR, and MDR criteria. A graphical display of the results for Simulation A is shown
in Figure 2. The Bayesian model has a higher AUC (panel 1), as well as a lower FDR and
MDR than the alternative scores over a range of cut-offs for evaluating (panels 2 and 3,
respectively). Because of the extensive nature of the simulations, we visually assess the
relative performance of the Bayesian method to the alternative methods via scatterplots of
the AUC (e.g., Figure 3). Points beneath the identity line are simulations in which the
Bayesian score had a higher AUC than an alternative method evaluated on the same dataset.
Figure 3 plots the AUCs for in Simulations A-R. The corresponding AUC statistics for 
and are provided in Supplementary Figures 3(a) and 3(b). To assess the sensitivity of the
AUC to the random number seed used for simulating  and , each panel of
Supplementary Figure 2 displays a scatterplot of the AUCs for multiple datasets generated
from the same simulation parameters.

To evaluate the relative performance of the single and multiple indicator implementations of
the Bayesian model, we generated 8 datasets using the settings of Simulation A, F, J, and O
in Table 1 and the  and  simulation algorithms. The single indicator implementation
generally had higher sensitivity and specificity for assessing concordant differential
expression than the multiple indicator implementation when differential expression was
simulated for all of the studies or in none of the studies (Row 1, Figure 4). Row 2 of Figure
4 displays a scatterplot of the AUCs when differential expression was simulated in a subset
of the studies ( ). Note that both the single and multiple indicator implementations have
higher AUCs than the alternative methods, irrespective of sample size, for concordant-,
discordant-, and differential-expression when differential expression was simulated in a
subset of the studies.

In general, the Bayesian model outperforms the three alternative methods for cross-study
analysis of differential gene expression across a range of simulated parameters (Figure 3).
Our overall assessment does not appear to be sensitive to the random quantities simulated in
these datasets (Figure 2). As the sample sizes of the individual studies increase, the relative
benefit of borrowing strength across genes and studies in the hierarchical model diminishes.
Instances in which the z-score has a better AUC than the corresponding Bayesian statistic
(e.g., panel (2,1) in Figure 3) occurred only when differential expression was simulated in
all of the studies through a single indicator, , and most often occurred when the simulated
data was particularly noisy and the AUC from all methods were at the low-end of the range.
In such instances, scatterplots of the study-specific effect sizes were largely uncorrelated
(data not shown). Scatterplots of a study-specific statistic for effect-size, such as t, may be a
useful indicator of whether the Bayesian model is likely to improve on simpler alternatives.
In instances where the data is negatively correlated across studies, this may induce the
‘wrong’ borrowing of strength. When simulating study-specific differential expression, ,
both implementations of the Bayesian model performed better than the alternative methods
over the range of simulations evaluated. In simulated datasets with no signal (data not
shown), gene-specific posterior probabilities in the Bayesian model were approximately
zero.
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6.2 Split study validation
To assess the baseline behavior of XDE, we split the Huang study into four disjoint parts,
treating each part as an independent study. We randomly assigned 5 estrogen receptor (ER)
negative and 16 ER positive samples to each split. In this simplified setting, we avoid the
potential difficulties of cross-platform analyses that can arise from technological and/or
biological differences between studies. For instance, differences in the annotation of the
probes or ethnic composition of the study populations may each contribute to discrepant
results in a meta-analysis, but such concerns are reduced when splitting a single study. Split
study validation has been used by others to assess meta-analytic methodologies for gene
expression analysis. In particular, Gentleman et al. (2005) use split study validation to
illustrate their implementation of the cross-platform statistic introduced by Choi et al.
(2003).

After fitting the single indicator implementation of the Bayesian model to the four splits,
traceplots for the parameters a, b, l, t, γ2, c2, τ2, ξ, ρ, and r (each of which are updated by
Metropolis-Hastings proposals) were used to evaluate convergence (see Supplementary

Figure 4). We define the Bayesian effect size BES for gene g and platform p, by , and
use this as a study-specific Bayesian estimate of differential expression, contrasting it with
the z, t, and SAM statistics. Scatterplots of the study-specific t-, z-, and BES statistics are
shown in Supplementary Figure 5. If we consider the t, SAM (not shown), and z statistics as
evidence of differential expression in a single study, we observe that the evidence is study-
dependent with only moderate correlation of these statistics across the splits (Supplementary
Figures 5(c) and 5(d)). Hence, scatterplots of the study-specific statistics provide two
important pieces of information: first, even in a scenario that minimizes inter-study
discordance, the variation across studies of the effect size statistics underscore the difficulty
of identifying genes that show consistent evidence of differential expression; secondly,
while the scatterplots do not lend themselves directly to identifying a list of genes for
follow-up, the moderate correlation among the study-specific statistics does motivate an
approach that uses the information from all of the studies.

A set of concordant differentially expressed genes emerges from the visualization of the
BES scatterplots in Supplementary Figure 5(b). Through modeling the inter-relationships of
genes and studies at higher levels of the model, the Bayesian model shrinks noisy genes to
zero without requiring extensive filtering prior to the analysis. The cigar-shaped pattern in
Supplementary Figure 5(b) is typical when fitting the Bayesian model, though the
correlation is higher than what one may expect to observe when the studies are independent
and use different platforms (see Section 7). In choosing a list of genes to follow for
subsequent laboratory investigation, the PM (g), displayed in Supplementary Figure 5(a),
can be used to rank the evidence of concordant differential expression.

Validation of microarray experiments typically involves assaying the RNA transcript
abundance of selected genes by using low-throughput platforms, such as qRT-PCR. As the
PM (g) identifies genes whose differential expression is relatively study- and/or platform-
independent, validation of the gene list selected by PM (g) may be less likely to result in
false discoveries, as suggested by the simulations in the previous section. Thus, meta-
analysis has the potential to reduce the cost of downstream analyses. Moreover, meta-
analysis enables an impartial investigator not directly associated with the primary studies to
synthesize the information that the primary studies contain. The Bayesian model enables one
to identify genes and pathways that are concordantly effected across studies, as well as the
genes and pathways that appear discordantly regulated. Whether the goal is to produce a
gene list that is likely to be validated by other platforms, or to explore the biology
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underlying concordance and discordance, the Bayesian model provides a useful means of
achieving these goals.

7 Experimental data example
Estrogen receptor

Estrogen receptor is an important risk factor for breast cancer tumori-genesis. Several gene
expression studies have collected phenotypic information on estrogen receptor (ER) status
(positive or negative). In this section, we fit the Bayesian model to four publicly available
datasets described in Huang et al. (2003) (Huang), Hedenfalk et al. (2001) (Hedenfalk),
Farmer et al. (2005)(Farmer), and Sorlie et al. (2001) (Sorlie), using ER status as the clinical
variable. Table 3 shows the distribution of ER status in the four breast cancer studies. See
Section 5 for a brief description of the data and pre-processing steps. Integration of the
breast cancer studies provides an opportunity to define a ranked list of differentially
expressed genes that is potentially more complete, and less likely to be platform-dependent,
than lists derived from a single study. Because the studies involve different gene expression
platforms, we cross-reference the study-specific gene annotations by Entrez-gene identifiers
and focus our discussion on the set of 2064 Entrez genes that were present in each of the
four studies.

Model fit
When fitting the Bayesian hierarchical model to the breast cancer datasets, we found it
unnecessary to change the hyperparameters and tuning parameters for the Metropolis–
Hastings algorithm from their default values (see Table 1). To monitor the convergence and
mixing properties of the Markov chain, we used visual inspection of the trace plots of the
various simulated variables. The slowest convergence and mixing properties occurred for
the four hyper-parameters θp, λp, tp and lp, see for example the trace plots of lp, p = 1, 2, 3 in
Supplemental Figure 6. A burn-in of 5000 iterations is sufficient for convergence in most
instances, but this should be evaluated on a case by case basis.

Results
We calculated posterior statistics using every 20th iteration after 2000 iterations of burn-in.
The scatterplot in Figure 5 displays the distribution of the posterior means for the indicators
of concordant differential expression (x-axis) and discordant differential expression (y-axis).
We use a grey-scale to display the gradient of posterior means for differential expression.
See Supplemental Figure 5 for a color gradient. In the discussion that follows, we discuss
the gradient in terms of evidence for differential expression, ranging from uncertainty (near
0.5) in light grey to strong evidence (near 1) in black.

Our model finds strong evidence of differential expression in a moderate number of genes:
30.9% of the genes have PMε(g) > 0.95, and among these genes we observe more
concordance than discordance, as reflected by the relative density of genes at (x, y)
coordinates (1,0) versus (0, 1) in the scatterplot. The remaining genes show moderate to
weak evidence (uncertainty) of differential expression. We note that our model has difficulty
distinguishing between no differential expression and low levels of differential expression in
the ER dataset. Recall that the prior for Δ is a multivariate normal distribution with mean
zero and overall variance parametrized by c2 (Section 2). The posterior mean for c2 in the
ER dataset is approximately 0.028 (Supplementary Figure 6), and this value has several
related implications. First, when the variance of Δ is very small, values of δg = 1 or δg = 0 do
not substantially effect the likelihood. That both δg = 0 and δg = 1 are plausible is reflected
by posterior means of differential expression near 0.5. Therefore, the proportion of
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differentially expressed genes (ξ) is directly tied to c2, with high values of ξ corresponding
to small c2 and low values of ξ corresponding to large c2.

In the ER dataset, the posterior mean of ξ is 0.77, although a much smaller proportion of
genes show strong evidence of differential expression. The software implementation of the
Bayesian model flags instances of small c2, alerting the user of the potential for inflated ξ.
Evaluating different priors for Δ is a future direction of this research.

The main conclusions of the analysis are only affected by the ranking of the PMε(g).
Estimates of concordant differential expression, the most common goal of most integration
efforts, appear to be unaffected by large values of ξ. For example, the posterior expected
proportion of false positives for the experimental data (as estimated using the methods in
Efron and Tibshirani (2002)), was low for a range of PM (g) cutoffs. In particular, the
posterior expected proportion of false positives using thresholds of 0.5 and 0.9 for PM (g)
were 0.22 and 0.04, respectively.

We separately explored concordant and discordant differential expression among the four
ER data sets under study, combining visualizations that are effective for summarizing
overall reproducibility (pairwise scatterplots of effect size) with statistics from the Bayesian
model that can be used to target a specific subgroup of genes that appear to be concordantly
(Figure 6) or discordantly (Figure 7) regulated in the different studies. Genes in the 95th
percentile of PM (g) (to the right of the vertical dashed line in Figure 6(a)) are plotted with
a different symbol (circles) and color (black) in the pairwise scatterplots of BES, t-, and z-
statistics. The Bayesian model shrinks noisy estimates of the effect size towards zero (panel
b, Figure 6(b)), whereas genes with stronger evidence of concordant differential expression
are shrunk less and appear in the upper right and lower left quadrants of the pairwise
scatterplots of BES in panel b.

Figure 7 explores discordance. Panels b - d are the same as in Figure 6, but with an emphasis
on inter-study discordance identified by thresholding the upper 5% of the PM (g)
distribution (genes to the right of the vertical dashed line in Figure 7(b)). Again, emphasis is
placed on a subset of genes through different plotting symbols (x) and color (black). Note
that almost all of the discordance in the scatterplots shown in Figure 7b - d arise from
pairwise comparisons of cDNA platforms (Sorlie and Hedenfalk) to the Affymetrix
platforms (Farmer and Huang). Discordance between Affymetrix and cDNA platforms may
arise, for instance, as a result of probes hybridizing to different transcripts from the same
gene. Note that in the scatterplots comparing like platforms, Sorlie versus Hedenfalk (both
cDNA) and Farmer versus Huang (both Affymetrix), the effect size estimates of the
highlighted genes are positively correlated.

8 Closing remarks
In this paper, we define a hierarchical Bayesian model for microarray expression data
collected from several studies, and use it to identify genes that show differential expression
between two phenotypic conditions. Two implementations of this model are available in the
R package XDE available from the Bioconductor website (http://www.bioconductor.org).
The first implementation uses a single indicator for differential expression that summarizes
information across studies. The second implementation allows multiple indicators for
differential expression, permitting differential expression of a gene in some of the studies
and not in other studies.

We evaluated the performance of the single and multiple indicator models using artificial
and experimental data. The simulation results from the artificial data demonstrate the
advantages of a Bayesian model. Compared to a more direct combination of t- or SAM-
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statistics, the 1 − AUC values for the Bayesian model are roughly half of the corresponding
values for the t- and SAM-statistics. Furthermore, the simulations provide guidelines for
when the Bayesian model is most likely to be useful. In small studies the Bayesian model
generally outperforms other methods when evaluated by AUC, FDR, and MDR across a
range of simulation parameters, and these differences diminish for larger sample sizes in the
individual studies. When differential expression was simulated in a subset of the studies, the
Bayesian model outperformed the alternative methods irrespective of sample size. In
addition, we carried out a ”split-study” validation, which provides a model-free assessment
of the method's behavior in the absence of platform differences. The split-study validation
illustrates appropriate shrinkage of the Bayesian model in the absence of confounding
platform and annotation based differences. Split-study validation may also provide a useful
context for exploring how the ranks resulting from integration efforts differ across a set of
genes known to be involved in a particular pathway. For example, using the multiple
indicator implementation of the Bayesian model and a split of the Farmer study into three
artificial studies, we can compare the ranks of genes known to be modulated by estrogen in
an analysis of estrogen receptor (ER) status (positive or negative) as the clinical covariate.
Supplementary Figure 8 explores this idea, with estrogen-related genes stratified into three
categories according to the direction of regulation by estrogen (up or down) and whether the
gene has a known transcription factor binding sites (TFBS) in the promoter.

Using experimental data from four high-throughput gene expression studies for breast
cancer and ER status as the clinical covariate, posterior averages from the Bayesian model
may be used to identify subsets of genes to explore in-silico. Figure 7 identified a subset of
genes in the breast studies that were discordant across platforms (cDNA versus Affymetrix)
but remain positively correlated within a platform (cDNA versus cDNA and Affymetrix
versus Affymetrix). Such discordance can provide information about the differential
expression of alternatively transcribed genes. For example, consider the genes in the
discordant set that have two or more alternative transcripts. If for any of these genes the
target sequence for the cDNA platform lies on transcript A and the target sequence(s) of the
Affymetrix platform lies on transcript B, discordance could indicate, for example, that
transcript A is up-regulated and transcript B is down-regulated across the two biological
conditions. Because such in-silico hypotheses can only be validated by laboratory based
methods such as qRT-PCR, we leave this as an open thread for future investigation.

Of the models previously proposed in the literature, the model of Conlon et al. (2006) is
conceptually closest to ours. The Conlon model is designed for cross-study, within-platform
analyses, and is not directly applicable to the case studies in our article. However, it is useful
to contrast the technical features of the two approaches. Both are hierarchical Bayesian
models, and both have a differential expression indicator for each gene. Differences emerge
in how each model handles the increased variation in expression values for differentially
expressed genes. We assign separate distributions to the expression values of samples in
each condition. Conlon et al. (2006) assume that the expression values for differentially
expressed genes are independent, but with an increased variance; they do not make use of
the condition information for each sample. In addition, we adopt a more refined and flexible
model for the covariance structure of the expression values and an implementation that
allows study-specific indicators of differential expression. A practical consequence of these
differences is in the application of the models to gene expression data from different
platforms. In particular, our model can be fit to multiple studies regardless of platform,
whereas the model of Conlon et al. (2006) is most applicable for combining biological
replicates from a single platform; their model could be viewed as a special case of our single
indicator implementation in which the technological differences in scale and variation are
close to zero and there is conjugacy between location and scale.
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Our hierarchical model does not require that studies be measured on the same platform. This
generality has advantages and disadvantages. One advantage is that we model differences in
scale and variation of expression intensities across platforms directly, removing some of the
need for extensive normalization and rank-based approaches to assessing differential
expression. However, in any multi-study analysis, discordance can arise from biological
differences in the sample populations of each study, as well as technological effects related
to the design and implementation of specific array technologies. Through multi-level
modeling of gene expression, we borrow strength across studies and genes, by shrinking
noisy estimates to zero and capturing correlated signals from the different studies. Simple
scatterplots of study-specific measures of effect size, such as the SAM statistic, are a simple
diagnostic for whether there is information in the joint distribution of the signals and can be
evaluated before fitting the Bayesian model. In the typical situation, one will see a cloud of
effect size statistics near zero, and positive correlation evidenced by having most scatter
points in the positive (+, +) and negative (−, −) quadrants. In this case, the Bayesian model
will tend to shrink the cloud of noise to zero, and (correctly) provide less shrinkage of the
concordant differentially expressed genes.

It is common in the analysis of high-throughput gene expression data to apply a gene-
selection procedure prior to the formal analysis of differential expression. For instance,
when estimating differential expression by a statistic that has in its denominator an estimate
of the across-sample variation, one may wish to remove genes of low abundance that show
very low across-sample variation. In our Bayesian model, each gene has a parameter
representing the numerical value of its differential expression. The priors for these
parameters have a point mass at zero, corresponding to no differential expression. This
feature of the model reduces the need for initial gene filtering, and facilitates the direct
consideration, via ranked posterior means, of the complete set of available genes. See also
the discussion in Ishwaran and Rao (2003, 2005).

When fitting the Bayesian model to pure noise, the model behaves appropriately and the
estimated proportion of differentially expressed genes (the union of concordant and
discordant genes) is approximately zero (data not shown). Additionally, the simulated data
examples illustrate that the proportion of differentially expressed genes, as estimated by the
posterior mean of ξ, is typically calibrated. Nevertheless, in the experimental data example
the posterior average of ξ was 0.77. Closer inspection reveals that the Bayesian model has
difficulty distinguishing between genes with low levels of differential expression and no
differential expression (Figure 5). This difficulty can be diagnosed by high ξ values and a
small posterior mean for the variance of the offsets as discussed in Section 7. The main
conclusions of our analysis are affected only by the overall ranking of the posterior means
for differential expression.

Our Bayesian model can be modified and generalized in several respects. First, the
possibility of missing gene expression observations can easily be included. The missing xgsp
can simply be integrated out from the posterior distribution. Second, in the current model we
have used the (common) genes appearing in all the studies. Partly overlapping gene sets can
be handled in the model by considering expression values corresponding to genes that are
not present in a study as missing. However, in order to design a more efficient
computational algorithm one should integrate out both these xgsp's and the corresponding

 from the model, which can be carried out with minor modifications. Third, it is also
straightforward to allow for missing observations in the phenotype. In this case, we need to
assign an additional probabilistic model for the ψsp's and simulate the unobserved ones
within the Metropolis–Hastings algorithm. This will in effect produce a prediction of the
unobserved clinical variables. However, if the number of unobserved clinical variables is
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large, we expect it to be necessary to use block updates in the Metropolis–Hastings
algorithm to avoid slow convergence and mixing.

Our results provide a strong indication that borrowing strength across both genes and studies
can be effective in the analysis of multi-platform studies. As is the case for most complex
multilevel models, this comes at the price of added computational effort, and an increased
burden of proof that the modeling assumptions are tenable.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
A graphical model representation of the hierarchical Bayesian model defined for the
microarray data sets.
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Figure 2.
Performance diagnostics for scores quantifying in Simulation A. The letter d in the legend
corresponds to the Bayesian score. Although the SAM-score does markedly better than the t-
score when the the individual studies are small (S = 4), considerable improvement can be
obtained by a more formal borrowing of strength across studies in the Bayesian and z-
scores.
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Figure 3.
The AUC for concordant differential expression in Simulations A - D (top left), E - I (top
right), J - M (bottom left), and O - R (bottom right) was calculated for each of the alternative
methods (t, SAM, and z) and plotted against the AUC obtained from the single indicator
imple-mentation of the Bayesian model. The diagonal line in each panel is the identity. The
lower limit for the axes are based on the minimum of the AUC's from the Bayesian and z-
scores; hence the t and SAM scores are not always plotted. See Table 1 for the simulation
parameters.
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Figure 4.
We assessed the relative performance of the single and multiple indicator implementations
of the Bayesian model through simulation using AUC as a measure of performance. Row 1:.
Differential expression was simulated using a single indicator of differential expression for
all studies, ; row 2: study-specific indicators of differential expression, , were
simulated. Each panel displays the AUC from the single indicator model versus the AUC
from the multiple indicator model, “X”, and the maximum of the t-, s-, and z-scores, “o”, for
simulation settings A, F, J, and O (Table 1) . When simulating differential expression in a
subset of studies (row 2), the single and multiple indicator implementations of the Bayesian
model have higher AUCs than the alternative methods for assessing concordant-,
discordant-, and differential-expression irrespective of sample size.
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Figure 5.
A scatterplot of the posterior means (PM) for the indicators of concordant (x-axis) and
discordant (y-axis) differential expression. Plotting symbols are color coded by the gradient
of the PM for the differential expression indicators. In purple, are genes for which the model
is uncertain regarding differential expression. Here, the model has difficulty distinguishing
between low levels of differential expression and no differential expression. Genes with
strong evidence of differential expression above the diagonal PMε(g) = 0.95 line are
predominantly concordant across studies.
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Figure 6.
Ranking genes by the PM (g) is useful for exploring inter-study agreement of differential
expression. Here, we threshold genes by the 95th percentile of the distribution for the
posterior average of concordant differential expression, PM (g) (panel a). Pairwise
scatterplots of the study-specific statistics for the four breast cancer studies are provided in
panels b - d. A different plotting symbol (circles) and color (black) is used for the genes in
the highest decile of PM (g). The posterior expected proportion of false positives
corresponding to this threshold is approximately 0.04.
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Figure 7.
The posterior average of the probability of discordant differential expression, PM (g) (panel
a), can be used to explore discordance. Here we threshold pairwise scatterplots of the study-
specific statistics from the four breast cancer studies (panels c and d) by the 95th percentile
of the PM (g) distribution (panel a). Again, we use a different plotting symbol (x) and color
(black) for genes surpassing this threshold to emphasize the discordance. In particular, note
that almost all of the discordance in the scatterplots of panels b - d arise from pairwise
comparisons of cDNA platforms (Sorlie and Hedenfalk) to the Affymetrix platforms
(Farmer and Huang). For the two scatterplots comparing more similar platforms (Sorlie
versus Hedenfalk and Farmer versus Huang), the effect size estimates of the highlighted
genes are positively correlated.
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Table 3

Distribution of the estrogen receptor in the three studies.

platform ER− ER+

Hedenfalk cDNA 6 10

Sorlie cDNA 30 81

Farmer Affymetrix hu133a 22 27

Huang Affymetrix hu95av2 23 65
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