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Summary
There has been a recent surge of interest in modeling and methods for analyzing recurrent events
data with risk of termination dependent on the history of the recurrent events. To aid the future users
in understanding the implications of modeling assumptions and modeling properties, we review the
state of the art statistical methods and present novel theoretical properties, identifiability results and
practical consequences of key modeling assumptions of several fully specified stochastic models.
After introducing stochastic models with noninformative termination process, we focus on a class
of models which allows both negative and positive association between the risk of termination and
the rate of recurrent events via a frailty variable. We also discuss the relationship as well as the major
differences between these models in terms of their motivations and physical interpretations. We
discuss associated Bayesian methods based on Markov chain Monte Carlo tools, and novel model
diagnostic tools to perform inference based on fully specified models. We demonstrate the usefulness
of current methodology through an analysis of a data set from a clinical trial. In conclusion, we
explore possible future extensions and limitations of the methodology.
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1 INTRODUCTION
Modeling and analysis of recurrent event times data in many applications range from clinical
trials, engineering product testing, reliability analysis of repairable systems and so forth.
References include Kuo and Yang (1995,1996) in software reliability and reliability analysis
of repairable systems, Oakes (1992),Wei and Glidden (1997),Scheike (2000),Lin et al.
(2000),Wang et al. (2001) and Miloslvsky et al. (2002, 2004) in clinical trials and medical
applications. In this article, we investigate the theoretical properties and implications of key
modeling assumptions of recently developed fully specified stochastic models of recurrent
events data with dependent termination. We will demonstrate how some of the important
classes of models, particularly with associated Bayesian analysis tools, can be used analysis
of such data including model selection and diagnostics for adequacy of modeling assumptions.
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To illustrate with a typical data example, we consider a study involving heart-transplant patients
who are at risk of recurrent events of transplant rejection (treated effectively by drug therapy)
as well as the non-recurrent terminal event of death. The # of recurrent rejection events to a
patient by time t is N(t) = Σj 1[Yj≤t], where Y1 < Y2 < · · · are the ordered rejection times. In this
situation, the non-recurrent event of death terminates/censores the observation of the recurrent
event process {N(t)}, and the termination time T is not determined via the design of the study.
We make a practical distinction between the terms “termination” and “censoring”. The
censoring due to loss of follow-up, end of study, etc., when they occur before death, is treated
as a case of typical noninformative censoring of the termination/death time T. In general, N
(C) is informative of N(T) even when a termination time T is non-informatively censored at
C.

A simplifying assumption for modeling recurrent events data subject to termination (e.g. Sinha,
1993, Hougaard, 2000) is that given the history of  of right-predictable
covariates x(s) and the history  of recurrent events of the subject, the risk
of termination  at any time point t is independent of the history

, that is,

(1.1)

In practice, one usually uses ordinary survival analysis methods for the termination time T
using {N*(t-), x(t)} as time-dependent covariates, where N* (u) is a prespecified vector of
function of . If there are no significant effects of N* (t-) found, then the data on recurrent
events can be analyzed under the assumption of (1.1). However, assumption (1.1) may not be
valid in many practical examples. For example, in a organ transplant trial, the intensity of
recurrent graft rejection episodes is considered an indicator of the unobservable health-state
of the patient, whereas the risk of termination due to death, an important outcome by itself, is
also very much related to the unobservable health-state. For an organ-transplant trial, both
types of events are negative outcomes. For a product testing study of repairable systems, each
system may experience recurrent failures leading to detection of faults (recurrent negative
outcomes signifying unobservable quality of the product) until it is terminated (positive
outcome related to unobservable quality) with the final release of the product.

In the frequentist literature, most of the statistical methods for recurrent events data, with
noninformative termination, use partially specified models for robust estimation of the
regression parameters associated with either the marginal hazard of Yj (the j-th recurrent event
of the subject) or E[dN(t)], where dN(t) = N[t, t + dt). These models are defined conditional
only on a subset  of the history  (e.g. Sun and Wei, 2000, Wang, Qin and
Chang, 2001). The interpretations of the regression parameters are strictly restricted to the
subset  of the history the model is conditionally defined on. For example,

,  and  can be very
different from each other. It is not possible to automatically derive the regression parameters
of one partially specified model from those of another partially specified model. We refer
interested readers to the detailed and excellent reviews by Miloslavsky et al. (2002, 2004)
regarding frquentist inference for recurrent events data under noninformative termination using
different partially specified models. The same problems arise when partially specified models
for gap times Uj = Yj - YJ-1 are used conditional on , a subset of the history up to (j - 1)-
th recurrent event times Yj. We also loose a sense of the progression of the process over calendar
time from origin when we use models based on gap times. For some studies, it is desirable to
have a fully specified unifying model such that conclusions about different components
conditional on different subsets of observed history are compatible with each other. This helps
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to fully comprehend the data generation process of the experiment at hand. A fully specified
model can be also used for prediction, model diagnostics, simultaneous inference on multiple
parameters, etc.

In Section 2, we begin with different fully specified stochastic models for recurrent events data
with noninformative termination. We discuss the physical interpretations, new stochastic
formulations and the relationships among the following models of recurrent events data: the
frailty model (Oakes (1992), Sinha 1993 and Hougaard (2000)), the M-site model (Gail et al.,
1980) and the time-varying correlated frailty model (Herdersen and Shimakura, 2003). Despite
the recent interest and research activity in Bayesian survival analysis (e.g., Sinha and Dey
(1998), Walker, et al. (1999), Dey, Mueller and Sinha (1998) and Ibrahim, Chen and Sinha
(2001)), the current Bayesian literature on recurrent events data is very limited. One goal of
this paper is to review the current state of Bayesian methodologies for recurrent events data
and demonstrate the use and advantages of the Bayesian paradigm for such problems.

In later Sections, we examine extensions of these recurrent events models to recurrent events
with informative termination. The extensive simulation study of Miloslavsky et al. (2002)
demonstrates the issue of bias in the regression estimates of the marginal rate and marginal
intensity functions when informative termination is ignored during estimation. We focus on
fully specified stochastic models where the recurrent events and as well as the termination are
considered as important responses. In presence of two different types of event processes of
interest, to comprehend the effects of covariates and the data generation process, we need to
evaluate the effects of covariates separately on two processes as well as the effect of the joint
process. For example, in a transplant study, we are interested in  as well as

 when  can be equal to either  or . A careful
examination of the regressions functions in all three functions can only reveal the true nature
of the effects of covariates on two types of outcomes.

Methods of estimation in the presence of informative termination are presented and reviewed
by Miloslavsky et al. (2002,2004) using the CAR (Coarsening At Random) assumption, (e.g.,
Heitjan and Rubin, 1991; Gill et al., 1997; Robbins, 1993), which implies that the risk of
termination hT has the following property:

(1.2)

where , and (0, τ] for τ > t is either the study-interval or the time-interval
of interest. When termination is, say, the event of death for the transplant example, it is not
possible to either define or conceptualize a hazard hT(t) of death at t < τ given the history of
recurrent events and covariate at an interval (t+, τ] beyond time t. One can only observe a
history of recurrent rejections in (t, τ] only when the patient is alive beyond time t. The CAR
assumption is difficult to understand and verify unless a bigger class of joint stochastic models
of {N(·), T} is defined and then the validity of CAR assumption is verified. The CAR
assumption is applicable when termination event is not of interest and it is precisely treated as
a non-informative censoring. In such a case, the focus is on understanding dN(t) given

 and we only need to take care of inferential problems raised by the observed data
under informative censoring. Even after having the CAR assumption, one needs to correctly
specify  and , where N+(t) = N(Min(t, T)). To obtain
the regression parameters of  from , we need
additional set of assumptions (beyond CAR) whose validity cannot be evaluated solely from
observed data. We will investigate what key assumptions of fully-specified stochastic models
of the joint process can give rise to CAR and related assumptions.
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Recent work by Lancaster and Intrator (1998), Sinha and Maiti (2004), and Liu, Wolfe and
Huang (2004) offer several new fully specified models for recurrent events data with dependent
termination describing {dN(t), d1[T≤t]} sequentially unfolding over time. However, no
theoretical investigations of relationships among these models and their properties have been
examined in current literature. The relationships (or the lack there of) these models with CAR
assumption based models have not been investigated yet. In general, a fully specified stochastic
model may not even satisfy the CAR assumption. In this work, we consider novel theoretical
explorations of three major aspects of modeling: (1) theoretical properties and practical
consequences of key modeling assumptions on the observable quantities; (2) relationships
among different models; and (3) identifiability of model parameters and distributional
assumptions from observable data. For each model with dependent termination, we explore in
detail different consequences resulting from modeling assumptions because these important
consequences may not be reasonable in various biological and engineering applications. For
example, we show that for some of the existing models, when termination times are subject to
noninformative right-censoring, the induced censoring of the number of recurrent events until
termination is bound to be noninformative (contrary to what we expect to see in most real-life
data examples). We investigate the relationships and comparisons of related models existing
in the recurrent events literature to help the user to make informed selection of the models most
appropriate for the study/experiment in hand.

In Section 3, we discuss a comparison of a full Bayesian analysis (with the help of sampling
based algorithms) versus a semiparametric likelihood-based analysis. A full Bayesian approach
is one of the natural choices of inference based on fully specified stochastic models, and we
argue that it is the most appropriate one in this case. In Section 4, we present details regarding
the Bayesian computational tools used in this problem. Then, a typical Bayesian analysis of
recurrent events data with informative termination is illustrated with the analysis of recurrent
events data from a heart transplant study.

One important component of any model-based methodology is the development of appropriate
tools for evaluating model adequacy, outlier detection and influential observations. In Section
5, we demonstrate the Bayesian case-influence diagnostics and residual analysis appropriate
for the proposed models. Recurrent events data with a terminating event is also related to
various other applications such as cumulative medical costs data (e.g., Lin, et al., 1997; Etzioni
et al., 1999), cumulative repair/warranty costs data (e.g., Nelson, 1995), and quality-adjusted
survival data (e.g., Zhao and Tsiatis, 1997). In Section 6, we explore the relationship between
recurrent events data and cumulative cost process data. We conclude our article with some
closing remarks and exploring further extensions of our models and methods.

2 MODELS
2.1 MPP Models Under Non-informative Termination

We first describe models for {Ni(t)} under the non-informative termination assumption of (1.1)
(e.g., Oakes, 1992;Sinha, 1993). The Mixed Poisson Process model (MPP model) for recurrent
events data in Oakes (1992) and Sinha (1993) assumes that for subject i = 1, · · · , n with Ti >
t, the probability of a new recurrent event in [t, t + dt) is given by

(2.1)

and , where μ0(t) is the baseline cumulative intensity and β1 is
the regression parameter of the covariate effect on the conditional intensity. The time-constant
frailty random effects, w1, · · · , wn, are assumed to be i.i.d. with common cdf F(w|η) with EF
[Wi] = 1 (to assure identifiability of the model parameters). Hougaard (2000) calls this the
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shared frailty model. The use of a finite mean frailty distribution is warranted here to ensure
the expected number of events within any finite time interval to be finite. For simplicity of
notation, we will present our models and the results assuming fixed time-constant covariate x
(t) = x thoughout. Extending the following discussion and results to accommodate time-
dependent x(t) is quite straightforward. The results which are not valid for time-dependent
predictable covariate x(t) will be mentioned separately in this paper.

In practical applications, we only observe the process {N+(t) = N(t)1[T ≥ t]}, and the conditional
intensity of {N+(t)} given  should be defined, however, with the non-
informative termination assumption of (1.1), we can use the simplified conditional intensity
of (2.1). In Section 6, we discuss the extension of the MPP model using a non-proportional
intensity for N(t). One main consequence of the mixed Poisson process assumption in the MPP
model is P [dNi(t) > 1|xi] = o(dt), indicating that the MPP model is not suitable when the
recurrent events within a subject tend to cluster together within a small time-interval. The
number N(t) carries all the predictive information of the history  for the conditional risk
of a new event (Oakes, 1992), because

(2.2)

where x is the vector of fixed covariates. The expression in (2.2) shows that the MPP model is
a subclass of the dynamic covariate model discussed by Aalen et al. (2004) and Fosen et al.
(2006), where the model is specified via , where  is a pre-specified
subset of . There are many choices for a dynamic covariate model, and only a careful
investigation of the underlying structure (performed in this paper) can give the user some
understanding of the implications of the assumptions of a particular dynamic covariate model.

Even when μ0(t) is left unspecified, the frailty distribution F (w|η) is identifiable from the
observed recurrent events data (Oakes, 1992). This implies that the observed recurrent events
data can be used via appropriate goodness-of-fit plots for identifying a suitable F(w|η) among
various choices of frailty distributions. In susequent Sections, while discussing the recurrent
events model under dependent termination, we will address whether the frailty density is
identifiable from the observable data. Use of a Gamma frailty distribution with F(w|η) assumed
to be a Ga(η, η) cdf with variance η-1, is fairly commonplace due to its convenience and
theoretical properties. However, choices other than a Gamma frailty can be considered. The
frailty random effect accommodates heterogeneity among subjects due to their variable
proneness to the recurrent non-fatal events via the unknown variance η-1 of the Gamma frailty .

2.2 M-site Models
The popular M-site model of carcinogenesis (e.g., Whittemore and Keller (1978) and Gail et
al. (1980)) is based on the premise that recurrent detectable tumors (or cancers) in a finite
interval of interest (0, τ) arise from proliferation of clones derived from each of M progenitor
cells or tumor-sites within a patient with i.i.d. promotion times Z1, · · · , ZM (times to recurrent
detectable tumors in cancer context) with common density g(t). When the unknown and
unobservable Mi given the frailty wi and time-constant xi has a Poisson distribution with mean
E[Mi|wi, Ti; xi] = μi = wi exp(β1xi)γ0, the resulting process {Ni(t)} in (0, τ) is same as the MPP
model of (2.1) with dμ0(t) = γ0g(t)dt (Oakes, 1992). This result gives a strong biological
justification for the use of the MPP model in cancer. In product testing, Mi can represent the
unknown number of undetected faults/bugs in product i at the onset and i.i.d. Zi1, · · · , ZiMi are
the detection times of these faults.

A new modification of the M-site model assumes that [Mi|Ti] is Poisson with mean μi = γ0 exp
(β1xi) (free of the patient-specific random effects) and the patient specific piecewise
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exponential promotion time density gi(t) = Uij e-Uij for t ∊ (aj-1, aj) with a pre-specified grid 0
= a0 < a1 < · · · < aJ = τ. When the vector of patient-specific rates Λi = (Ui1, · · · , UiJ) follows
a multivariate Gamma density of Griffiths (1984), we get the serially correlated Gamma frailty
model of Henderson and Shimakura (2003). We call this model the HS M-site model. This
model can be used when we believe that the effect of among subjects heterogeneity on the rates
(Ui1, · · · , UiJ) of latent activation times is more than its effect on number of latent tumors/
faults Mi. The original work of Henderson and Shimakura uses a composite likelihood method
to analyze only discrete panel count data (instead of continuous time recurrent events data)
under the HS M-site model. Extensions of the composite likelihood method to analyze data
based on actual recurrent event times are not trivial. To analyze continuously monitored
recurrent events data with this kind of time-varying frailty model, we recommend using a
multivariate log-normal density for Λi, instead of the multivariate gamma density of the HS
M-site model. Our major concern is non-identifiability of the density g(t| Λi) and the
multivariate density of Λi from recurrent events data when both densities are left unspecified.

2.3 L-I Model for Informative Termination
In many data examples and studies, the non-informative termination assumption of (1.1) will
not be valid. Lancaster and Intrator (1998), in what we call here the L-I model, formulated the
association between  and the risk termination at time t via the shared frailty wi and replaced
the assumption of (1.1) with the assumption

(2.3)

where β2 is the regression parameter of the covariate effect on the conditional risk of
termination, and the baseline intensity  is the derivative of μ0(t). The parametric L-I model
allows only a certain type of association between  and risk of termination T, and has some
important consequences of its modeling assumptions (discussed below).

We now present a way of viewing the L-I model as a process that unfolds over time. This
alternative description and a series of theoretical results will facilitate a better understanding
of the consequences of the key assumptions. Let us assume that all events are generated via a
latent nonhomogeneous mixed Poisson process (Ross, 1983) N*(·) with conditional (given
frailty w) intensity wμ*(t; x), where . When dN*(·) = 1,
there are two possibilities for the new event-either a non-fatal event (Type I) with probability
P[dN(t) = 1, T > t + dt|dN*(t) = 1, T > t, w; x] = ϕ(x) or a termination event (Type II) with
probability P[T < t + dt, dN(t) = 0|dN*(t) = 1, T > t, w; x] = 1 - ϕ(x), where 0 ≤ ϕ(x) = exp
(β1x)\[exp(β1x) + γ exp(β2x)] ≤ 1 for some γ ≥ 0. Because the recurrent events and termination
are essentially coming out of a single event process N*, the L-I model implies that any subject
with a history of higher than usual rate of N(t) will be at a higher than usual risk of termination.
As an important consequence of being an extension of MPP model, the L-I model has properties
similar to (2.2). More precisely, following calculations similar to Oakes (1992), we can show
that

(2.4)

The expectations denoted by EW in (2.4) are taken with respect to the frailty distribution F(w|
η). We can also show that , and
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(2.5)

These results imply that , i.e., given the history
, the risk of a new recurrent event is proportional to the risk of termination

and both risks depend on the observed history only via number of past events N(t-). When F
(w|η) is Ga(η, η), then  and

. The L-I model can be also expressed as an
extension of the M-site model with the additional assumption that N*(t) within interval (0, τ]
is generated via the extended M-site model of the promotion of a random number (Poisson
distributed) of sites. The following consequences of the L-I model are less obvious. However,
they have a major practical significance.

Theorem 2.1—Under the L-I model, the number of recurrent events before termination N(T)
is geometric, that is, P[N(T) = k; x] = {ϕ(x)}k{1 - ϕ(x)} for k = 0, 1, · · ·.

The proof of Theorem (2.1) is given in Appendix I. It is important to note that the marginal
distribution of N(T) is free of μ*(t). In practice, it is often a reasonable assumption to allow the
termination time T to be subjected to the possibility of noninformative right censoring at C,
that is, , P[T > t + u|T > t, C > t; x] = P[T > t + u|T > t; x] for all t, u > 0 (Cox and Oakes,
1984). In the transplant study, the the termination time of death is subjected to on-informative
censoring due to drop-out. Theorem (2.1) implies that the L-I model is a very special class of
models for recurrent events where the induced censoring of N(T) by N(C) is also non-
informative, since P[N(T) > u + v |N(C) > u, T > C] = P[N(T) > u + v |N(T) > u] = (1 - ϕ)v. The
proof of this result follows directly from Theorem (2.1). This restrictive property of the L-I
model limits its application in most real data setting. As it is argued by Lin et al. (1997), the
induced censoring of N(T) by N(C) should not be noninformative in general. We mention that
these results are valid irrespective of the form of F(w|η). An extension of the L-I model
suggested by a reviewer assumes time-varying ϕt(x) = exp(β1x)/[exp(β1x) + γ(t) exp(β2x)],
where γ(t) is a function of time t. In this case, the assumption of (2.3) and the result of Theorem
(2.1) are not valid. The resulting model is a special case of another competing model introduced
in a subsequent section.

One important question is whether the unknown and unspecified frailty distribution F(w|η) is
identifiable from the observed data under the L-I model. In absence of the covariate x, we can
show that

(2.6)

where ψ(u) = E[exp(-uW)] is the Laplace transform of F(w|η) with first and second derivatives
ψ’ and ψ”. Writing this ratio as a function ζ(v) of v = P[T > t, N(t) = 0] = ψ(μ*(t)), we get

(2.7)

where χ is the inverse function of the Laplace transform ψ(u). The solution of the above
differential equation is {χ’(v)} = exp[-cA(v)], where c is a constant of integration and
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. By using the boundary condition based on the assumption that E(W) =
ψ’(0) = 1, we can show that the function χ(v) is uniquely determined by ζ(v) even when ϕ is
unknown. Note that knowing χ(v) is the same as knowing the unique Laplace transform ψ(u)
= E[exp(-uW)] of F(w|η). This proves that when the observed data contain some subjects at
risk of termination after their first recurrent events (i.e., hT (t|N(t-) = 1) and hT(t|N(t-) = 0) are
estimable), the frailty distribution F(w|η) is identifiable. Using similar calculations, we can
also demonstrate that we can obtain the same differential equation of χ(v) using λN(t|N(t) = 1,
T ≥ t) and λN(t|N(t) = 0, T ≥ t). Without giving any rigorous arguments, we claim that the L-I
model is somewhat under parameterized when we expect to have a substantial amount of
information on the risk of T given N(t) ≥ 2.

2.4 GMPP Model
The generalized MPP model (GMPP model), recently introduced by Sinha and Maiti (2004)
and Liu et al. (2004) (only for analysis of grouped panel count data), assumes that the hazard
of Ti at time t depends on  via the subject specific unobservable frailty wi (an assumption
similar to L-I model). In the GMPP model, the assumption of (1.1) is replaced by the assumption

(2.8)

where β2 is the regression parameter of the covariate effect on the conditional hazard of
termination. For the analysis of data example in Section 4, the form of the conditional hazard
hT in (2.8) will be further generalized by the introduction of an additional regression parameter
to adjust for the direct effect of Ni(t-) on . Unlike the L-I model, the conditional
baseline hazard of termination h0(t) is, in general, not related to μ0(t). However, similar to the
property of the L-I model, the conditional risk of termination  and the
conditional risk of a new recurrent event , depend on the recurrent events
history  only through the current cumulative count Ni(t-). The proof of this result is very
similar to the proof of (2.2) given in Oakes (1992). This property indicates that, when the actual
gap-times between past events in history  are very informative about the risk of T in [t,
t + dt), the GMPP model will not be very applicable. In this case, it is not prudent to use a
model where  depends on  only through N(t-).

The parameter -∞ < α < ∞ quantifies the nature of the dependence between  and the
hazard of Ti. When α = 0, we have non-informative termination, that is,  is free
of . When α = 1, we obtain the extension of the L-I model with time-varying ϕt(x). The
theorems presented below explicitly describe the role of α, and they investigate some useful
and desirable properties of the GMPP model.

Theorem 2.2—When the frailty distribution is Ga(η,η), the hazard hT (t|Ni(t-); xi) can be

expressed as  where H(t; x) = H0(t) exp
(β2x); μ(t; x) = μ0(t) exp(β1x); and V ∼ Ga(Ni(t) + η; μ(t; xi) + η). For the special case α = 1,
we obtain a further simplified expression

(2.9)

The proof of Theorem 2.2 is given in Appendix I. Equation (2.9) shows the role of α in
describing the predictive effect of N(t) on the risk of termination. We see that hT(t|Ni(t); xi) is
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an increasing function of Ni(t-) for α > 0; and  is a decreasing function of
Ni(t-) for α < 0. We can get a crude approximation of the relationship in (2.9) as

(2.10)

Further, for the Ga(η, η) frailty, λN(t|Ni(t-), Ti ≥ t; xi) is expressed via

(2.11)

where H(t; x) = H0(t) exp(β2x); μ(t; x) = μ0(t) exp(β1x); VN+1 ∼ Ga(1 + Ni(t-)+η; μ(t; xi) + η)
and VN ∼ Ga(Ni(t-)+η; μ(t; xi)+ η). For the special case α = 1, we have

(2.12)

Equation (2.11) shows that the value of plays a very moderate role on the effect of N(t-) in the
risk of a new recurrent event, compared to the corresponding role of α for the effect of N(t-)
on the conditional risk for termination. Because VN+1 and VN are very similar in distribution
when N(t-) is sufficiently large, we can get a crude approximation of the relationship in (2.11)
as

(2.13)

where V0 ∼ Ga(1 + η; μ(t; x) + η) and V1 ∼ Ga(η; μ(t; x)+ η). Equations (2.10) and (2.13)
describe the essence of the role of α in the marginal hazard of T and the risk of new recurrent
events given the history . The proof of (2.11) is similar to the proof of Theorem
(2.2), and is omitted here for brevity. The properties in (2.9) and (2.12) demonstrate that the
GMPP model is very different from the modulated renewal process of Oakes and Cui (1994).

The following theorem shows how α affects the relationship between the distribution of number
of past recurrent events N(t) and the information on whether a subject has been terminated at
t. The proof is given in Appendix I.

Theorem 2.3—For the GMPP model with Ga(η,η) frailty,

(2.14)

where V is distributed as Ga(m + η; μ(t; x) + η). When α > 0, equation (2.14) is an increasing
function of m and when α < 0 it is a decreasing function of m.

One consequence of (2.14) is that E[N(t)|T > t] < E[N(t)|T = t] when α > 0 and E[N(t)|T > t] >
E[N(t)|T = t] when α < 0.
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The GMPP model can be also motivated via an extension of the M-site model by introducing
the additional hazard (2.8) for termination as a competing risk with promotion times Z1, · · · ,
ZM of M sites. If we know that for a subject at risk of termination at time t < τ, the number of
past recurrent events is m (that is, m of M sites have already been promoted to recurrent events),
then we expect these past event times to be i.i.d. with density g*(u; t) = g(u)/G(t) where G(t)
= P (Z < t). The following theorem shows this, and the common distribution of the past event
times does not depend on whether the subject has been terminated at t.

Theorem 2.4—The joint conditional distribution of the recurrent event times given {N(t) =
m, T > t, x} is same as the joint conditional distribution of the recurrent event times given {N
(t) = m, T = t, x}. The common joint density is given by

(2.15)

where μ(t; x) = exp(β1x)μ0(t).

Theorem 2.4 is another consequence of the mixed Poisson process assumptions of the GMPP
model, and the proof is given in Appendix I. Theorem 2.4 implies that, if we compare a subject
terminated at time y with another terminated after y, there will be no difference in their times
of occurrences of past recurrent events after adjusting for their respective numbers of past
events. If one believes that the termination is invariably followed by a marked change (e.g.,
big clustering) in the occurrences recurrent events, then this property will not hold for a given
study. For example, for a study involving heart patients with recurrent acute angina, the number
of past recurrences of angina as well as the exact timings and gaps between these anginas are
important predictors of death. For such a study we need to explore alternative modeling
strategies via directly formulating , were at least the time of most recent angina
YN(t-) has to be included as a predictor.

For the GMPP model, the distribution of the variable N(T), which is the total number of
recurrent events until termination, does not have a simple closed form expression. However,
in some studies including the transplant study, E[N(T)|x] summarizes the expected total quality
of life experience over a lifetime. For a GMPP model, E[N(T); x] can be computed using the
marginal expectation of N(T) given by

(2.16)

where EF means the expectation is taken with respect to the frailty distribution F(w|η). The
proof of (2.16) follows from the fact that E[N(T)|x] = EG[E{N(T)|W, x}] and the property that
N(t) given {T = t, W, x} is Poisson distributed.

2.5 CAR Model
Models based on CAR assumption in (1.2) are popular, since with this assumption, it is possible
to make inference using proportional risks models for  and

, where N+(t) = N(Min{t, T}). For examples, we can consider a model
with  and

, where qk is known function of
 with unknown parameter γk for k = 1, 2. These models are special cases of the

multiplicative risk Andersen-Gill class of models for recurrent events (Andersen and Gill,
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1982). Motivated by the expressions of the risk of new recurrent event and of the risk of
termination for GMPP model obtained in previous section, we can use a CAR model with a
conditional density

(2.17)

similar to conditional density in (2.10), and a conditional hazard of termination

(2.18)

similar to the hazard in (2.12).

The main motivation behind using such proportional intensity and proportional hazards models
of (2.17) and (2.18), is to take advantage of partial likelihood based inference (if it is justified)
since we do not need to mention the baseline functions h0(t) and λ0(t) to estimate the parameters
β1, β2, α and η. However, a straight-forward partial likelihood based inference for a CAR model
with these proportional intensity and proportional risk models cannot be used, since the risk-

set  is a biased sample of . Works
by Miloslavsky et al. (2002,2004) propose an inverse probability of censoring weighted
estimator to deal with this problem. Under the assumption of CAR, the regression parameters
of  can be obtained via estimating the Anderson-Gill like intensity model

. However, if one uses a proportional
rate model for E[dN+(t)|x], then the corresponding regression estimates for E[dN(t)|x] under
CAR assumption will require further assumptions about termination risk given history. In
subsequent sections, we will present a Bayesian (based on full likelihood) analysis of a
transplant study under a CAR model with assumptions in (2.17) and (2.18).

There are some important differences between the CAR models and the GMPP models. First
of all, a GMPP model does not satisfy the CAR assumption of (1.2) when α ≠ 0 in (2.8). We
omit the proof of this result. We can further show that if we define any model (either GMPP
or an extension of GMPP) based on the conditional intensity  and
conditional hazard , then we can satisfy the CAR assumption of (1.2) only
when  is free of the subject-specific random effect w. Hence, the assumption
of CAR implies that there is no common unobservable random-effects affecting the two
responses {N(t)} and T given x. This suggests that we should not use CAR assumption when
we think that there is a latent unobservable patient-specific factor (random effect) which affects
the risk of new recurrent events as well as the risk of termination. For example, in a transplant
study, a CAR assumption may not be very appropriate since a patient’s unobservable disease
status can affect both the risk of rejection and risk of death.

3 LIKELIHOODS AND PRIORS FOR GMPP MODELS
The observable data Y can be split into three component vectors, Y = (D1, D2, X), where D1
= {Nio: i = 1, · · · , n} where  is the data from the observed recurrent events
times, D2 = {ti, δi : i = 1, · · · , n} is the data from the observed termination times subject to
possible censoring (δi is the indicator for censoring for subject i), and X = {xi : i = 1, · · · , n}
is the data on observed covariates.

Using the conditional intensity of  in (2.1), the likelihood contribution from the sampling
distribution of D1 is
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(3.1)

where  means that the product is taken over the set of mi observed recurrent event times
of subject i. Similarly, based on the sampling distributions of D2 in (2.8), we get

(3.2)

The observed data likelihood Lo(β1, β2, μ0, h0, α, η|Y) of the GMPP model is obtained via
multiple integration,

(3.3)

where θ = (β1, β2, α, μ0(·), h0(·), η), and g(w|η) is the joint density of w = (w1, · · · , wn) given
the frailty parameter η. The semiparametric maximum likelihood estimator of θ can be obtained
via maximizing Lo(θ|Y) via a Monte Carlo EM (see Liu et al., 2004) algorithm. The E-step of
each iteration requires Metropolis-Hasting simulations from the conditional density

, making the computation too intensive. The algorithm is also heavily dependent on
the starting values, since it needs to estimate (using Breslowtype non-parametric MLEs) two
nonparametric functions  and  at the M-step of each iteration. We note that the
asymptotic justifications and convergence issues for the EM algorithm in semiparametric
maximum likelihood estimation of this model are not available.

In recent years, there has been remarkable progress and growing interest in Bayesian methods
for event history analysis and survival analysis (e.g., Ibrahim, Chen and Sinha (2001) and the
references therein). We advocate using a semiparametric Bayes approach with an independent
increments gamma process prior (Kalbfleisch, 1978; Walker, Damien, Laud and Smith,
1999; Ibrahim, Chen and Sinha, 2001) for specifying the prior distribution on the unknown
function μ0(·) and the rest of the parameters. In practice, for many of the studies, when the
available covariates are important well-studied variables such as treatment, race and gender,
one can use informative priors on β1 and β2 to balance both the skeptical and the enthusiastic
views about the benefits/effects of the covariates. It is also a common practice in Bayesian
survival analysis to assume that priors on parameters associated with baseline functions μ0 and
h0 be independent of the rest of the parameters. The mutual independence between the set of
parameters associated with nonfatal events and the set of parameters associated with
termination is also justifiable, as we can expect to have independent expert opinions about
these two different types of events. Similarly, the prior belief for α, which quantifies the
association between the two types of events, can be obtained independently from the others.
Thus the joint prior of the parameter vector θ is often assumed to be

(3.4)

The joint posterior for the GMPP model is given by
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(3.5)

where  and π(θ) is given in (3.4). It is obvious that we
need to use MCMC tools to sample from (3.5), and then use those MCMC samples to carry
out the Monte Carlo integrations (Chen, Shao and Ibrahim (2000) and Robert and Casella
(1999)). At each iterative stage of the MCMC algorithm, we only need to sample the full
conditional distributions of the parameters and the frailty random effects.

For a semiparametric Bayesian analysis of GMPP model, we need to express the prior opinions
about λ0(t) and h0(t) (baseline functions) using prior processes. The gamma prior process GP
(γ(t), c) for μ0(t) is determined by the known prior mean Eπ[μ0(t)] = γ(t) and the known prior
precision c of μ0(t) (with prior variance V arπ[μ0(t)] = γ(t)/c). It is possible to put another level
of hierarchy in this model using an unknown c and a functional form of γ(t| γ0) with some
unknown γ0. For a parametric model of h0(t) in (3.2), we suggest a Weibull hazard h0(t) =
h0(t|λ,ν) = λ νtν-1 with a prior distribution (possibly noninformative) on ψ = (λ,ν) using a product
of two independent Gamma densities (with known small mean and large variance). The Weibull
assumption allows for a very wide class of choices for h0(t). However, one can also use a
nonparametric h0(t) with, say, a nonparametric Gamma process on H0(t).

We need to choose the forms of the priors π(β1), π(β2), π(α) and π(η), that are flexible, yet they
facilitate easy to sample conditional posteriors. In particular, we use N(β10, σ1) for π(β1) and
N(β20, σ2) for π(β2). The π(α) is assumed to be N(0, σ3), when we are not sure whether the
association between the two classes of events should be either positive or negative. The
hyperparameters of the priors are specified via a careful prior elicitation procedure. We would
like to emphasize that the sampling based MCMC computational technique can handle more
complicated prior structures including a π(θ) which induces prior dependencies among the
parameters.

For MCMC sampling, we need to derive the exact full conditional distributions of each of the
model parameters and random effects. Using the expression of L1(β1, μ0, w|D1, X) in (3.1) and
the property of the Gamma process prior of μ0(t), we obtain the full conditional of μ0(t) as

(3.6)

where N+(t) = Σ{i:ti>t} Ni(t), R+(t; β1, w) = Σ{i:ti>t} wi exp(β1xi) The full conditional in (3.6)
can be derived following the arguments similar to previous work on recurrent events data using
the Gamma process prior (e.g., Sinha (1993),Ibrahim, Chen and Sinha (2001)). We note that
for computational purposes, we only need to sample from the increments of μ0(t) in between
consecutive observed recurrent event times and termination times when N+(t) and R+(t) (two
step functions) change their values.

The expressions of the full conditionals for all parameters used in the MCMC chain are given
in Appendix II. Except for μ0(t), all other full conditional distributions are not in standard form.
The full conditional for β1, β2, h0j, α and η are log-concave. Thus, the adaptive rejection
sampling algorithm of Gilks and Wild (1992) can be used to sample from these log-concave
densities. We use the Metropolis-Hastings algorithm to sample wi.

4 Applications
To illustrate the use of Bayesian methodology for the analysis of recurrent events with
dependent termination, we use a subset of the cardiac transplant data from the Medical
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University of South Carolina. Cardiac transplant recipients may experience non-fatal recurrent
graft rejections after the transplants. By modeling the intensity of non-acute graft rejections
and risk of death, we can understand the roles of the risk factors for death and graft rejection,
and predict a patient’s risk of death/rejection given history of rejections, thus it can help
clinicians to make decision on patients’ schedule of biopsy (a very invasive monitoring plan
with potentially serious side-effects) given the history of graft rejections. The main aims of the
actual study also included investigation of the effects of the time-independent covariates race
and gender on the risk of recurrent graft rejections and risk of death. For this article, we are
going to only analyze the data from 21 female patients from certain ages and years of entry
(the details are withheld because the results of the analysis of the entire study have not been
published yet). The numbers of recurrent events among these women vary between 0 to 7. The
time-independent covariate available for each patient is a binary variable of race (1 for non-
Caucasian women and 0 for Caucasian women). It is often argued in the transplant literature
that non-Caucasian women are somewhat at higher risk of graft rejections compared to
Caucasian women, and marginally, non-Caucasian women are also at higher risk of death.
However, the effect of race on death for such transplant patients may be confounded by the
effect of history of graft rejections on death. The complex relationship among transplant
rejections, death and race are not very well-understood. A graphical representation of the data
is given in Figure 1. From this figure, it is difficult to immediately comprehend the relationship
of race with the observed data of these two types of responses.

A Cox partial likelihood analysis based on the response variable termination time shows that
the effects of both race and the time-dependent covariate consisting of the number of previous
rejections, are statistically highly significant (indicating increased risk of death for non-
Caucasian women). This confirms that we have informative termination in this example.
Analyzing the recurrent transplant rejections using either the methods of Sun and Wei
(2000) or Wang et al. (2001) shows that the race effect is statistically significant. However,
these analyses fail to explain the complex relationship of gender, rejections and death. They
do not explain whether the effect of gender on death is only via its effect on rejection followed
by rejection’s effect on death. We also emphasize that the CAR assumption of (1.2) is clearly
not physically interpretable in this situation.

For this data example, we consider following two models. (1) Model-0: a GMPP model for the
{N(t)} process with conditional intensity and hazard (respectively for recurrent rejections and
death) given in (2.1) and (2.8), with a time-independent covariate xi (gender) and patient-
specific frailty wi; (2) Model 1: an extension of the GMPP model with the conditional hazard
of the termination Ti given  in (2.8) replaced by

(4.1)

where β3 is an additional regression parameter measuring the direct effect of number of
previous rejections Ni(t-) on the risk of termination. The baseline hazard is assumed to be
monotone h0(t) = λνtν-1. A credible interval of α in Model-1 can be used to evaluate the
justification for a CAR assumption, since Model-1 gets reduced to a CAR model for α = 0. It
is of particular interest to know whether ν < 0 and the actual value of ν to decide whether the
baseline risk of death after adjusting for effects of race and history of rejections decrease over
time, and how much the risk can decrease over a certain interval, say, on interval of 3 years.
The frailty density is assumed to be Ga(η, η) with η-1 as the variability of the frailty.

For Gibbs sampling, we use the publicly available popular software WinBUGS. We follow the
recommendations of Gelman and Rubin (1992) to monitor convergence. In particular we used
10 Gibbs chains with 50,000 iterations in each chain. We checked that the estimated scale
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reduction factor R̂ of the Gelman and Rubin statistic is less than 1.2 for each of the parameters.
We also checked several other convergence criteria using CODA (Best et. al., 1995).

We used zero means and large variances for the hyperparameters of the prior distributions of
the regression parameters β1, β2 and β3 to reflect prior opinions of no direct regression effects
on the rejection intensity as well as on the risk of termination. For the gamma priors for λ, ν
and η, we used small scales and shapes so that the prior distributions are diffuse. We observed
that our analysis is not sensitive to these choices, as long as the priors remain sufficiently
diffuse. In this analysis, another crucial elicitation step is to choose the hyperparameters τ = 1/
c and γ0(t) associated with the gamma process of μ0(t) in (3.6). We take γ0(t) = λ0tα0 with λ0
= .01, α0 = .5 and τ = 5.0. The rationale behind choosing α0 is that a plot of the prior baseline
intensity over the time intervals reduces approximately according to a square root scale. We
also use a very diffuse gamma process for μ0(t) to represent low confidence in our prior guess
γ0(t) of μ0(t).

The results of our Bayesian analysis using Model-0 suggest that there is good evidence for a
direct race effect on the intensity of recurrent graft events with 95% credible interval (0.5133,
1.55) for β1. The 95% credible interval (0.828, 2.99) of α lies above zero indicating strong
evidence that patients who are more prone to recurrent graft rejections are at higher risk of
death because a higher unobservable patient-specific frailty increases the risk of recurrent
rejections as well as death. The evidence for the direct race-effect on the increased risk of death
is also significant, since the 95% credible interval (0.6, 2.93) for β2 is also above zero, and the
posterior median is 1.74. This suggests that the race effect on risk of death may not be explained
adequately by the effect of race on death via the intermediate variable of the history of past
rejections. The variance parameter η of the frailty density has a credible interval of (0.6,2.9)
indicating evidence of high level of patient-heterogeneity for frequency of graft rejections.

For the extension of the GMPP model (Model-1), the corresponding credible intervals of β1
and β2 are (0.29,1.6) and (0.8,3.9). They are slightly wider than the credible intervals obtained
from Model-0. The credible interval of β3 (direct of number of past rejections N(t-) on risk of
death) is (0.16,1.17) supporting the anticipated effect of past number of rejections for increasing
the risk of death. The posterior analysis of this model does not support the CAR assumption
for this study, since the credible-interval of α for this model turns out to be (1.23,503), which
is way above zero. In a subsequent section, we discuss about how to decide about the most
appropriate model (based on observed data) among these two competing models. One of the
major advantages of a Bayesian analysis is that one can compute the predictive distributions
of the future event process for different races. We have omitted the predictive distributions
here for brevity.

5 MODEL DIAGNOSTICS
Model validation diagnostics are very important components of Bayesian survival analysis
(Sinha and Dey (1997); Ibrahim, Chen and Sinha (2001)). We present a method for Bayesian
model validation for recurrent events data via the conditional predictive ordinate (CPO)
(Gelfand, Dey and Chang, 1992). For subject i, the cross-validated posterior predictive
probability evaluated at the observed data point is given by

(5.1)

where Y(-i) is the observed data with subject i removed, θ is the vector of model parameters,
and Ni,obs is the observed recurrent events history data for subject i. Using a result of Gelfand,
Dey and Chang (1992), we have CPO(i) = {E[P(Ni = Ni,obs, Ti = ti|θ)-1 |Y]}-1, which can be
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computed using MCMC samples from the full posterior p(θ|Y). The method for calculating
the CPO(i)’s is particularly simple within WinBUGS. In WinBUGS, we need to specify n
additional ‘nodes’ (which are treated as posterior quantities to be computed)

 for i = 1, · · · , n. After computing the posterior means of
these n nodes, the CPO(i)’s are obtained as inverses of these posterior means. Typically, the
CPO(i)’s (treated like Bayesian residuals) are plotted against either xi or ti (or even Ni,obs) to
check whether the CPO(i)’s values have any relationship with the covariates and observed data
values. From this plot, we can identify possible outliers and possible evidence of a covariate
dependence pattern. A plot of - log(CPO(i) vs xi can evaluate whether these cross-validated
residuals depend on certain ranges of the covariate values. For the transplant data under
Model-0, we found that non-Caucasian women tend to have lower CPO(i)’s values compared
to African American Women, indicating a poorer fit of Model-0 to the data from Aferican
American as compared to Caucasian women. This suggests that, in future, race should be
treated as stratification variable instead of a binary covariate for the analysis of such data. A
plot of CPO(i) vs ti can evaluate whether the posterior analysis has any unusually small
prediction capabilities for certain values of the termination times. For the transplant data under
Model-0, we found no association between CPO(i) and ti in Figure 2.

Ratio of CPO(i) under two competing models (e.g., ratio of Model-1 and Model-0 for transplant
data) evaluates the relative support of observation i to Model-1 compared to Model-0. Figure
3 presents a plot of these ratios of CPO from two competing models (CPO of Model-1 divided
by CPO of Model-0) versus the times of death. The ratio of greater than 1 indicates the
observation from the patient prefers Model-1 against Model-0 (and vice-versa). Most
observations have the ratios below 1 indicating a strong data support for Model-0 (GMPP
model) over Model-1. The plot uses different symbols for races to help us evaluate whether
the degree of data-support to a particular model depends on the covariate value and observed
death-time. The figure suggests that support to Model-0 compared to Model-1 from
observations from African American patients is somewhat stronger than the support form most
of the observations from Caucasian patients. All the observations favoring Model-1 over
Model-0 come from Caucasian women indicating an association between model preference
and race.

6 COMMENTS AND FUTURE RESEARCH
We have proposed a comprehensive Bayesian model for recurrent events data with dependent
termination whose parameters are fully interpretable. We have provided theoretical
justifications for each part of the model and established relationships with other existing
models. The novelty of this research is to view the recent developments of recurrent events
with dependent termination data models in an unified and theoretically valid Bayesian model.
Bayesian model diagnostics are also provided. The advantage of the Bayesian methodology is
the ability of predicting future observations. Below, we mention some of the immediate
extensions and future developments.

6.1 Cumulative Medical Care Costs Data
The inference problem of recurrent events data described here is very related to other important
statistical problems such as the estimation of the mean of quality adjusted lifetime (Zhao and
Tsiatis, 1997) and lifetime medical costs data. For simplicity, we focus here on the latter to
identify its relationship with our models and methods. Studies of medical costs often focus on
estimating the cumulative costs of care over a specified time interval, say, time of diagnosis
to the time of a terminating event such as death or cure (e.g., Etzioni et al., 1996; Lin et al.,
1997; Etzioni et al., 1999). For such experiments, for patient i, we can let Ni(t) denote the
continuous variable of cumulative cost at time t and Ti is the time to the terminating event. Our
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main interest is in the distribution of Ni(Ti), the cumulative medical cost at the termination time
Ti. The extension of the GMPP model to cumulative medical cost data is achieved via the
assumption that {N(t) : t ≤ T} given the frailty random effect w, is a realization of an
independent-increment nonnegative process with conditional characteristic function

(6.1)

where μ0(t) is a non decreasing function and ψ(y) is the characteristic function of an infinitely
divisible distribution function with unit mean. One example of such an N(t) is the Gamma
process where ψ(y) = {ρ/(ρ - iy)}ρ and the resulting distributions of the disjoint increments in
N(t) given w are independent and N(u+Δ)-N(u) ∼ Ga(ρ(μ0(u+Δ)-μ0(u)), ρ). We obtain discrete
Poisson distributed increments of recurrent events data when we use ψ(y) = exp{1 - exp(iy)}.

For the medical costs data problem, two important quantities of much practical interest are the
expected lifetime cost CT = E[N(T)|x] and the rate of cost accumulation over the lifetime RT =
E[N(T)/T* |x]. Here, we define T* as the minimum of the last inspection time aJ and the
termination time T. The posterior means and credible intervals of CT and RT given x are useful
posterior summaries of a Bayesian analysis for such data. For our model, the general simplified
expression of E[N(T)|x] in (2.16) is valid even for this case. The posterior mean of E[N(T)|x]
can be computed using MCMC samples from the posterior distribution p(w,θ|Y).

6.2 Extensions of the Model
One key assumption of the GMPP model is the proportional intensity of N(t) given {w, x, T >
t}. A possible criticism of this assumption can be addressed by extending the model to a
nonproportional intensity for N(t) given {w, x, T > t}. We address two ways of extending the
model to a nonproportional intensity—(1) nonproportional with respect to w, and (2)
nonproportional withrespect to x. We now discuss possible computational difficulties and
challenges in extending our Bayesian methodology to these two cases.

The accelerated time intensity model is given by replacing the assumption in (2.1) by

(6.2)

where μ0(t) is the baseline cumulative intensity and its prior is modeled by an independent
increment Gamma process similar to what was described in Section 3.

It is important to note that, now, L1(β1, w, μ0|D1, X) in (3.1) involves μ0(wi ti) and dμ0(wi ti).
For the GMPP model, at each iteration of MCMC chain, we need to only sample from the joint
full conditional distribution of n increments μ0(t(i)) - μ0(t(i-1)) in between two consecutive
events, and this set of increments are independent given w. On the other hand, for the
accelerated intensity model, in each iteration of the MCMC chain, after we sample the vector
w, we now need to sample from the joint full conditional distribution of the n2 increments of
μ0(t) at time-points ti wk for i = 1, · · · , n and k = 1, · · · , n. For the accelerated intensity model,
the increments {μ0(wi t(k)) - μ0(wi t(k-1)) : i = 1, · · · , n; k = 1, · · · , n} are not independent. This
is increases the dimensionality of the MCMC algorithm and results in slow convergence of the
MCMC chain, because now the full conditional involves the entire sample path of the function
μ0(t) instead of its increments at fixed time points t1, · · · , tn.

Another possible extension is to use the transformation intensity model (Lin, Wei and Ying,
2001) to replace the assumption of (2.1) as
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(6.3)

where ψ is a known link with (possibly) unknown parameters. One example is ψ(μ0(t), x) =
log[μ0(t)eβ1x + 1]. For this case, the MCMC based Bayesian methodology described in Section
3 can be (in principle) extended to the transformation intensity model. Details of these methods
are yet to be explored.

6.3 Interval Censoring
In some real data settings, a continuous termination time T is monitored through scheduled
inspections at a1, · · · , aJ, and it gives rise to interval censoring of the termination time within
the inspection intervals. For example, patients within a trial can be monitored through monthly
clinic visits and a patient’s termination time is recorded only up to the last month’s clinic visit
before termination (death). Therefore, for each subject i, we only observe that Ti ∈ Iji+1 for
some inspection interval Iji+1 = (aji, aji+1], and the observed counts Nik for k = 1, · · · , ji. Thus,
similar to Lin et al. (1997) and Lin (2000), here N(aji) is informatively censored for N(T). In
practice, if our modeling assumptions of the GMPP model of Section 2.4 are correct, we can
make correct inference on the model parameters using a likelihood based on P(Ti ∈ Iji+1,
Ni1, · · · , Niji|θ). This likelihood will be similar to the likelihood in Section 3, except that now,

, where . However,
from this available interval-censored data, it is not possible to check whether our modeling
assumptions are valid. To be more specific, if our assumptions fail within a very short interval
around Ti, then we will not be able to detect that using the available data, because the available
data has no information about the relationship between N(T) - N(ak) and T - ak where ak < T <
ak+1. Even if we have available data on N(T) - N(ak), but no available data on T - ak, then we
cannot check the validity of our modeling assumptions.

Acknowledgments
Dr. Sinha’s research was partially supported by NCI grant #R01-CA69222. Dr. Maiti’s research was partially supported
by NSF grant SES-0318184. Dr.Ibrahim’s research was partially supported by NCI grant 74015 and GM 070335. The
authors are grateful to the Editor and the referees for suggestions that considerably improved this paper.

APPENDIX I

Proof of Theorem (2.1)
We simplify the following equations by suppressing the covariate x from the expressions. We
begin with the conditional distribution of N(T) given the frailty w. Under the L-I model, we
can show that

(6.4)

Also, note that
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Using the above two results, we get

(6.5)

This completes the proof of the theorem.

Proof of Theorem (2.2)
To simplify the expressions, we suppress the covariate x and the subscript i and use the
abbreviated notation h(t) = h(t; xi) = h0(t) exp(β2xi); μ(t) = μ(t; xi) = μ0(t) exp(β1x);

. Using properties of a mixed Poisson process, we have

where f(w|η) is the density of the univariate frailty random variable w and V has a Ga(m + η;
μ(t) + η) distribution. Using the same argument, we can show that

Dividing P[T ∈ (t, t + dt), N(t) = m] with P[T > t, N(t) = m], we can obtain the limiting expression
for hT(t|N(t-); x). For the case α = 1, using the formula for the Gamma integral, we can further
show that

(6.6)

which completes the proof.

Proof of Theorem (2.3)
Using the modeling assumptions in (2.1) and (2.8), we can show that

(6.7)

and

(6.8)
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where the expectations are taken with respect to the Ga(η, η) distribution of the frailty W.

Proof of Theorem (2.4)
Using the property of a non-homogeneous Poisson process (Ross 1983), from (2.5) and (2.6)
we get

(6.9)

and

(6.10)

where H(t|x) = H0(t)eβ2x. From the above two equations, we can show that

(6.11)

Using the nonhomogeneous Poisson process property of N(t)|T > t, w; x and conditional
independence of N(t) and T ∈ (t, t + dt) given w, we get

(6.12)

and

(6.13)

Dividing these two quantities, we can show that

(6.14)

This result completes the proof.

APPENDIX II
The conditional posterior distributions for the Gibbs sampling steps for discrete termination
time (panel count) data are given as follows. Define
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We denote the full conditional distribution of θ given all other parameters by [θ|rest].
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Figure 1.
Plot of the rejection times and death for African American (AA) and Caucasian (White) females
from transplant study
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Figure 2.
Plot of the -log(CPO) under Model-0 versus the observed time of death yi for each patient
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Figure 3.
Plot of the ratio of Model-1 CPO and Model-0 CPO versus the observed time of death yi for
each patient
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