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Abstract

Human exposure to 1,3-butadiene (BD) present in automobile exhaust, cigarette smoke, and forest 

fires is of great concern because of its potent carcinogenicity. The adverse health effects of BD are 

mediated by its epoxide metabolites such as 3,4-epoxy-1-butene (EB), which covalently modify 

genomic DNA to form promutagenic nucleobase adducts. Because of their direct role in cancer, 

BD-DNA adducts can be used as mechanism-based biomarkers of BD exposure. In the present 

work, a mass spectrometry-based methodology was developed for accurate, sensitive, and precise 

quantification of EB-induced N-7-(1-hydroxy-3-buten-2-yl) guanine (EB-GII) DNA adducts in 
vivo. In our approach, EB-GII adducts are selectively released from DNA backbone by neutral 

thermal hydrolysis, followed by ultrafiltration, offline HPLC purification, and isotope dilution 

nanoLC/ESI+-HRMS3 analysis on an Orbitrap Velos mass spectrometer. Following method 

validation, EB-GII lesions were quantified in human fibrosarcoma (HT1080) cells treated with 

micromolar concentrations of EB and in liver tissues of rats exposed to sub ppm concentrations of 

BD (0.5–1.5 ppm). EB-GII concentrations increased linearly from 1.15±0.23 to 

10.11±0.45adducts per 108 nucleotides in HT1080 cells treated with 0.5–10 μM DEB. EB-GII 

concentrations in DNA of laboratory rats exposed to 0.5, 1.0 and 1.5 ppm BD were 0.17±0.05, 

0.33±0.08, and 0.50±0.04 adducts per 108 nucleotides, respectively. We also used the new method 

to determine the in vivo half-life of EB-GII adducts in rat liver DNA (2.20±0.12 days) and to 

detect EB-GII in human blood DNA. To our knowledge, this is the first application of nanoLC/

ESI+-HRMS3 Orbitrap methodology to quantitative analysis of DNA adducts in vivo.
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Introduction

Humans are exposed to numerous exogenous and endogenous chemicals present in 

automobile exhaust, urban air, water, food, and cigarette smoke [1–3]. Among these is 1,3-

butadiene (BD), a prominent industrial and environmental pollutant classified as a known 

carcinogen [4–7]. Human exposure to BD is due to its presence in automobile exhaust (20–

60 ppb) [8], cigarette smoke (8.5–48.2 μg/cigarette) [9], wood fires (0.14–0.17 ppb) [10], 

and occupational sources in BD monomer and polymer industries [11–13].

BD undergoes cytochrome P450-mediated metabolic activation to three epoxide metabolites: 

3,4-epoxy-1-butene (EB), 1,2,3,4-diepoxybutane (DEB), and 1,2-dihydroxy-3,4-

epoxybutane (EBD) (Scheme 1) [14]. These electrophilic epoxides are held responsible for 

the carcinogenicity and mutagenicity of BD because of their propensity to react with DNA 

to form covalent nucleobase adducts [15–19], which can cause DNA polymerase errors [20–

23]. Sensitive and specific quantitative methods for BD-DNA adducts in vivo are needed 

because they can be used in human cancer risk assessment [24, 25].

3,4-Epoxy-1-butene (EB) is the second most abundant epoxide formed upon metabolic 

activation of BD. EB reacts with the N7-position of guanine in DNA to form N-7-(2-

hydroxy-3-buten-1-yl) guanine (EB-GI) and N-7-(1-hydroxy-3-buten-2-yl) guanine (EB-

GII) adducts (Scheme 1) [19, 26]. EB-GI and EB-GII can be used as biomarkers of BD 

exposure and bioactivation, along with the corresponding hemoglobin adducts (N-(2-

hydroxy-3-buten-1-yl)-valine (HB-Val)) [27] and urinary metabolites (2-(N-acetyl-L-

cystein-S-yl)-1-hydroxybut-3-ene and 1-(N-acetyl-L-cystein-S-yl)-2-hydroxybut-3-ene 

(MHBMA) [28]. While globin adducts and urinary metabolites have been extensively used 

as biomarkers of BD exposure and metabolic activation [27–32], one important advantage of 

DNA adducts is that they represent the biologically relevant dose of BD and thus are directly 

associated with BD-mediated mutagenesis and cancer.
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In the present study, a nanoHPLC-high resolution tandem mass spectrometry (nanoLC/ESI+-

HRMS3) methodology utilizing an Orbitrap Velos mass spectrometer was developed to 

allow for sensitive and specific quantitation of EB-GII adducts in vivo. EB-GII adducts were 

quantified by isotope dilution with the corresponding 15N-labeled internal standard. The new 

method was fully validated and applied to determine the concentrations of EB-GII in human 

fibrosarcoma (HT1080) cells treated with increasing concentrations of EB (50 nM to 10 

μM), in liver tissues of laboratory rats exposed to BD by inhalation, and in human blood 

DNA.

Experimental

Note: EB is a known carcinogen and must be handled with adequate safety precautions. 
Phenol and chloroform are toxic chemicals which should be used only in a well-ventilated 
fume hood with appropriate personal protective equipment.

Puregene DNA purification reagents were obtained from Qiagen (Valencia, CA). LC-MS 

grade water, methanol and acetonitrile were purchased from Fisher Scientific (Pittsburgh, 

PA). All other chemicals and solvents were obtained from Sigma-Aldrich (Millwaukee, WI, 

St. Louis, MO). Nonsmoker blood buffy coat fractions were purchased from BioChemed 

(Winchester, VA). Blood samples from known smokers and nonsmokers were acquired from 

the NCI CRCHD repository (PI: Dr. Peter Shields).

Synthesis of EB-guanine standards and the corresponding 15N5 internal standards

EB-GI and EB-GII were prepared as previously reported [26, 33]. Briefly, dG (105 mg, 

0.393 mmol) was reacted with 3,4-epoxy-1-butene (EB) (266 mg, 3.93 mmol) in 5 mL of 

glacial acetic acid at 50 °C for 5 h. The reaction mixture was precipitated with one volume 

of acetone and 4 volumes of ether, and the resulting white precipitate was air dried and 

dissolved in 1.5 mL of 1N HCl. The reaction mixtures was heated at 80 °C for 5 h to induce 

depurination, cooled down, and neutralized with NaOH. EB-GI and EB-GII were isolated by 

reverse phase HPLC on a Synergi Hydro RP 80R semipreparative column (250 mm × 10 

mm, 4μ) (Phenomenex, Torrance, CA) using a gradient of water and acetonitrile at 2 mL/

min. Under these conditions, EB-GI and EB-GII eluted at 22.5 and 24.1 min, respectively. 

Both adducts were characterized by UV spectrophotometry, 1H NMR, and MS/MS, which 

were consistent with literature data [26]. 15N5-EB-GI and 15N5-EB-GII were prepared 

analogously starting with 15N5–dG. Molar concentrations of EB-G and 15N5-EB-G standard 

solutions were determined by UV spectrophotometry using the molar extinction coefficient 

(ε) of 8030 M-1 cm-1 at 284 nm at neutral pH [33]. Isotopic purity of 15N5-EB-GI and II as 

determined by mass spectrometry was 99.97 and 99.93 %, respectively.

HT1080 cell culture experiments

Human fibrosarcoma cells (HT1080) were grown in Dulbecco’s modified Eagle’s media 

supplemented with 9% fetal bovine serum (Life technologies, Grand Island, NY). Cells were 

cultured in a humidified atmosphere of 5% carbon dioxide and 95% air, at 37 °C. HT1080 

cells were plated into 15 cm dishes using Dulbecco’s modified Eagle’s medium containing 

9% FBS and permitted to adhere overnight at 37 °C. On the following morning, cells (in 
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duplicate) were treated with increasing concentrations of EB (0, 500 nM, 1 μM, 5 μM or 10 

μM) for 3 h at 37 °C. The EC50 for EB in HT1080 cells treated with 0.25 to 50 m for 48 h 

was 13.8 mM as determined by the alamar blue assay (Life technologies, Grand Island, NY). 

Control and treated cells (N = 2) were harvested, washed with ice cold phosphate-buffered 

saline (PBS), and suspended in 5mL of PBS for DNA extraction as described below.

Animals and Treatment

In the first study, male and female F344 rats (N = 3 per group) were exposed to 0.5, 1.0, or 

1.5 ppm for 2 weeks (6 h/day, 5 days/week) using whole-body exposure chambers at the 

Lovelace Respiratory Research Institute (LRRI, Albuquerque, NM) as reported previously 

[34].

In a separate study, female F344 rats (3 per group) were exposed to 1250 ppm BD by whole-

body exposure chamber inhalation for 10 days (7 h/day) at LRRI. The animals were 

sacrificed either immediately at the end of the exposure period or 1, 3, or 6 days post 

exposure as reported previously [16]. Liver tissue was collected, flash frozen, and shipped to 

the University of MN on dry ice, where they were stored at − 80 °C until DNA extraction. 

All protocols are approved by the Institutional Animal Care and Use Committee at LRRI.

Human study subjects

Human smoker and nonsmoker blood buffy coat (white blood cells) samples were obtained 

from the National Cancer Institute. These samples were a part of the NCI 3ARM study 

supported by National Cancer Institute contract HHSN261200644002 (Laboratory 

Assessment of Tobacco Use Behavior and Exposure to Toxins Among Users of New 

Tobacco Products Promoted to Reduce Harm; PI: Peter Shields, M.D.). National Cancer 

Institute, Washington, DC. Nonsmoker (N = 5) and smoker subjects (N = 3) were between 

the ages of 18 and 65. Smokers smoked at least 10 cigarettes daily for the past year had 

exhaled carbon monoxide (CO) levels of > 10 ppm. The nonsmokers have smoked less than 

100 cigarettes in their life time. Smoking status was confirmed through CO measures and 

self-reported tobacco use diaries. All subjects were in good physical and mental health. 

Fasting blood was collected through venipuncture at various time points during the study. 

Samples were stored at − 80 °C until further analysis.

DNA isolation

DNA from control and EB-treated human fibrosarcoma (HT1080) cells was isolated using 

standard phenol-chloroform extraction [35]. DNA concentrations were estimated by 

nanodrop UV spectrophotometer (Thermo Scientific, Waltham, MA), and the DNA purity 

was assessed from A260/A280 absorbance ratios, which was typically between 1.8 and 1.9. 

DNA amounts were accurately determined by dG quantitation in enzymatic hydrolysates as 

described previously [35, 36].

DNA from human blood samples was isolated using the manufacturer’s protocol for DNA 

purification from buffy coat (Qiagen, Valencia, CA) [37] with minor modifications [36]. 

DNA isolation from rat liver was performed using the manufacturer’s protocol for DNA 

purification from tissue (Qiagen, Valencia, CA). Briefly, 100–200 mg of liver tissue was 

Sangaraju et al. Page 4

J Am Soc Mass Spectrom. Author manuscript; available in PMC 2016 October 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



homogenized in 4 mL of cell lysis buffer. Cell lysis was performed overnight following 

addition of 15 μL of proteinase K solution (20 mg/mL). On the following day, RNA 

digestion was performed by addition of 15 μL of RNase A solution (4 mg/mL) and 

incubation at room temperature for 2 h. Protein precipitation solution (1 mL) was added to 

the cell lysate, and the mixture was vortexed at a high speed for 20 s and centrifuged at 

2000g for 15 min for removal of proteins. DNA was precipitated with isopropyl alcohol (5 

mL) and washed twice with 1 mL of 70% ethanol in water.

Sample preparation and EB-GII enrichment (Scheme 2)

DNA samples (3–76 μg in water) were spiked with 3 fmol of 15N5-EB-GII internal standard 

and heated at 90 ºC for 0.5 h to release EB-GII adducts from the DNA backbone as free 

bases. Partially depurinated DNA was removed by ultrafiltration with Nanosep 10K filters 

(Pall Life Sciences, Ann Arbor, MI) at 5000 g for 10 min. The filtrates containing EB-GII 

and its internal standard were subjected to offline HPLC purification using an Agilent 1100 

series HPLC equipped with a UV detector and an automated fraction collector (Agilent 

Technologies, Palo Alto, CA). Offline HPLC purification was carried out using Zorbax 

Eclipse XDB-C18 column (4.6 × 150 mm, 5 μm, from Agilent Technologies, Palo Alto, CA) 

eluted at flow rate of 1 mL/min with a gradient of 0.4% formic acid in Milli-Q water (A)and 

HPLC grade acetonitrile (B). UV absorbance was monitored at 254 nm. Solvent composition 

was maintained at 0% for 5 min and then linearly changed to 3% in 10 min and further to 

40% B in 5 min. The solvent composition was returned to 0% acetonitrile in 5 min and held 

at 0% for 15 min for column equilibration. Either 2′-deoxyadenosine (dA, 0.60 nmol) or 2′-

deoxythymidine (dT, 0.62 nmol on column) was added as retention time markers, which 

eluted at 13.2 or 18.3 min, respectively. EB-GII typically eluted at 16.4 min. HPLC fractions 

containing EB-GII and its internal standard (15.8 – 17.8 min, 1 mL each) were collected in 

1.2 mL MS total recovery vials (Thermo Fischer Scientific, Waltham, MA), concentrated 

under vacuum, and re-dissolved in water (10 μL) for nano-HPLC-nanoESI+-HRMS3 

analysis. Typical injection volume was 5 μL.

nanoLC/ESI+-HRMS3 analysis of EB –GII

A Nano2D-LC HPLC system (Eksigent, Dublin, CA) with 5 μL injection loop was 

interfaced to an LTQ Orbitrap Velos instrument equipped with a nanospray source (Thermo 

Fisher Scientific Corp., Waltham, MA). HPLC solvents were LC-MS grade water containing 

0.01% acetic acid (A) and LC-MS grade acetonitrile containing 0.02% acetic acid (B). 

Samples (5 μL) were injected onto a trapping column (Symmetry C18 nanoAcquity, 0.18 × 

20 mm, Waters Corp., Millford, MA) in line with a nano-LC column (0.075× 200 mm). The 

nano-LC column was prepared by manually packing a fused-silica emitter (New Objective, 

Woburn MA) with Synergi Hydro-RP, 80Å, 4 μm chromatographic packing (Phenomenex, 

Torrance, CA). Following sample injection (5 μL), the HPLC flow (2% B) was maintained at 

1 μL/min for 5.5 min to enable sample loading onto the trapping column. The HPLC flow 

was then decreased to 300 nL/min and maintained at 2% B for 0.5 min. The organic phase 

content linearly increased to 25% B in 19 min and further to 50% B in 10 min, returned to 

2% B in 2 min, and equilibrated for 7 min. Under these conditions, EB-GII eluted as a sharp 

peak at 20 min.
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HPLC-MS3 analyses were conducted in the nanoESI+ mode using an LTQ Orbitrap Velos 

instrument (Thermo Scientific, Waltham, MA). Typical instrument settings included the 

spray voltage at 2.0 kV, capillary temperature at 350 °C, and S-Lens RF level at 40%. MS 

analysis was performed by fragmenting [M + H]+ ions of EB-GII (m/z 222.1) via collision 

induced dissociation (CID) in the linear ion trap, with a normalized collision energy set at 25 

units and the isolation width of 1.0 amu. The resulting MS/MS fragment ions at m/z 152.1 

corresponding to protonated guanine [Gua + H]+ were subjected to further fragmentation in 

the high collision dissociation (HCD) cell using nitrogen as collision gas, normalized 

collision energy of 75 units, and an isolation width of 1.0 amu. The resulting MS3 fragment 

ions were detected in the mass range of m/z 50 to m/z 270 using the Orbitrap mass analyzer 

at a resolution of ~ 25,000. EB-GII was quantified using extracted ion chromatograms from 

the combined signal of m/z 135.0301 ([Gua – NH3]+) and m/z 153.0407 ([Gua – NH3 + 

H2O]+) at a mass tolerance of 5 ppm. The MS3 fragments at m/z 153.0407 ([Gua – NH3 + 

H2O]+) correspond to the adduction of water to m/z 135.0301 ([Gua – NH3]+) in the 

collision cell [38]. The 15N5 labeled internal standard ([15N5]-EB-GII) was quantified using 

an analogous MS3 scan event consisting of fragmentation of m/z 227.1 ([M + H]+) to m/z 
157.1 [15N5-Gua + H]+ and further to m/z 139.0183 ([15N5-Gua – NH3]+). Extracted ion 

chromatograms corresponding to the sum of m/z 139.0183 ([15N5-Gua – NH3]+) and m/z 
157.0288 ([15N5-Gua – NH3 + H2O]+) at 5 ppm were generated and used for quantitation 

(Figure 1). A full scan event was also performed over the mass range of m/z 100–500 at a 

resolution of 7500 to monitor for any co-eluting matrix components. EB-GII amounts in 

DNA were expressed as adduct numbers per 108 normal nucleotides.

NanoLC/ESI+-HRMS3 standard curves were constructed by analyzing aqueous solutions 

containing fixed amounts of 15N5-EB-GII (5 fmol) and increasing amounts of EB-GII (0.1, 

0.5, 1, 3, 5, and 10.0 fmol) (in triplicate ), followed by regression analysis of the actual and 

the observed amounts of EB-GII (Figure S-2). 5 μL injections were made out of a 25 μL 

sample volume. Solvent blanks were periodically injected to monitor for any potential 

analyte carry-over.

Method validation

DNA isolated from unexposed human leukocyte DNA (150 μg aliquots, in triplicate) was 

spiked with fixed amount of 15N5-EB-GII (3 fmol, internal standard) and increasing amounts 

of EB-GII (0, 0.2, 0.5, 1, 3, 5, 7 or 10 fmol). Samples were processed by neutral thermal 

hydrolysis, ultrafiltration, and off-line HPLC as described above and subjected to 

nanoLC/ESI+-HRMS3 analysis. The observed amounts of EB-GII were plotted against the 

theoretical values, followed by regression analysis (Figure 2).

Determination of method LOD, LOQ, precision, and accuracy

The LOD values of the quantitative method for EB-GII were determined by spiking blank 

human DNA (150 μg) with increasing amounts of EB-GII (0, 0.05, 0.1, or 0.2 fmol) and a 

fixed amount of 15N5-EB-GII (3 fmol), followed by sample processing and nanoLC/ESI+-

HRMS3 analysis by standard methodology. The LOD value was determined as the analyte 

amount that consistently produced signal-to-noise ratios above 3. The limit of quantitation 
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was defined as minimum analyte amount that produced a coefficient of variation less than 

15% and a signal-to-noise ratio (S/N) greater than 10.

To evaluate the inter-day and intra-day accuracy and precision of the new method, EB-GII 

(0.2 fmol) and 15N5-EB-GII (3.0 fmol) were spiked into blank human DNA (150 μg). 

Samples were processed as described above and analyzed three times per day on three 

consecutive days. Method accuracy was calculated from the equation (Am/Aa × 100%), 

where Am is the measured amount of EB-GII and Aa is the actual analyte amount added.

Results and Discussion

Because of their critical role in cancer development, DNA adducts represent mechanism-

based biomarkers of carcinogen exposure, and their quantitation is particularly useful for 

cancer risk assessment. DNA adducts are also valuable in mechanistic studies linking 

tumorigenic effects of environmental and industrial carcinogens to specific electrophilic 

species generated from their metabolism. As discussed above, BD is among the most 

important industrial and environmental chemicals classified as known carcinogens [39, 40]. 

Humans can be exposed to BD in an occupational setting at BD monomer/polymer 

industries [11] or as a result of inhaling cigarette smoke [9], automobile exhaust [8], and 

smoke from cooking and wood fires [10]. This is a cause of concern because of the 

established carcinogenicity of BD [4–7].

The long term goal of this work is to develop sensitive biomarkers of human exposure to 

BD. We recently reported an isotope dilution accurate mass spectrometric method for 

another BD-DNA adduct, N7-(2,3,4-trihydroxybut-1-yl)-guanine (N7-THBG), which was 

detected in leukocyte DNA of smokers, nonsmokers, and occupationally exposed workers 

[36]. Unexpectedly, N7-THBG was also observed in samples from individuals with no 

known exposure to BD, and no significant decrease in N7-THBG levels was observed upon 

smoking cessation [36]. Therefore, THBG may be formed endogenously and does not 

accurately reflect human exposure to BD.

In an effort to develop a new BD-specific DNA biomarker, we turned our attention to 

structurally analogous EB-G adducts (Scheme 1). EB-GI and EB-GII are formed upon N7-

guanine alkylation by 3,4-epoxybut-1-ene (EB). Because EB is formed in lower amounts 

than 3,4-epoxy-1,2-butanediol (EBD), in vivo concentrations EB-GI and EB-GII adducts are 

approximately 10-fold lower than those of THBG following exposure to BD [41], calling for 

a highly sensitive methodology.

Our method for quantitative analysis of EB-G adducts in vivo starts with DNA extraction 

from cells or tissues (Scheme 2). DNA purity is estimated by UV spectrophotometry (A 

260/280 ratios) to minimize any contamination with cellular proteins. DNA samples (7–76 

μg) are spiked with isotopically labeled internal standard (15N5-EB-GII) to account for any 

analyte loss during sample workup and to allow for absolute quantification. Since N7-

guanine alkylation generates a positive charge on the adducted base and destabilizes the N-

glycosidic bond, EB-G adducts can be selectively released from the DNA backbone as free 

bases by neutral thermal hydrolysis (Scheme 2) [41, 42]. This step was optimized upon 
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analyzing EB-treated calf thymus DNA. A range of depurination conditions were tested, 

including heating at 90 °C for 0.5 h (pH 6.8), 70 °C for 1 h (pH 6.8), and acidic thermal 

hydrolysis at 90 °C for 0.5 h (0.1N HCl). Since all three conditions were equally effective at 

releasing EB-G adducts from the DNA backbone (not shown), neutral thermal hydrolysis at 

90 °C for 0.5 h in water was selected to minimize the depurination of unmodified 

nucleobases. Following ultrafiltration to remove partially depurinated DNA, EB-GII adducts 

were enriched by offline HPLC. Retention time markers (dT or dA) were added to account 

for any sample-dependent retention time shifts. Under our HPLC conditions, dA, EB-GI, 

EB-GII, and dT typically eluted at 13.2, 15.3, 16.4, and 18.3 min, respectively. In our 

experience, offline HPLC purification is the best option for isolating trace amounts of DNA 

adducts from DNA hydrolysates prior to LC-MS analysis because it affords nearly 

quantitative analyte recovery, can be readily automated, and avoids the introduction of solid 

phase particles which can clog nano HPLC columns [43]. However, cross-contamination and 

analyte carryover can be a serious problem, so multiple HPLC blanks must be introduced 

throughout the analysis.

NanoLC/ESI+-HRMS3 method development

Our ultimate goal was to develop a quantitative method sensitive enough to detect EB-G 

adducts in tissues of laboratory animals exposed to sub-ppm levels of BD and in leukocyte 

DNA of smokers and occupationally exposed individuals. NanoHPLC-nanospray HPLC-MS 

methodology was employed because of its enhanced sensitivity as compared to conventional 

capillary LC-MS. Nanospray ionization is more efficient than conventional electrospray 

because of an improved ionization efficiency and an increased ion transport from the source 

into the mass spectrometer [44]. A number of stationary HPLC phases were tested, including 

Zorbax SB-C18 (Agilent Technologies), Hypercarb (Phenomenex), Luna C18 

(Phenomenex), Synergi Hydro- RP 80Å (Phenomenex), and Synergi Polar-RP 

(Phenomenex). These solid phases were manually packed into commercial fused-silica Self-

Pack PicoFrit emitters (200 mm x 75 μm, New Objective), with a 15 μm tip orifice diameter. 

The best results in terms of analyte retention and HPLC peak shape were obtained when 

using a Synergi Hydro-RP column eluted with a gradient of 0.01% acetic acid in water (A) 

and 0.02% acetic acid in acetonitrile (B) (Figure 1) This system has afforded a good EB-GII 

peak shape (Peak Asymmetry factor=1.16, tailing factor = 1.08), along with good retention 

time (RT 20.7 min) and theoretical plates (N) close to 40000, without any co-eluting peaks 

(Figure 1).

Our initial method development efforts have attempted to employ nanoHPLC-ESI-MS/MS 

on a triple quadrupole mass spectrometer. However, preliminary experiments with EB-G I 

and EB-G II pure standards spiked into synthetic DNA indicated that the sensitivity of this 

approach was insufficient for BD-DNA adduct detection in human samples (Figure S-1A). 

Other published HPLC-ESI-MS/MS methods for EB-guanine adducts [41] similarly 

reported moderate sensitivity for this analyte (typical LOD, 0.5 adducts/106nucleotides). To 

achieve detection limits in the low fmol to amol range (1 per 108–1 per 109 nucleotides) as 

required for our in vivo studies, we employed nanoLC/ESI+-HRMS3 methodology on an 

Orbitrap Velos mass spectrometer. We and others have recently reported the use of high 

resolution mass spectrometry for DNA adduct analysis in complex samples and have shown 
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that it dramatically reduces the matrix background, leading to greatly improved signal to 

noise ratios [37, 45, 46].

An LTQ Orbitrap Velos mass spectrometer was operated in the high resolution MS3 scan 

mode to allow for highly selective detection of EB-GII adducts in a complex biological 

matrix. Protonated molecules of the analyte were trapped and fragmented in the linear ion 

trap (LTQ), and specific MS2 fragments were axially ejected, fragmented in the HCD cell, 

and collected in a C-shaped ion trap (C-Trap) to be analyzed in the Orbitrap for accurate 

mass analysis. Initial fragmentation of protonated molecules of EB-GII and 15N5-EB-GII 

(m/z 222.1 [M + H]+ → m/z 152.1 [Gua + H]+ and m/z 227.1 [15N5-M + H]+ → m/z 157.1 

[15N5-Gua + H]+ ) was performed in the linear ion trap via CID, while subsequent 

fragmentation (m/z 152.1 [Gua + H]+ → m/z 135.0301 [Gua – NH3]+, 153.0407 [Gua – 

NH3+ H2O]+) and m/z 157.1 [15N5-Gua + H]+ → m/z 139.0183 ([15N5-Gua – NH3]+), 

157.0288 (15N5-Gua – 15NH3 + H2O) was performed in the HCD cell (Scheme 3). The ions 

at 153.0407 [Gua – NH3+ H2O]+ are generated via neutral gain of H2O by [Gua – NH3]+ 

ions (Scheme 3), a process that have been shown to takes place in the MS collision cell due 

to the presence of residual water [38]. MS3 fragment ions were analyzed in the accurate 

mass mode over a range m/z 50–270 at a resolution of ~ 25,000. We found that the MS3 scan 

mode afforded better signal to noise ratios as compared to the MS2 due to its selectivity for 

the analyte of interest in the presence of co-eluting contaminant peaks (Figure S-1B). Using 

nanoLC/ESI+-HRMS3 methodology, the sensitivity for EB-G adducts was dramatically 

improved as compared to standard SRM on a triple quadrupole mass analyzer (Compare 

Figures S-1A and S-1B), with excellent S/N ratios for the low and sub fmol analyte 

amounts. As an additional benefit, MS3 spectra are available for each sample, providing 

additional confirmation of analyte identity. Quantitation is based on peak areas 

corresponding to the analyte and its internal standard. Standard curves obtained by 

nanoLC/ESI+-HRMS3 analysis of known amounts of pure standards of EB-G and its 15N5-

labeled internal standard are given in the supplementary Figure S-2.

Our initial studies have attempted to quantify both regioisomers of the adduct, EB-GI and 

EB-GII (Scheme 1). Under our offline HPLC conditions, pure standards of EB-GI and EB-

GII eluted as sharp peaks well resolved from each other (not shown). However, when the 

two analytes were spiked in synthetic oligodeoxynucleotide or into blank human DNA (150 

μg), processed as described above, and subjected to nanoLC/ESI+-HRMS-SRM analysis, a 

co-eluting peak was observed at similar HPLC retention time as EB-GI (Figure S-3). Our 

efforts to separate EB-GI from this interfering impurity under various chromatographic 

conditions (a range of HPLC stationary phases, HPLC gradients, and HPLC buffers such as 

0.05% formic acid, 5 mM ammonium acetate buffer (pH 6.8) and 0.1% formic acid with a 

gradient of methanol or acetonitrile as organic phase) were not successful. Although the co-

elute signal was somewhat decreased when narrowing the precursor ion (m/z 222.1) 

isolation width from 3.0 amu to 1.0 amu, this also led to a significant loss of sensitivity for 

the analyte (not shown). MS2 experiments have revealed that the co-eluting impurity from 

sample matrix had a different MS2 fragmentation pattern as compared to authentic EB-GI, 

but unfortunately shared the same major fragment ion at m/z 152.0567 (Figure S3). Our 

efforts to eliminate the interfering peak using MS3 also proved unsuccessful and the co-

eluting impurity interfered with accurate analysis of EB-GI (results not shown). We 
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therefore focused our efforts on EB-GII (Scheme 1), which is formed upon nucleophilic 

attach of N7-guanine at an internal carbon of EB and is produced in similar amounts as its 

regioisomer [41].

NanoLC/ESI+-HRMS3 Method Validation

The newly developed method was validated by analyzing samples prepared by spiking 

known amounts of EB-GII (0.2 – 10 fmol) and 3 fmol of 15N5-EB-GII internal standard into 

150 μg of blank human buffy coat DNA. Samples were analyzed by the methodology 

described above. An excellent correlation (R2 = 0.9953) was observed between the spiked 

and the observed amounts of EB-GII in the targeted sample matrix analysis (Figure 2). 

Method accuracy and interday/intraday precision were determined by analyzing replicate 

samples of EB-GII (0.2 fmol) spiked into blank human DNA (see example in Figure S-4). 

The accuracy of the analytical method for 0.2 fmol spiked into 150 μg of blank human DNA 

was calculated as 92.9 ± 7.19 % (N = 9), while the interday and intraday precision were less 

than 8% RSD (Table 1). In order to evaluate the method’s sensitivity (LOD), aliquots of 

blank human DNA (150 μg each) were spiked with known amounts of EB-GII standard (0, 

0.05, 0.1 or 0.2 fmol), followed by thermal hydrolysis and sample processing as described 

above (Scheme 2). The nanoLC/ESI+-HRMS3 limit of detection for EB-GII was determined 

as 0.05 fmol in 150 μg of DNA (0.1 adducts/109 nucleotides), which gave the signal-to-noise 

ratio ≥3. No EB-GII was detected in blank human DNA derived from blood leukocytes of a 

nonsmoker, confirming that there was no artifactual formation of EB-GII during the sample 

preparation and analysis. The method’s limit of quantitation was defined as the lowest 

amount of EB-GII spiked into blank human DNA (150 μg) that afforded the signal-to-noise 

ratios of >10 and intra/inter day precision within 15% CV. We found that the LOQ value of 

our LC-MS3 method for EB-guanine II was 0.2 fmol analyte in 150 μg of DNA, 

corresponding to 0.4 adducts/109 nucleosides (see Figure S-4).

EB–GII quantitation in Human Cell Culture

The applicability of the new HPLC-MS3 analytical method for EB-GII was initially tested 

by quantifying these adducts in human fibrosarcoma (HT1080) cells treated with increasing 

concentrations of EB (0.5–10 μM) for 3 h. These concentrations are well below the EC50 of 

EB in HT1080 cells (13.8 mM). Following DNA extraction, EB-GII adducts were released 

by neutral thermal hydrolysis and analyzed by nanoLC/ESI+-HRMS3 as described above. 

Adduct concentrations in cells treated with 0.5 μM –10 μM DEB increased in a 

concentration-dependent manner from 1.15±0.23 to 10.11±0.45 adducts/108 nucleotides 

(Figure 3).

EB –GII quantitation in rat liver tissue DNA

The new method was next used to quantify EB-GII DNA adducts in liver tissue DNA of 

F344 rats exposed to sub ppm concentrations of BD (0.5 –1.5 ppm). According to literature 

reports, laboratory rats are a better animal model of human exposure to BD than laboratory 

mice due to interspecies similarities in the metabolic pathways [47]. We chose low to sub-

ppm exposures because this concentration range is comparable to occupational BD 

exposures in polymer or monomer industries [11]. NanoLC/ESI+-HRMS3 analyses of EB-

GII in liver DNA of BD-exposed rats have revealed prominent analyte peaks with little to no 
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background noise (Figure 4A). A dose dependent increase in adduct amounts was observed 

in animals treated with higher BD concentrations, with EB-GII numbers changing from 0.17 

± 0.05 adducts/108 nucleotides following 0.5 ppm exposure to 0.33 ± 0.08 adducts/108 

nucleotides following 1.0 ppm exposure, and further to 0.50 ± 0.04 adducts/108 nucleotides 

following exposure to 1.5 ppm BD (Figure 4B). No EB-GII adducts were detected in control 

animals exposed to ambient air only.

The new method was further applied to determine the in vivo half-lives of EB-GII adducts in 

liver of laboratory rats exposed to 1250 ppm BD. Only 7 μg of DNA was used in this case 

due to the high adduct levels in these samples. EB-GII adduct concentrations in rat tissues 

gradually decreased 1, 3 and 6 days post exposure to BD (Figure 5A). Data processing via 

first order kinetics analysis yielded the EB-GII half-life in rat liver DNA as 2.20 ± 0.12 days 

(Figure 5B), which is significantly shorter than the half-life of structurally analogous N7-

THBG adducts in vivo (t1/2 = 3.6–4.0 days) [16].

Attempted EB –GII quantitation in human blood leukocyte DNA

To test the ability of the new method to detect BD-DNA adducts in humans, it was applied to 

blood leukocyte DNA of confirmed smokers (N = 8). Smokers are exposed to BD due to its 

relatively high concentrations in cigarette smoke (8.5–48.2 μg/cigarette) [9]. Although we 

were able to successfully detect EB-GII adducts in human DNA (Figure S-5), adduct 

amounts were below the limit of quantitation of our method (0.4 adducts/109 nucleotides). 

Unfortunately, DNA amounts could not be increased due to the limited human sample 

availability. Furthermore, our in vivo persistence data (Figure 5) suggest that EB-GII adducts 

are rapidly released from the DNA backbone by spontaneous hydrolysis and/or active repair. 

Our current efforts are to develop a nanoLC/ESI+-HRMS3 methodology for EB-GII adducts 

in human urine, which is readily available, but will require additional sample cleanup steps 

to remove salts and other polar matrix compounds prior to analysis. Our final goal is to 

develop analytical methodology that has adequate sensitivity, accuracy, and precision for 

quantitation of EB-G II adducts in human populations.

Conclusions

In conclusion, sensitive, accurate, and specific nanoLC/ESI+-HRMS3 isotope dilution 

methodology has been developed for accurate and precise quantitation of BD-specific EB-

GII adducts in vivo. The applicability of this method was demonstrated by quantitation of 

EB-GII adducts in human fibrosarcoma cells exposed to low micromolar concentrations of 

EB and in liver DNA of laboratory rats exposed to sub-ppm concentration of BD, which 

mimic occupational exposure in humans. The method had adequate sensitivity to quantify 

EB-GII DNA adducts in human leukocyte DNA, provided that that adequate DNA amounts 

are available for analysis. We conclude that nanoLC/ESI+-HRMS3 methodology holds a 

great promise in quantitative analyses of trace levels of DNA adducts in human and animal 

samples due to an increased sensitivity, specificity, and detailed structural confirmation from 

MS3 spectra.
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Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

BD
1,3-butadiene

EB
3,4-epoxy-1-butene

EBD
1,2-dihydroxy-3,4-epoxybutane

DEB
1,2,3,4-diepoxybutane

EB-GI
N-7-(2-hydroxy-3-buten-1-yl) guanine

EB-GII
N-7-(1-hydroxy-3-buten-2-yl) guanine

N7-THBG
N7-(2,3,4-trihydroxybut-1-yl) guanine

nanoHPLC-nanoESI+-HRMS3

nanoflow high performance liquid chromatography nano electrospray ionization high 

resolution tandem mass spectrometry in positive mode

SPE
solid-phase extraction

LOD
limit of detection

LOQ
limit of quantitation
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Figure 1. 
Nano-HPLC-nanoESI+-HRMS3 extracted ion chromatograms and MS3 spectra of synthetic 

EB guanine II (0.1 fmol) (A) and [15N5]-EB guanine II (5 fmol) (B).
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Figure 2. 
Nano-HPLC-nanoESI+-HRMS3 method validation: correlation between the spiked and the 

observed amounts of EB-GII spiked into blank DNA. DNA isolated from nonsmoker blood 

leukocytes (150 μg) was spiked with 0, 0.2, 0.5, 1, 3, 5, 7 or 10 fmol of EB-GII and 3 fmol 

of 15N5- EB-GII (internal standard), followed by sample processing and nano-HPLC-

nanoESI+-HRMS3 analysis.
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Figure 3. 
Concentration-dependent formation of EB-GII adducts in HT1080 cells treated with 

increasing amounts of EB (0.5–10 μM).
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Figure 4. 
A. Representative extracted ion chromatogram for nano-HPLC-nanoESI+-HRMS3 analysis 

of EB-GII adducts in liver DNA of a laboratory rat exposed to 1.0 ppm BD by inhalation for 

2 weeks. Liver DNA (53.3 μg) was spiked with 15N5-EB-GII (internal standard for 

quantitation) and subjected to neutral thermal hydrolysis, sample processing, and nano-

HPLC-nanoESI+-HRMS3 analysis on an Obitrap Velos mass spectrometer. B. 
Concentration-dependent formation of EB-GII adducts in liver DNA of laboratory rats 

exposed to low ppm (0.5, 1.0, 1.5 ppm) concentrations of BD.
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Figure 5. 
Persistence of EB-GII adducts in liver DNA of rats exposed to1250 ppm BD by inhalation 

(A) and first order kinetic analysis for estimation of adduct half-life in vivo (B).
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Scheme 1. 
Bioactivation of BD to electrophilic epoxides and the formation of EB-guanine adducts in 

DNA. EH, epoxide hydrolase; EB-GI, N-7-(2-hydroxy-3-buten-1-yl) guanine; EB-GII, N-7-

(1-hydroxy-3-buten-2-yl) guanine.
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Scheme 2. 
Analytical procedure for isotope dilution nanoLC/ESI+ HRMS3 analysis of EB-GII in DNA.
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Scheme 3. 
Dissociation scheme to explain the formation of fragment ions at 153.0407 [Gua - NH3 + 

H2O]+. Adopted from [38].
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Table 1

Accuracy and precision results for NanoLC/ESI+ HRMS3 analysis of EB-GII (0.2 fmol) spiked into 150 μg of 

blank human DNA.

Day 1 Mean 0.17

RSD (%) 3.75

Accuracy(%) 86.0

N 3

Day 2 Mean 0.18

RSD (%) 1.23

Accuracy(%) 91.8

N 3

Day 3 Mean 0.20

RSD (%) 5.29

Accuracy(%) 100.8

N 3

Interday Mean 0.18

RSD (%) 7.74

Accuracy(%) 92.9

N 9
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