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Abstract
The coupling of carbonyl electrophiles at the donor position of donor-acceptor cyclopropanes is
described, representing an inversion of polarity with respect to conventional reactivity modes
displayed by these reagents. Specifically, upon exposure of donor-acceptor cyclopropanes to
alcohols in the presence of a cyclometallated iridium catalyst modified by (S)-BINAP, catalytic C-
C coupling occurs to provide enantiomerically enriched products of carbonyl allylation. Identical
products are obtained upon isopropanol mediated transfer hydrogenation of donor-acceptor
cyclopropanes in the presence of aldehydes. The reaction products are directly transformed to
cis-4,5-disubstituted δ-lactones.

Cyclopropanes are useful synthetic building blocks for organic synthesis due to their
multifaceted reactivity and relative ease of preparation.1 Donor-acceptor (D-A)
cyclopropanes are a particularly useful subset capable of reacting with diverse partners upon
exposure to the proper kinetic trigger.2 All polar reactions of D-A cyclopropanes involve
nucleophilic trapping at the donor site and electrophilic trapping at the acceptor site, as
illustrated in stereoselective syntheses of five and six-membered ring products (Figure
1a,b).3 Although inversion or umpolung of these polarity patterns would increase the
diversity of products accessible from D-A cyclopropanes, such reactivity remains elusive
(Figure 1a,d).4 Here, we report that exposure of donor-acceptor cyclopropanes to
cyclometallated iridium catalysts results in the umpolung of D-A cyclopropanes, resulting in
electrophilic trapping at the donor site, as illustrated by the enantioselective C-C coupling of
D-A cyclopropanes and carbonyl electrophiles to furnish δ-lactones.
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The reaction of D-A cyclopropanes with transition metals to form electrophilic π-allyl
intermediates is an established mode of reactivity used to prepare carbo- and heterocyclic
products (Figure 1c).5 While the generation of nucleophilic π-allyls from D-A
cyclopropanes is unknown (Figure 1d),4 the feasibility of umpoled carbonyl additions
involving D-A cyclopropanes is suggested by recently developed reductive couplings of
allylic carboxylates to carbonyl partners catalyzed by ortho-cyclometallated iridium C,O-
benzoates.6,7 A unique feature of such iridium catalyzed carbonyl allylations resides in the
use of alcohols as terminal reductants, allowing highly enantioselective carbonyl addition
from the alcohol or aldehyde oxidation level in the absence of stoichiometric metallic
reagents. Although similar capabilities may be envisioned for corresponding D-A
cyclopropane-mediated processes, π-allyl generation requires a malonic ester moiety to
function as an efficient nucleofuge for oxidative addition,7 which at the onset of these
studies had not been demonstrated for iridium. Further, as reported by one of the present
authors,5d under the conditions of palladium catalysis, D-A cyclopropanes and aldehydes
combine by way of π-allyl intermediates to form tetrahydrofurans (conceptualized in Figure
1c). Thus, the proposed umpoled process must compete with an efficient π-allyl mediated
transformation involving identical reactants, rendering the outcome of this endeavor
uncertain.

Vinylcyclopropane 1a is prepared directly from the commercial reagents dimethyl malonate
and (E)-1,4-dibromobut-2-ene.5d In preliminary experiments, vinylcyclopropane 1a (200
mol%) and benzyl alcohol 2a (100 mol%) were exposed to the chromatographically isolated
π-allyliridium complex (R)-I (5 mol%) at 50 °C under conditions effective for related
crotylations employing α-methyl allyl acetate.7d Gratifyingly, the desired adduct 4a formed
as a single regioisomer with nearly complete levels of diastereo- and enantioselectivity,
although the isolated yield was modest (Table 1, entry 1). The diastereoselectivity observed
in the formation of 4a is amplified by competing base-catalyzed lactonization arising
predominantly from the minor diastereomer. As all atoms in vinylcyclopropane 1a and
alcohol 2a appear in the product, it was postulated that exogenous base may be unnecessary
and, in fact, may impede reaction. While upon omission of K3PO4 adduct 4a is not formed
(Table 1, entry 2), a decreased loading of K3PO4 (5 mol%) dramatically improved the
isolated yield of 4a (Table 1, entry 3). Upon a slight increase in temperature (Table 1, entry
5) and decrease in the loading of vinylcyclopropane 1, adduct 4a was produced in 84%
isolated yield with good levels of diastereoselectivity and excellent levels of
enantioselectivity (Table 1, entry 6).

These latter conditions were applied to benzylic alcohols 2a and 3a, allylic alcohols 2c and
2d and aliphatic alcohol 2e. Good isolated yields of the corresponding adducts 4a–4e were
observed and, in each case, good levels of diastereoselectivity were accompanied by
exceptional levels of enantiocontrol (Table 2). As observed in prior studies,6,7 an identical
set of adducts 4a–4e are accessible from the aldehyde oxidation level upon use of i-PrOH
(200 mol %) as the terminal reductant under otherwise identical reaction conditions. Again,
good isolated yields, diastereo- and enantioselectivities were observed (Table 3). Thus,
umpoled D-A cyclopropane-mediated carbonyl allylation occurs with equal facility from the
alcohol or aldehyde oxidation level (Tables 2 and 3). The absolute stereochemical
assignment of adducts 4a–4e is made on the basis of single crystal x-ray diffraction analysis,
as described in the Supporting Information.

To explore the utility of the coupling products, adducts 4a, 4b and 4e were subjected to
conditions for Krapcho decarboxylation, resulting in formation of cis-4,5-disubstituted δ-
lactones 5a, 5b and 5e. Notably, lactones of this type appear as substructures in natural
products such as leustroducsin8 and phoslactomycin9 (Scheme 1). The range of compounds
availed through this approach is expanded further through variation of the acceptor group, as
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in D-A cyclopropanes 1b, which incorporates a phosphonoacetate moiety. D-A
cyclopropanes 1b reacts with either benzyl alcohol or benzaldehyde under standard
conditions to provide adducts 6b and 6c, respectively. The methine adjacent to the acceptor
groups of adducts 6b and 6c represents a third, undefined stereogenic center, requiring
evaluation of diastereo- and enantioselectivity at a subsequent stage. For compound 6b,
Horner-Wadsworth-Emmons reaction with paraformaldehyde occurs with concomitant
saponification to provide the methylidene carboxylic acid, which upon exposure to
dicyclohexylcarbodiimide (DCC) is transformed to the α-methylene glutarolactone 7.
Enantiomeric excess was determined at this stage (Scheme 2).

In summary, we report the first umpoled reactions of D-A cyclopropanes, as illustrated by
diastereo- and enantioselective iridium catalyzed D-A cyclopropane-mediated carbonyl
allylations from the alcohol or aldehyde oxidation levels. These studies open new routes to
optically enriched cis-4,5-disubstituted δ-lactones. Of broader significance, identification of
the structural and interactional features of the catalytic system required for polarity inversion
provide a foundation for the development of related C-C coupling processes.
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Figure 1.
Lewis acid and transition metal activation D-A cyclopropane methods of activation.
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Scheme 1.
Formation of cis-4,5-disubstituted δ-lactones 5a, 5b and 5e via Krapcho decarboxylation.a
aConditions A: LiCl (500 mol%), 3Å MS, DMSO (1 M), 150 °C. Conditions B: NaCl (500
mol%), DMSO (0.2 M), 160 °C.
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Scheme 2.
Reactions of D-A cyclopropanes 1b which incorporates a phosphonoacetate.a
aReagents: (a) As described for Table 1 using catalyst (R)-I. (b) K2CO3, CH2O, H2O, 60 °C.
(c) DCC, DMAP, CH2Cl2, 23 °C.
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Table 2

Donor-acceptor cyclopropane-mediated carbonyl allylation from the alcohol oxidation level.a

a
As described for Table 1.
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Table 3

Donor-acceptor cyclopropane-mediated carbonyl allylation from the aldehyde oxidation level.a

a
As described for Table 1.
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