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ABSTRACT
Objective Record linkage to integrate uncoordinated
databases is critical in biomedical research using Big
Data. Balancing privacy protection against the need for
high quality record linkage requires a human–machine
hybrid system to safely manage uncertainty in the ever
changing streams of chaotic Big Data.
Methods In the computer science literature, private
record linkage is the most published area. It investigates
how to apply a known linkage function safely when
linking two tables. However, in practice, the linkage
function is rarely known. Thus, there are many data
linkage centers whose main role is to be the trusted
third party to determine the linkage function manually
and link data for research via a master population list for
a designated region. Recently, a more flexible
computerized third-party linkage platform, Secure
Decoupled Linkage (SDLink), has been proposed based
on: (1) decoupling data via encryption, (2) obfuscation
via chaffing (adding fake data) and universe
manipulation; and (3) minimum information disclosure
via recoding.
Results We synthesize this literature to formalize a new
framework for privacy preserving interactive record
linkage (PPIRL) with tractable privacy and utility
properties and then analyze the literature using this
framework.
Conclusions Human-based third-party linkage centers
for privacy preserving record linkage are the accepted
norm internationally. We find that a computer-based
third-party platform that can precisely control the
information disclosed at the micro level and allow
frequent human interaction during the linkage process, is
an effective human–machine hybrid system that
significantly improves on the linkage center model both
in terms of privacy and utility.

INTRODUCTION
Information systems in the health sector have
undergone significant infrastructure changes
making it possible to collect, store, and process
huge amounts of data. However, information
derived from these heterogeneous systems is often
redundant, fragmented over multiple databases,
incomplete, and erroneous.1–7 In fact, the 4V’s of
Big Data, Volume, Velocity, Variety, and Veracity,8

describe succinctly the nature of Big Data in health-
care as seen in the continuously generated medical
records from diverse service providers which
always contain some level of error. Thus, a task
critical to finding the useful information among
such chaotic Big Data is record linkage—the
process of identifying record pairs from different
information systems which belong to the same real-
world entity.

The record linkage process is complicated by the
inherent factors observed in Big Data, such as
missing data (eg, missing social security number
(SSN)), erroneous data (eg, transpose of date of
birth (DOB)), non-standardized forms of data (eg,
Dr Smith), and change in the data over time (eg,
changed last name). The absence of common,
error-free, and unique identifiers makes exact
matching solutions inadequate, leading to methods
for approximate linkage to address these issues.1–15

In a study linking cancer registries, 10% more
matches were found using a deterministic approxi-
mate match compared to the exact match methods
due to typos in names or missing SSNs.2 A more
sophisticated approximate method, six pass prob-
abilistic record linkage, linking a cancer registry
with Medicaid data, reported only 83% of records
were matched using exact match.3 In another study,
36.3% of health records were missing SSNs.5 Yet
another study reported that there were between
0.16% and 16% potential duplicate medical record
numbers in five different electronic health record
systems.6 Due to the large number of patients
served, even 0.16% equals 1583 records, quite a
considerable number to clean up manually.
In this paper, we provide a tutorial on record

linkage and a systematic review of the literature on
privacy preserving record linkage (PPRL) for bio-
medical research. We also synthesize the literature
to propose a new framework, privacy preserving
interactive record linkage (PPIRL), for data integra-
tion with tractable privacy and utility properties.
We evaluate the current literature using the
framework.

BACKGROUND
Record linkage
The main difficulty in record linkage is that data
are often expressed differently, change over time,
lack unique attributes, have missing attributes, or
have erroneous data entry. Let us consider an
example where SSN, first name, last name, and
DOB are available for linkage. If we link only on
SSN, issues arise from missing and erroneous SSN.
If linked using all four attributes on exact match,
many true matches are missed. The goal of the dif-
ferent approximate approaches is to capture as
many true matches as possible while minimizing
the false matches. Typically, all approaches will use
approximate matching and result in three categor-
ies: match, uncertain, non-match. The objective in
all automatic approximate algorithms is to minim-
ize the uncertain region which requires manual
resolution by an individual. There are several good
surveys9–15 and recent advances in new learning
methods for automatic matching.16–21
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Uncertainty in record linkage
In all approximate matching methods, real-world entities which
share similar identifying information (eg, twins and family)
result in a certain number of false matches.3 5 22 In addition, in
health informatics application, there are substantial ethical and
liability issues involved in the potential corruption of the inte-
grated patient data system that can result from these false
matches.6–7 23 24 At the same time, conservative matching
methods which can miss many true matches, may result in selec-
tion biases.4–5 25 Not properly accounting for linkage error,
both false matches and missed true matches, can cause serious
harm as the erroneous links propagate to subsequent steps in
the workflow.6 7 22–30 Bronstein et al4 found that when match-
ing Medicaid claims data to vital records, the resulting matched
analytic datasets tend to under-represent the outcomes of high-
risk pregnancies. Baldi et al found that the covariates in the Cox
regression models can be biased due to not capturing all true
links when analyzing survival rate in a cohort of patients with
breast cancer.25 Lahiri and Larsen propose a method for taking
into account the measurement error in the linkage process when
building a linear regression model between linked variables.26

Tancredi and Liseo present a more general model for propagat-
ing the uncertainty between the parameter estimation step and
the matching procedure using a hierarchical Bayesian
approach.27

Currently, most research treats linked data as if there are no
errors. This convention is perpetuated because most scientists
using the linked data are not involved with the linkage process7

and do not fully appreciate the complex process or the uncertain-
ties in the linked data. Researchers who use linked data need a
better understanding of the nature of uncertainty in the linkage
process and more research is needed on methods of propagating
the uncertainty in record linkage to subsequent analysis.25–29

Interactive record linkage
Linkage errors propagate into the linked data and its analysis
results leading to potential problems with incorrect results, and
eventually incorrect knowledge and action. Thus, interactive
record linkage, defined as people fine tuning the false matches
and managing the uncertainty and its propagation to subsequent
analyses, is the first step in the data workflow to turn Big Data
into useful biomedical information.3–5 31 We define the properly
tuned output from such a hybrid human–machine data integra-
tion system as high quality record linkage.

Recently, there has been more research on interactive record
linkage that takes advantage of human interaction either
through active learning systems or crowdsourced systems32–38

after a study described the limitations of the techniques in auto-
matic record linkage for real applications.39 More research is
needed on interactive record linkage systems that allow the sci-
entist to tune the linkage results and manage the uncertainty in
the subsequent analysis. The importance of human interaction
in record linkage to resolve the many uncertainties in the
process is demonstrated well in Bronstein et al.4 Their paper
describes a method for matching pregnancies from Medicaid
data to birth records using probabilistic record linkage that
involved 11 manual steps. There were multiple uncertainties
that needed human decisions during the process. For example in
step 4, of 46 364 pregnancies the authors were trying to match,
4369 linked to more than one vital record and 9400 had no
match to any vital record. Eventually after multiple iterative
data cleaning and matching steps, the authors identified 43 500
completed pregnancies that should be documented in vital

records, 5278 of which were not found (87.9% match rate).
This is similar to the 90% match rates found in linking medcaid
and vital statistics records in other states in the USA. With no
human interaction, the match rate would be much lower. Such a
high level of human interaction and iteration is common in
medical record linkage studies.3–5

Privacy in record linkage
Given the sensitivity of biomedical data, privacy is a major
concern in interactive record linkage where data cannot be
de-identified. In particular, in secondary data analysis the
research question is not known at the time of data collection,
making informed consent, the most common form of protection
in biomedical research, difficult. In most cases, general blanket
consent for research along with IRB review of the risks and ben-
efits of research, is the only option available. In 2001, the US
Government Accountability Office (GAO) published a report on
technologies for privacy protection in record linkage in federally
funded projects.40 Much is still the same with only two modes
of access for research, de-identify mode and trust mode.
De-identified data cannot be linked and the trust mode provides
little protection from trusted users requiring high level clearance
for those doing the linkage. In addition, with trusted third-party
linkages, scientists are unaware of the uncertainty in the linkage
process and how to propagate this uncertainty in the analysis
downstream.22

Privacy protection in record linkage is fundamentally different
from all other privacy preserving data operations41 42 because
the goal is to exactly identify the entity represented by the data
being linked, so that the tables can be accurately merged.22

Thus, there is a direct conflict with the conventional under-
standing of privacy as anonymity. More precisely, anonymity is
preventing identity disclosure. In comparison, attribute disclos-
ure refers to the disclosure of one or more sensitive attributes
(eg, cancer status). Although related, identity disclosure is only a
necessary condition for attribute disclosure, not a sufficient con-
dition. Identity disclosure without attribute disclosure has a low
risk of harm.22 43–47 For safe interactive record linkage, we need
to find the exact level of information disclosure that protects
sensitive data but reveals enough identifying data for high
quality linkage.

Thus, a model focusing on guaranteeing no attribute disclos-
ure while also minimizing identity disclosure has the potential
to significantly reduce the risk of privacy violation while still
allowing for high quality data integration.46 47 It is important to
note that the current norm for data integration in the USA is
full disclosure of all information to a fully trusted human entity,
often called the honest broker; for example, full disclosure of
both attribute and identity to certain trusted parties for certain
purposes is HIPAA (Health Insurance Portability and
Accountability Act) compliant.2–7 Often, the trusted party is a
government or hospital employee, or business associates who
must access identifying information for operations.7 Typically in
biomedical research, the trusted party is responsible for main-
taining a master patient index (MPI), and this index is used to
integrate data. The quality of MPI varies widely and most MPIs
have duplicates that must be cleaned during the linkage
process.6

In this current trust model, there is no protection from
insider attack. The main threat model in the interactive linkage
process is an honest-but-curious (HBC) user who follows proto-
col48 but carries out an insider attack, which accounts for close
to half the breaches in the USA.49 In a survey of over 600
people, 46% of the respondents answered that the damage
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caused by insider attacks is greater than that caused by outsider
attacks, with the most common insider e-crimes being unauthor-
ized access to and use of information (63%) and unintentional
exposure of private and sensitive data (57%).49 By focusing on
giving trusted parties access to only the minimum information
required, unintentional exposure of sensitive data can be signifi-
cantly reduced.

PRIVACY PRESERVING RECORD LINKAGE
For our systematic review of the topic, we modified the guide-
lines of the Center for Reviews and Dissemination.50 Figure 1
details the workflow with specifics provided in the online sup-
plementary appendix. Here we present the three themes that
emerged from the 71 articles reviewed in two separate sections,
‘Privacy preserving record linkage’ and ‘Privacy preserving inter-
active record linkage.’

Private record linkage
On the theoretical front, there have been ongoing efforts to
develop PPRL algorithms since 2003.51 Private record linkage is
defined as computing the set of linked records given as input a
matching function and then outputting them to the two private
parties without revealing anything about the non-linked records.
The first generation of private record linkage algorithms relied
on hash-based algorithms.51 52 The use of hashes resulted in
strong privacy guarantees but was limited to exact matching
algorithms. This led to the second generation of algorithms that
developed private string comparison methods (eg, Bloom filters)
for private approximate matching.53–60 Secure multi-party com-
putation (SMC) is also a common approach to protect against
cryptographic attack. Several surveys of private record
linkage61–64 and privacy-preserving string comparators65 have
been carried out. Recently, Kuzu et al proposed a practical
private record linkage system demonstrating the effectiveness of
controlled information disclosure via obfuscated data and
SMC.66 67 However, they still formulate the problem as private
record linkage with a known matching function and ambiguous
links.

In summary, private record linkage involves two private
parties who are trying to share minimum information with each
other and assumes that the matching function between the
tables is known. The goal is to apply the known matching func-
tion in a secure manner. There are two problems in this formu-
lation. First, if the matching function is not known, as in most
applications, the algorithms cannot be used. Second, there is no
possibility of clerical review of the ambiguous links or human
interaction during linkage because one of the assumptions is
that the private data must not be revealed to the other party.

Consequently, the major challenges for real applications are
that, without human interaction, there is no method for finding
the matching function and resolving the ambiguous links. All
reviews of private record linkage identify these as open
issues.61–64

Trusted third-party linkages
In practice, published research using linked data uses a trusted
third-party model.2–7 In the USA, the National Center for
Health Statistics or state centers for health statistics often play
the role of a trusted third party. Internationally, several countries
have linkage centers whose main role is to determine the match-
ing function manually and link data for research as the trusted
third party. Many linkage centers have succeeded in building
systems for integrating population health records with good pro-
tocols for privacy protection,5 68–76 sometimes called the
pseudonym approach. Such centers rely on separation of the
identifying information from the sensitive information for
privacy protection.5 75–78 Dedicated record linkage experts have
access to only the identifying data with no access to sensitive
data, and furthermore are not involved with subsequent research
using the linked data. In these linkage centers, there is signifi-
cant reliance on the human expert for high quality record
linkage and maintenance of a master population list to which all
data are linked. Hertzman et al75 describe this proactive linkage
as ‘linking each data set when it arrives from a data provider,
rather than project by project.’ Most linkage centers cover a
designated region, easing the burden of maintaining a master
population list, and operate in countries with uniformity in
health records and national identification numbers.

PRIVACY PRESERVING INTERACTIVE RECORD LINKAGE
In a heterogeneous health system, like that in the USA, the val-
idity and reliability of integrated health data is a significant
problem.5–7 22–24 In these settings, given the velocity and ver-
acity of Big Data, good incremental record linkage methods are
required for proactive linkage to work well since multiple data
continue to flow into the system with no shared unique identi-
fiers. However, incremental record linkage to maintain a coordi-
nated master list and its links to multiple data sources that
change over time is still largely an open research area. The lit-
erature confirms that high quality data integration as well as
managing uncertainty in Big Data require human interaction
throughout the entire workflow.1–7 22–30 Human interaction
means that data must be revealed to someone in some form
under some condition. In this section, we synthesize the litera-
ture to propose PPIRL, a novel framework with tractable
privacy and utility properties. We then review a system called

Figure 1 Systematic review process
workflow.
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Secure Decoupled Linkage (SDLink) as a possible implementa-
tion of the principles of PPIRL.

The main use case for the PPIRL framework is for those with
approval for full access to multiple data under the trust mode for
data integration. PPIRL is a framework that can protect against
HBC users in such situations. If successful, PPIRL can greatly
increase the throughput of record linkage by allowing many
more people, who have not obtained the highest trusted party
status (eg, graduate students), to be involved in the time consum-
ing steps of record linkage, creating the matching function, and
carrying out the clerical review. Furthermore, under certain con-
ditions, crowdsourcing parts of the process is possible.

The goals of PPIRL are to allow direct control of the match-
ing function and the matching uncertainty by the user while still
providing privacy protection, defined as no sensitive attribute
disclosure, during this interaction. In box 1, we present the
PPIRL framework.

The cost of privacy in PPIRL is the difference in quality of the
matching functions M0 and M. The key to solving the PPIRL
problem is to understand the minimum amount of information
required for the human user, H, to make accurate linkage deci-
sions and then to devise methods to disclose that information to
H without disclosing any of the sensitive attributes S1 and S2
from the databases R1 and R2. If we can disclose all of the infor-
mation required for generating the matching function M safely,
then the quality of the matching function M0 can be as good as
M and privacy can be guaranteed at no cost to utility.

Secure decoupled linkage
SDLink is a flexible, secure linkage system that implements the
key ideas behind PPIRL. Below we review the key privacy
design principles of the system.22 46 47

Privacy design 1: decoupling data
Decoupling refers to separating out, via encryption, the identify-
ing information (eg, personally identifiable information (PII))
from the sensitive data (eg, cancer status) that need protection
(figure 2).46 47 Decoupled data provide the same level of protec-
tion as de-identified data, but with more protection than is pro-
vided in the trust mode of access and more utility.22 46 47

Decoupling data follows the minimum necessary standard for
privacy protection and, during the record linkage process,
removes unnecessary information, that is, the information con-
necting the PII to sensitive data. The innovation in decoupling
data is to take a privacy-by-design approach and focus on select-
ively revealing information rather than hiding it. The key is to
understand the minimum information required for acceptable
linkage and then to design protocols to reveal, in a secure
manner, only that information.

Privacy design 2: computerized third-party linkage
As discussed above, the trusted third-party mechanism to protect
privacy is well understood. In the decoupled approach, a
researcher has access to computerized third-party software that
can access the PII in order to link the data. The researcher requests
that two decoupled tables be merged, after which the computer-
ized third-party software takes control and carries out the linkage.
In this process, the software actively interacts with the researcher
as needed for guidance on parameter settings (determining the
matching function) and resolving ambiguities (clerical review of
ambiguous links). Essentially, a decoupled data access system is a
computerized third-party equivalent to the human-run data
linkage centers that strictly controls information.

The main benefit of a computerized third-party model of
privacy protection is that it allows each project to have
maximum flexibility in its linkage to control the uncertainty in
real data. With properly designed third-party software acting as
an oracle, a person can interact frequently and inexpensively
with information held by the computer third party at the smal-
lest level (eg, asking how similar two encrypted SSNs are) in
order to manage uncertainty in the linkage. The decoupled
database software functions like a bank vault with security
deposit boxes that have well-developed security protocols for
importing and accessing datasets in the system. The system only
allows access to particular tables to those who have the appro-
priate decryption keys which are managed by the different data
custodians.

Privacy design 3: chaffing and universe manipulation
With decoupling, researchers cannot associate a particular row
of data with any PII disclosed during record linkage. But
researchers can combine what they know with the PII data
shown during interaction to make certain inferences and learn
sensitive information about people they know.46 47 The privacy
literature has shown that background knowledge can be used to
infer more information than is originally disclosed.44 45 For
example, in homogeneous data, attribute disclosure can occur
via group membership43 (eg, someone you know is on the list of
cancer patients). Thus, strict decoupling via encryption is not
sufficient to protect against attribute disclosure when identities
could be revealed during human interaction. The probability of

Box 1 Privacy preserving interactive record linkage
(PPIRL)

Problem statement (interactive record linkage, IRL) Let R1
and R2 be two private datasets, which cover data on subsets of
a population Ω, with non-sensitive attributes Q1 and Q2, and
sensitive attributes S1 and S2, respectively. The goal of IRL is to
construct an algorithm A that takes as input R1 and R2, and
outputs a function M: R1×R2→{match, non-match} AND a
function CM:R1×R2→[0,1]. The function CM is an automatic
function which outputs a probability score of match between 0
and 1 reflecting the confidence level of the match. The function
M is also automatically computed, but for selected mappings,
typically from uncertain regions, the output assignment can be
interactively changed by an informed human H. In IRL, the
human H has access to the full datasets R1 and R2, as well as
the output from CM to tune the final matching function M.
Problem statement (privacy preserving interactive record
linkage, PPIRL) The goal of PPIRL is to construct an algorithm,
A0 that outputs function M0 and CM0, which serves the same
purpose as algorithm A from IRL except that the sensitive
attributes S1 and S2, from the datasets R1 and R2, respectively,
are not disclosed to the human H. The human in PPIRL is thus
typically working with less data about the records being linked
but trying to still achieve the same level of quality in the
matching function M0.
Privacy objective To protect against sensitive attribute
disclosure, S1 and S2 are never revealed to H.
Utility objective (1) To generate the best matching function M0

possible by allowing a person H to fine tune the results; and (2)
to generate and communicate the confidence level CM0 to H, so
that uncertainty can be managed and propagated through the
full analysis workflow flexibly.
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attribute disclosure through group membership is dependent on
a variety of factors including any pre-existing information that is
known by the observer, the knowledge of the nature of the list,
and the uniqueness of the PII in the universe of the data.46 47

To overcome this, Kum et al46 47 evaluated three methods of
modification (figure 3): (1) chaffing: literally changing the
nature of the universe by adding fake data; (2) fabrication: chan-
ging the label/name of the universe presented to mislead the
user about the nature of the list; and (3) non-disclosure: hiding

the identity of the universe to reduce confidence by making the
list less tractable (eg, a list from the USA compared to a list from
Austin). The study showed that when the universe around the
data was not disclosed, 56% of the participants were uncertain
about the identity given a common name. Even for rare names, if
the list is chaffed and the universe is not disclosed, 66% of the
participants were uncertain about the identity.22 These results
show that through chaffing and universe manipulation, identity
disclosure can be minimized for both common and rare names.

Figure 2 Secure decoupled data.
Internally, the data is stored in a
decoupled data system (bottom),
which has the same level of privacy
protection as de-identified data (top
right), but is much more powerful
because researchers can link multiple
decoupled datasets safely. Decoupled
data allows for accurate record linkage
with no attribute disclosure.

Figure 3 Chaffing and Universe
Manipulation. Triangles: cancer
patients; cross-hatched circles: not
cancer patients. DA: Universe of all
cancer patients (eg, USA); LA: list of
subset of cancer patients being
reviewed for linkage which is more
tractable (eg, Austin); IanPII represents
the PII of someone that the reviewer
knows (eg, Ian who lives in Austin).
Since Ian is not a unique name, it is
unclear whether the PII represents the
same real world Ian that the reviewer
knows personally. (1) chaffing: literally
changing the nature of the universe by
adding fake data (eg, add blue circles
to red triangles); (2) fabrication:
changing the label/name of the
universe presented to mislead the user
on the nature of the list (eg, label DA
as DB and/or LA as LB, thus IanPII now
is presented as someone who lives in
Beijing, China, who could not be the
same Ian that the reviewer knows to
live in Austin); and (3) nondisclosure:
hiding the identity of the universe to
reduce confidence by making the list
less tractable. That is, by not disclosing
the label LA, the user must assume the
list represents a much larger universe
DA (eg, a list from USA compared to
list from Austin) The reviewer, who
knows an Ian living in Austin, loses
confidence in inferring the real identity
of IanPII when it is presented as an Ian
living in the USA compared to being
presented as an Ian living in Austin.
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Privacy design 4: minimum information sharing via recoding
What information is disclosed during the interaction with the
decoupled system determines the risk of disclosure.43–47

Figure 4 depicts a sample screen during the linkage process with
only the name being fully disclosed. The differences between
the attributes that are meaningful for record linkage are dis-
played instead of the raw data.46 47 For example, the gender
field only indicates same, different, or missing in one or both
fields. Identity (ID) numbers which are PII with a risk of harm
(eg, SSN), are displayed as the number of different digits and
transposes. DOB comparisons are made on an element to
element basis for month, day, and year. In addition, transpose of
month and day is accounted for as well as transposes within one
element. Determining meaningful differences in names is the
most difficult. Table 1 depicts different levels for data recoding
of names from left (high disclosure) to right (low disclosure).
More research is required to understand what level of informa-
tion will result in acceptable levels of high quality linkages from
interactive record linkage.

Comparing PPIRL with existing data linkage methods
Although many private record linkage systems have strong
privacy guarantees, it is assumed that the matching function is
known and thus has a different objective than PPIRL. The use
case for PPIRL is similar to that in the linkage centers where
there is one trusted party with access to all the required data for
linkage. The trusted third-party model can, to some extent,
meet the privacy objective of PPIRL if the sensitive data are iso-
lated from the identifying data. However, better documentation
is required on the detailed protocols to handle threats by the
HBC trusted users who can disclose information unintentionally
and/or access unauthorized data. As discussed above, separation
alone will not guarantee that no attribute is disclosed due to
homogenous group membership. On the other hand, the
SDLink platform can guarantee no sensitive attribute disclosure
by: (1) decoupling sensitive data from identifying data via
encryption; (2) using chaffing to block against attribute disclos-
ure via group membership along with universe manipulation;
and (3) recoding to minimize identity disclosure.

Figure 4 Data recoding techniques.47

The SDLink GUI applies data recoding
techniques which display the difference
between the attributes that are
meaningful for record linkage instead
of the raw data. For example, the
gender field only indicates, same[−],
different[D], or missing[M] in one or
both fields. DOB, date of birth; SSN,
social security number.

Table 1 Different data recoding techniques for names

Record no. Full disclosure Remove identical strings Edit distance if small Edit distance

Length:edit distance
and frequency Binary

111 Gray Gray –a- –a- 4:1 Rare DIFF
Grey Grey –e- –e- 4:1 Common DIFF

112 Parker II ––– II ––– II ––– II 7:1 Common DIFF
Parker ––– ––– ––– 6:1 Common DIFF

113 Balmer Balmer B––- B––- 6:1 Common DIFF
Palmer Palmer P––- P––- 6:1 Common DIFF

114 Richards –––– –––– –––– 0 Very common SAME
Richards –––– –––– –––– 0 Very common SAME

115 Carey Carey Carey –-ey 5:2 Common DIFF
Carr Carr Carr –-r 4:2 Common DIFF

116 Smith Smith Smith -mith 5:4 Very common DIFF
S S S - 1:4 Rare DIFF
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The first utility objective of generating the best possible match-
ing function by a human expert is met in the linkage centers.
However, the objective at the linkage centers is to maintain a
global optimal matching function for all data at all times, which
can be difficult in many circumstances involving continuously
changing heterogeneous data. In comparison, the SDLink plat-
form has been built to allow for finding a local optimal matching
function on a per project basis depending on the data required to
be merged for a given study. In reality, developing totally new
matching functions for every project will be too expensive. But,
the ability to optimize existing matching functions per project
will allow for better tuning of linkage results and less uncertainty
because the scope of the problem per project is significantly
smaller than the global problem. Although PPIRL only discusses
one matching function M0 for simplicity, in reality there are mul-
tiple matching functions that meet the diverse needs of different
projects.79 A flexible system that can efficiently support multiple
matching functions is required to give the scientists the control
they need over the data to propagate and manage the uncertainty
of Big Data. The SDLink platform is a safe infrastructure that can
be utilized by many scientists to carry out all aspects of record
linkage research including a model for uncertainty propagation
while protecting privacy.

Discussion of PPIRL and SDLink
To the best of our knowledge, the research on SDLink platform
is based on good privacy designs, reviewed in detail in this paper,
and best meets both the privacy and utility objectives of PPIRL.
SDLink proposes a platform to improve on the existing record
linkage centers in terms of both privacy and utility. Nonetheless,
it is unclear how effective the privacy designs proposed will fare
against more vicious adversaries with background information.
More research is required on precisely what information a
person needs for tuning the linkage results and the harm that can
result from release of just that information given the readily avail-
able background information in the digital age. Any wide table
with many attributes required for biomedical research when com-
bined with publically available background information may
release more information than is safe even if it is de-identified.
Thus, along with privacy research that guarantees the minimum
release of information required for biomedical research, better
research is needed on how to make sure that the information
released is properly protected. The strongest confidentiality pro-
tection is provided by secure data centers that strictly control
physical access to the data by not allowing remote access.
However, the various costs associated with such data centers are
prohibitive. Thus, a data infrastructure based on a more holistic
coordinated approach that combines methods from technology,
statistics, policy, and ethics is required so that Big Data can be
used for biomedical research.5 7 22 31 80 An extensible platform
for building a comprehensive knowledge base that meets the
needs of biomedical research is quite complex and managing
digital entities is at the core of the problem. Bellare et al present
a good starting point for continuously maintaining huge numbers
of digital entities for a continuous knowledge base in the context
of search engines79 that should be extended with privacy guaran-
tees for biomedical research.

CONCLUSIONS AND FUTURE WORK
Privacy preserving data integration is key to any data intensive
biomedical research using Big Data. Given the volume, variety,
velocity, and veracity of Big Data, tuning the results of

automatic record linkage algorithms via human interaction is
the only way to achieve high quality record linkage as well as
manage and propagate the uncertainty in the linked data. A
properly designed computerized third-party platform, such as
SDLink, that can precisely control the information disclosed at
the micro level and allows frequent human interaction during
the linkage process, is an effective human–machine hybrid
system that can accurately and safely integrate Big Data for bio-
medical research.

Sometimes the quality of linkage can be improved when sensi-
tive data are available during linkage. For example, sorting
through twin records is easier done with sensitive data. The
right trade-off between the quality of linkage and protection
must be case dependent and should be determined by an IRB
based on the risk and benefit, considering issues such as who
are doing the linkage, on what computer system and with what
software, and for what purpose. Most importantly, for popula-
tion level research, as long as there are means to propagate and
bound errors from linkage the optimal linkage may not be
required. More research is needed on: (1) precisely what infor-
mation is required for good linkage decisions; (2) how to dis-
close only that information in an effective and safe manner; (3)
possible threats from and countermeasures against more aggres-
sive adversaries; and (4) how to propagate the uncertainty in
record linkage to subsequent analysis steps.
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