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Abstract

The solution photochemistry of bis(phenylpyrrolidinonyl)ketones (R,R)-1b and (S,S)-1b exhibited

a remarkably high memory of chirality. Stereospecific decarbonylation to products (R,R)-3b and

(S,S)-3b, respectively, occurred with an ee of ca. 80%. The reaction is thought to occur along the

single state manifold by sequential Norrish type-I α-cleavage decarbonylation, and radical–radical

combination in a time scale that is comparable to that required for the radical intermediate to

expose its other enantiotopic face by rotation about an axis perpendicular to that of the p orbital

(ca. 3–7 ps). The absolute configuration of a key intermediate and that of ketone (R,R)-1b were

determined by single-crystal X-ray diffraction and the ee values of the photochemical products

with the help of chiral shift reagent (+)-Eu(tfc)3 and chiral LC-MS/ MS. On the basis of the ee and

de values at 25 °C, it could be determined that ca. 70% of the bond forming events occur with

double memory of chirality, ca. 21% occur after rotation of one radical to form the meso product

(R,S)-3b, and only 9% occur after double rotation to form the opposite enantiomer. This report

represents the first example of a doubly enantiospecific Norrish type-I and decarbonylation

reaction in solution and illustrates potentially efficient ways to obtain compounds with adjacent

stereogenic quaternary centers.

Introduction

Reactions that display memory of chirality (MOC) were first observed by Seebach in 19811

but a formal definition was suggested by Fuji only about 10 years later.2 MOC reactions

occur enantiospecifically from reactants with sp3-hybridized chiral carbons through

configurationally labile intermediates, such as carbanions, radicals, or cations,3 in the
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absence of externally resolved chiral influences.4 MOC reactions defy the normal

consequences of compromising the integrity of a chiral center by preserving its

stereochemical information in the form of relatively long lived chiral conformations, which

selectively expose one of the enantiotopic faces of the reactive intermediate to the incoming

reagents.5 The structural attributes involved in MOC reactions vary widely.4 They include

examples where the central chirality of the reactant is transiently stored in the form of

axial2,6 or planar7 chirality, and cyclic structures with large inversion barriers.8-10

In the course of studying C–C bond-forming reactions by the photoinduced decarbonylation

of hexasubstituted ketones, we became interested in exploring the scope and potential of

their unique double memory of chirality (2MOC). While it is clear that the stepwise two-

bond cleavage reactions compromise the stereochemical integrity of the two stereogenic

centers (Scheme 1), we have shown that highly efficient 2MOC can be observed when the

corresponding radical pairs are generated within crystalline ketones.11,12 Since large-

amplitude molecular motions are energetically disfavored, reactions in the solid state are

faster than radical rotation and the chiral information of the two stereocenters is maintained

in the relative orientation of the enantiotopic faces of the two radicals.13 An intriguing

alternative that would make it possible for 2MOC reactions to occur efficiently in fluid

solvents would necessitate reactants with time scales for decarbonylation and bond

formation that are faster than the time it takes for the two radicals to rotate within the solvent

cage. Knowing that the time constants for rotation of medium size molecules in fluid

solvents (e.g., benzene) fall in the 5–20 ps range,14 one may expect that competent 2MOC

photochemical reactions will occur from the singlet excited state with reactants that have

essentially no barrier for each of the two bond-cleavage steps, and which also have a spin-

allowed bond forming reaction.15 While it would appear that finding reactants capable of

satisfying these conditions should be very unlikely, there are a few notable examples of

radical pair reactions that occur with a significant MOC at one chiral center in solution, such

as the photo Arbuzov reaction of optically enriched arylmethyl phosphites16 and arylmethyl

phosphordiamidites,17 and the photodecarboxylation of optically enriched esters from (+)-

or (−)-2-methylbutyric acid and 2,4,6-trimethylphenol.18 In this paper, we are pleased to

report our results on bis-(N-methyl-phenylpyrrolidinonyl)-ketones (R,S)-1b, (RR)-1b, and

(S,S)-1b (Scheme 2), which undergo a photodecarbonylation reaction with double memory

of chirality through radical intermediates formed at the two α-carbons.

Our initial observations were carried out with diastereomerically pure samples of the N-

para-methoxybenzyl analogue dl-1a and meso-1a, which were obtained by the stepwise

coupling of 2 equiv of the 3-phenyl-pyrrolidinone anion 2-Li with a suitable carbonyl

equivalent (Scheme 2, paths i and ii).19 As described in a previous communication, we were

surprised to discover that the photochemical reaction of meso-1a and dl-1a in dilute benzene

solutions yielded the decarbonylation products meso-3a and dl-3a in a highly

diastereospecific manner (path iii).19 The diastereomeric selectivity in the case of meso-1a
was 2:1 in favor of meso-3a, and it changed to 1.0:2.4 in favor of dl-3a when the reaction

was carried out with dl-1a. After showing that free radicals obtained by oxidation of the Li

enolate of 2a or by triplet sensitized irradiations have a 10:3 preference toward the dl-

diastereomer (path iv),19 we concluded that the stereochemical information of the reactants
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must be preserved by the radical pairs and relayed into the final product. Recognizing that

this observation constitutes an unprecedented example of 2MOC, we set out to confirm those

results by determining the enantiospecificity of the reaction with samples of the optically

pure N-methyl analogue 1b.

We selected N-methyl derivative 1b after showing that combination of N-methyl-3-

phenylpyrrolidinone-3-yl free radicals 2• obtained by oxidation of the carbanion 2-Li with

CuBr2 have no diastereomeric preferences for either dl-3 or meso-3. Independent

photochemical experiments with dilute benzene solutions of meso-1b and dl- 1b confirmed

that these reactions are also diastereospecific, giving their corresponding diastereomers in a

65:35 ratio. Subsequent experiments carried out with optically pure (R,R)-(−)-1b and (S,S)-

(+)-1b showed that product formation in benzene at 25 °C occurs with a significant 2MOC.

Detailed product analyses showed that 55–70% of the reactions occur with double retention,

21–35% by epimerization of a single radical center (single MOC), with only 9–12%

undergoing racemization. These results confirm that the threestep reaction must occur within

the time scale needed for a radical in the pair to expose its other enantiotopic face, which is

estimated to be ca. 10 ps using the Stokes–Debye–Einstein model.14 This observation was

confirmed also by studying the effect of temperature on the viscosity of the solvent and the

enantiospecificity of the reaction, and by the lack of timeresolved chemically induced

dynamic nuclear and electron polarization (CIDNP).20 A negative result in this case is

consistent with a radical pair that has no time to escape from the solvent cage and no spin-

sorting mechanism.

Results and Discussion

Synthesis and Characterization

Diasteromerically pure samples of dl-1b and meso-1b were obtained as described previously

by reaction of the lithium enolate of N-methyl-phenylpyrrolidinone 2b with phosgene or

carbonyl diimidazole (CDI) (Scheme 2).19 It should be noted that attempts to replace

phosgene with a less toxic carbonyl source were met with limited success. Trichloromethyl

chloroformate was effective in producing the same diastereomer d,l as phosgene but the

product was obtained in lower yields.

The pure enantiomers of 1b were prepared from the racemic acid (±)-6 by taking advantage

of a classic resolution with (R)-(+)-α-methyl-2-naphthalene-methanol, (R)-(+)-α-MNM

(Scheme 3).21 The diastereomeric esters (+)-4 and (–)-5 were separated by fractional

crystallization and their absolute configurations assigned with the help of an X-ray structure

of crystals of diastereomer 5 obtained from ethyl acetate/hexane, which was solved in chiral

space group P212121. On the basis of the known configuration of (R)-(+)-α-MNM, we could

unambiguously assign the (R,R) configuration to the naphthyl derivative (−)-5 (Figure 2a).22

Hydrogenolyses23 of the separate diastereomers gave the corresponding free acids (S)-(+)-6
and (R)-(−)-6 in quantitative yields. Optical rotations with nearly identical values and

opposite signs were confirmed along with the expected mirror image relation in their

circular dichroism (CD) spectra (Figure 1). The transformation of (S)-(+)-6 and (R)-(−)-6
into their corresponding acyl chlorides and subsequent reaction with the lithium enolate 2b-

Resendiz et al. Page 3

J Am Chem Soc. Author manuscript; available in PMC 2014 July 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Li gave the desired ketones (S,S)-1b and (R,R)-1b in a completely diastereoselective

manner. Their optical rotation and CD spectra showed signals of essentially identical

magnitudes but opposite signs (Scheme 3 and Figure 1). The structure of (R,R)-1b was

corroborated by X-ray diffraction with single crystals solved in the space group P41212

(Figure 2b).24

Diastereospecificity of the Photochemical Reaction of Ketones meso-1b and dl-1b in
Benzene at 25 °C

As a starting point for this study, we set out to determine the intrinsic selectivity of the

corresponding free radicals 2b• and to confirm that the diastereospecificity of the

photodecarbonylation of ketones 1b in order to determine the suitability of the N-methyl

protecting group. The intrinsic reactivity of free radicals 2b• was established by oxidation of

enolate 2b-Li with CuBr2 at −78 °C followed by further reaction at ambient temperature

over ca. 2 h. Isolation of the products indicated no diastereomeric preference for either

diastereomer, giving equimolar amounts of compounds dl-3b and meso-3b. This result can

be compared with the one obtained from N-para-methoxybenzyl-protected 2a•, which

displayed a 10:3 preference for the meso compound. In addition to showing no

diastereomeric bias in the radical coupling process, the less-bulky N-methyl substituent is

also an ideal probe for 1H NMR analysis.

Photolysis experiments were carried out on 2 mM deoxygenated benzene solutions of meso-

and dl-1b with a mediumpressure Hg Hanovia lamp with a Pyrex filter (λ > 290 nm). As

observed previously, the methylene, methyl, and phenyl aromatic hydrogens of the meso-

and dl-diastereomers are easily differentiated on the 500 MHz 1H NMR spectra, allowing us

to use integration to estimate the diastereomeric ratios. For example, the two equivalent N-

methyl groups of dl-3a and meso-3a give singlets at 2.82 and 2.54 ppm, respectively.

Satisfyingly, integration of the corresponding signals revealed that photolysis occurred with

an appreciable diastereospecificity, giving ratios of 0.68:0.32 and 0.37:0.63 for meso-3b and

dl-3b, respectively. The isolated yields of 3 were in the 40–50% range with the rest

corresponding to amide 2b (20–30%) and a few unidentified products.

Enantiospecificity of the Photochemical Reaction in Benzene at 25 °C

Irradiation experiments with the enantiopure samples (S,S)-1b and (R,R)-1b were carried out

in a similar manner and the product composition analyzed by a combination of 1H NMR,

chiral LC-MS/MS, and CD spectroscopy. The diastereoselectivity of the two reactions

determined by 1H NMR analysis of the crude reaction mixture was consistent with that

obtained with the racemic mixture. The integration for the dland meso-diastereomers

revealed a 65:35 ratio in favor of the chiral compound. Further analyses by 1H NMR and CD

were carried out after chromatographic separation of the two diastereomeric fractions. All

analyses by chiral LC-MS/MS were carried out with the crude reaction mixture.

A rapid but qualitative assessment of the 2MOC of the photodecarbonylation reaction was

established by CD measurements (Figure 3a). The samples obtained by

photodecarbonylation of (R,R)-3b and (S,S)-3b gave strong and opposite CD signals with

relatively sharp vibrational features that extend from ca. 250 to 290 nm (Figure 3A). It is
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interesting to note that CD spectra of (R,R)-3b and (S,S)-3b are highly reminiscent of the

spectra determined for the carboxylic acids (R)-6 and (S)-6 and quite different from the one

of the corresponding ketones shown in Figure 1. The relatively high resemblance between

3b and 6 is consistent with their common substituted benzene and lactam chromophore.

The ee of the chiral product samples was first established by measuring the ratios of the

signal corresponding to the N-methyl singlet, which was well resolved upon addition of the

chiral shift reagent (CSR) (+)-Eu(tfc)3 in CDCl3.25 The results of measurements with the

CSR are illustrated in Figure 3B-D with changes that occurred to the N-methyl signal. The

spectra shown in Figure 3B and C correspond to the racemic sample dl-3b before and after

addition of the CSR. A singlet at 2.87 ppm in Figure 3B is resolved into two equally intense

singlets at ca. 2.88 and 2.81 ppm (Figure 3C), as expected for an efficient diastereomeric

interaction between the bis-lactone enantiomers and the lanthanide center. The spectra

shown in Figure 2D and E, measured with the samples obtained upon photolysis of (S,S)-1b
and (R,R)-1b, respectively, indicate that signals at 2.88 and 2.81 ppm correspond to the

decarbonylated products (S,S)-3b and (R,R)-3b, respectively. Naturally, this assignment

assumes that the reaction occurs with retention and not with double inversion.

In addition to the good separation, the most striking feature of the spectra in Figure 3D and

E is the relatively highly enriched enantiomeric composition of the isolated products. While

integration of the 1H NMR signals carries a ca. ±10% uncertainty,26 the corresponding ee

values determined for the reaction of enantiopure (S,S)-1b and (R,R)-1b were ca. 70% ±

10%. Reactions carried out to low conversion helped establish that the starting material does

not epimerize under the reaction conditions, indicating that enantiomeric losses in the

product do not occur by recombination of RP1(b) (Scheme 4). We also established with

control experiments that the products are stable under the reaction conditions and that the ee

does not change as a function of conversion.

In order to eliminate potential isolation artifacts and aiming to confirm and improve the

accuracy of our measurements, we decided to develop an analytical protocol based on the

use of chiral LC-MS/MS. Chiral LC-MS/MS also provides several advantages over chiral

HPLC-UV detection. In addition to the high sensitivity, which allows us to work with small

quantities of the starting material, MS/MS detection is much more specific than

conventional UV detection, which does not distinguish different structures with the same

chromophore. We were able to specifically detect the ketone 1b and the photoproduct 3b by

their parent–daughter ionization transitions at 377.1/175.1 and 349.2/175.1, respectively, in

a multiple reaction monitoring (MRM) mode. This method allowed us to analyze reaction

mixtures with high certainty and without purification. Additionally, we were able to achieve

great chiral separation using Chiralpak 1B column (Figure 4). Peaks corresponding to the

meso-3b, (R,R)-3b, and (S,S)-3b displayed retention times of 6.5, 7.8, and 13.6 s with line

widths of ca. 0.3–0.5 s, leaving no ambiguity in the integration.

Once the LC-MS/MS method had been optimized, we confirmed the observations

previously determined by 1H NMR (Table 1). Solution photolysis of (S,S)-1b favored the

formation of (S,S)-3b (70% ± 7%) with smaller amounts of epimerization (21% ± 2%) and
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double inversion products (9% ± 1%). These results indicate a very efficient retention of

chirality and a very significant 2MOC.

Double Memory of Chirality

On the basis of the information described above and the suggested reaction mechanism,11

the likely sequence of events in the 2MOC reaction are illustrated in Scheme 4 with (S,S)-1.

The relevant coordinates are the time scale for the bond-breaking and bond-making steps,

depicted on the horizontal, and the time scale for rotation of the radicals about an axis

perpendicular to the radical p orbital, shown on the vertical axis. While bond cleavage and

formation involving the same face of the prochiral radical results in retention of

configuration, rotation about an axis perpendicular to the axis of the radical p orbital exposes

its enantiotopic face, leading to racemization of that center. It should be noted that bond

dissociation at an α-carbon with the S or R configuration correlates, respectively, with

formation of a radical center that exposes its prochiral re or si face with respect to the

direction of the radical formed at the other α-carbon. As illustrated with structures shown in

blue in the top row of Scheme 4, double memory of chirality requires that RP1(a), formed

by the Norrish type-I α-cleavage reaction, undergoes decarbonylation to RP2(a) and

radical–radical combination to (S,S)-3b with no radical rotation within the solvent-cage. The

rotation of a single radical leads to the epimer meso (R,S)-3 through solvent-caged radical

pairs RP1(b) and/or RP2(b). Rotation of the two radicals leads to the enantiomer (R,R)-3b,

which inverts the two stereocenters of the starting material. Thus, the retention of

configuration in the case of 1a (2MOC) suggests that cleavage of the ketone α-bond,

decarbonylation, and combination of the radical pair should occur within a time scale that

competes with rotation of the radical fragments in benzene at 25 °C. Naturally, this

hypothesis is based on the reasonable assumption that there are no strong interactions that

extend the lifetime of the radical pair.

To analyze the kinetic requirements of the 2MOC reaction, we assume that rates of bond

formation (kcomb) for singlet radical pairs are rate and product-formation limiting. In fact,

the quantum yield of reaction for ketone dl-1a is only ΦR = 0.05,19 indicating that RP1(a)
goes back to the starting material ca. 95% of the times. The fact that no ketone epimerization

is observed indicates that the rate of radical rotation is slower than the rate of

decarbonylation, krot < k–CO. This statement is based on the fact that transitions from RP1(a)
to RP2(b) would be recorded by formation (R,S)-1b. If we assume that radical pairs

combine with a similar rate, kcomb, and that all radicals rotate with a rate krot, the following

ordering is consistent with our experimental results: kcomb ≫ k−CO > krot. With this

assumption, the relative efficiency of the 2MOC reaction is approximated by

(1)

which is essentially the fraction of RP1 undergoing decarbonylation and bond formation as

compared to those where (at least) one of the two radicals rotates. The value 0.7 is taken

from the yield of double retention (2MOC product) determined by chiral LC-MS/MS in

Table 1, which indicates that k−CO is about 4.6 times faster than krot. This simple model

accounts for the amount of epimerization by single rotation (EPI) and the amount of double
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rotation (INV) if one assumes that radical rotations occur prior to decarbonylation, and that

multiple rotations are negligible. As the fraction of radical undergoing rotation (ROT) is the

complement of those undergoing reaction (eq 2), one can formulate the yields of

epimerization (EPI) and inversion (INV) as shown in eqs 3 and 4.

(2)

(3)

(4)

Experimental values of 70%, 21%, and 9% for 2MOC, EPI, and INV in Table 1 agree

remarkably well with this single passage model, suggesting that multiple radical rotations

and fractionation are relatively unimportant, as expected for a very fast bond forming

process.

Enantiospecificity of the Photochemical Reaction as a Function of Temperature

The time constants for rotation (1/krot) of the phenylpyrrolidinone radical 2• about its long

molecular axis in dilute benzene solutions at 298 K can be estimated as τrot = 6.5 ps using

the Stokes–Debye–Einstein model (τR = 4πηab2fC/3kBT).14 To obtain this value, we

assumed the molecular half axes as, a = 4 Å and b = 3 Å, the viscosity of benzene at 25 °C

as η = 0.60 cP, and we used the factors fC = 0.3 to account for the prolate shape of the

radical and a hydrodynamic slip boundary condition,27 which is known to provide a good

description for the hydrodynamic properties of small molecules in simple fluids.28 We note

that a value of τrot = 6.5 ps compares very well with the ca. 7 ps experimentally obtained in

benzene solutions for biphenyl, a compound that has a very similar size.29 In order to test

the mechanism in Scheme 4, we decided to explore the dependence of the 2MOC, EPI, and

INV efficiencies with the viscosity of the solvent by doing experiments in benzene as a

function of temperature. The results are summarized in Figure 5 with a plot of the product

fraction as a function of temperature between 25 and 69 °C. Also shown in the figure is a

line indicating the reported changes in viscosity of benzene, from 0.60 cP at 25 °C to 0.33

cP at 70 °C.30 Using the latter value, the time constant for radical rotation can be calculated

to decrease by a factor of 2 within this temperature range, i.e., τrot = 3.2 ps at 69 °C. As can

be seen in the figure, there is an excellent correlation between the 2MOC efficiency (solid

red line) and the viscosity of the solvent (dotted blue line). The product fraction of (S,S)-3b
decreases from 0.7 at 25 °C to 0.5 at 69 °C. This variation is accompanied by an increase in

the yield of the EPI product (S,R)-3b from 21% to 35% and an increase in the INV product

(R,R)-3b from 9% to 15% within the same temperature range. It is important to point out

that the yield of single rotation (EPI) is always greater than the yield double rotation (INV),

and that changes in the yield of single rotation occur at a faster rate than those for double

rotation. These observations relate to the fact that single and double rotations are

consecutive processes. Assuming the model of eq 1-4, one can see that a single passage

model can no longer account for the experimental observations at the higher temperature
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because multiple rotation events within the lifetime of RP1 will require a fractionation

model to account for variations in the yields of the isomers.

Computational Analysis of the Effects of Substituents of the Photodecarbonylation
Reaction

Knowing that the rates of α-cleavage and decarbonylation correlate with the stability of the

intermediate radicals,11,31 it was of interest to determine whether the calculated effects of

the phenyl and lactam groups would be consistent with reaction rates that take place in the

picosecond regime. Starting with the structural parameters obtained from the crystal

structure of ketone (R,R)-1b (Figure 2b), density functional theory (DFT) calculations were

carried out to optimize key stationary points along the reaction coordinate after α-cleavage,

decarbonylation, and radical–radical recombination. Enthalpies calculated by the

(U)B3LYP/6-31G* method, indicate that formation of RP-1 is exothermic by 33 kcal/mol

with respect to the spectroscopic singlet, and that subsequent formation of RP-2 is

exothermic by 13.7 kcal/mol (Figure 6).32 Moreover, the calculated activation energy for the

loss of CO from RP-1 is only 0.3 kcal/mol, which is consistent with a reaction rate of ca. 7.1

× 1011 s−1 calculated using eq 1 with the Stokes–Debye–Einstein radical rotation times. It

should be noted also that this rate constant matches well the value of the pre-exponential

factor determined for analogous reactions.33 Further evidence for an ultra fast α-cleavage,

decarbonylation, and combination reactions was obtained from the lack of time-resolved

chemically induced dynamic nuclear polarization (CIDNP) in the 1H NMR spectrum with

ketones (S,S)-1b, meso-1b, and dl-1b. These results are consistent with a solvent-caged

radical pair that has no time for evolution of the nuclear spin system and has no spin sorting

events that would form products with non-Boltzmann nuclear spin populations.15,20,34

Conclusions

The results reported in this paper confirm that the photodecarbonylation of bis(3-phenyl-2-

pyrrolidonyl)ketones react in fluid solution with 2MOC. A detailed analysis of the

diastereospecificity and enanatiospecificity of the reaction was used to calculate the fraction

of radical pairs that react with 2MOC by double retention, by rotation of a single radical

(EPI), and by double radical rotation (INV). When these values are analyzed in terms of the

times for radical rotation calculated with the Stokes–Debye–Einstein model in benzene, one

can estimate that the time constant of decarbonylation in this type of structures at 25 °C falls

within time scales of a few picoseconds. A qualitative confirmation of this analysis was

obtained by analysis of changes in the diastereospecificity and enantiospecificity of the

reaction from a series of measurements carried out in benzene as a function of temperature.

The exceedingly short lifetime of the solvent-caged radical pairs is also consistent with the

lack of CIDNP signals, which requires some time for the evolution of the spin system and a

spin-sorting mechanism. We believe that reactions with a double memory of chirality may

constitute useful probes to investigate the dynamics of low-viscosity fluids, both in

homogeneous and compartmentalized systems.15,35 From a synthetic perspective reactions

with a double memory of chirality offer opportunities for the synthesis of compounds with

adjacent stereogenic quaternary centers. However, when synthetic applications are

concerned, there are greater expectations for success in analogous reactions carried out in
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the highly viscous and ordered environment of the crystalline ketones.12 Ongoing work in

our group includes the incorporation of solid-state 2MOC reactions in the synthesis of

natural products.

Experimental Section

(3S)-(R)-1-(Naphthalen-3-yl)ethyl-1-methyl-2-oxo-3-phenylpyrrolidine-3-carboxylate (4)

A mixture of carboxylic acid 6 (0.6 g, 2.73 mmol) in oxalyl chloride (10 mL, 2 M in

methylene chloride) was stirred vigorously for a period of 14 h. The yellowish solution was

then concentrated under reduced pressure, washed with methylene chloride (10 mL),

concentrated, and dried under high vacuum. The yellow oil was dissolved in dry methylene

chloride (40 mL) and pyridine (10 mL), turning into a brown solution and stirred for one

hour followed by the slow addition of a solution of (R)-(+)-1-(2-naphthyl)ethanol (0.57 g,

3.31 mmol) in methylene chloride (5 mL) and stirred for additional 2 h. The mixture was

concentrated under reduced pressure and purified through column chromatography (silica,

CH3COOC2H5 (80%)/hexanes (20%)), yielding a yellow oil (0.24 g, 0.64 mmol, 23%) as a

pure fraction corresponding to compound 4. An additional amount of pyrrolidinone 4 (0.15

g, 0.40 mmol, 15%) was obtained by washing away the crystalline powders obtained from

diethyl ether solutions corresponding to the mixed fractions of compounds 4 and 5. [α]21
D =

+ 97.2, CHCl3. 1H NMR (CDCl3) 7.81–7.79 (m, 3H), 7.73 (s, 1H), 7.52–7.30 (m, 8H),

6.09–6.05 (q, 1H, J = 6.6 Hz), 3.36–3.34 (m, 1H), 3.28–3.25 (m, 1H), 2.98–2.94(m, 1H),

2.93 (s, 3H), 2.46–2.40 (m, 1H), 1.57–1.56 ppm (d, 3H, J = 6.6 Hz); 13C NMR (CDCl3)

170.7, 169.9, 138.7, 138.0, 133.0, 132.8, 128.3, 128.1, 128.0, 127.5, 127.4, 127.3, 126.0,

125.9, 124.6, 123.7, 74.0, 60.2, 46.2, 31.8, 30.3, 22.1 ppm. FTIR (neat) 1733, 1692, 1242

cm−1; HRMS (MALDI-TOF) m/z calcld for C24H23NO3 + Na 396.1576, found 396.0014.

(3R)-(R)-1-(Naphthalen-3-yl)ethyl-1-methyl-2-oxo-3-phenylpyrrolidine-3-carboxylate (5)

The same procedure as described above for 4 was followed for 5. [α]21
D = −74.7,

CHCl3. 1H NMR (CDCl3) 7.76–7.71 (m, 3H), 7.54 (s, 1H), 7.46–7.31 (m, 7H), 7.25–7.24

(m, 1H), 6.07–6.03 (q, 1H, J = 6.6 Hz), 3.44–3.41 (m, 1H), 3.28–3.26 (m, 1H), 3.03–2.96(m,

1H), 2.96 (s, 3H), 2.39–2.34 (m, 1H), 1.59–1.57 ppm (d, 3H, J = 6.6 Hz); 13C NMR

(CDCl3) 170.4, 170.0, 138.6, 138.3, 133.0, 132.8, 128.3, 128.0, 127.9, 127.5, 127.3, 127.2,

126.0, 125.8, 124.5, 123.8, 74.0, 60.3, 46.2, 31.9, 30.4, 22.2 ppm. FTIR (neat) 1726, 1686,

1237 cm−1; HRMS (MALDI-TOF) m/z calcld for C24H23NO3 + Na 396.1576, found

396.0021.

dl-1,1,Di-{3-[1-(4-methyl)-3-phenylpyrrolidin-2-one]yl}methanone (dl-1b)

To a cooled solution of (−78 °C) Me-protected pyrrolidinone 2 (0.277 g, 1.58 mmol) in

tetrahydrofuran (50 mL), lithium bis(trimethylsilyl)amide (1.7 mL, 1M) was added at once

and the reaction stirred for 45 min. Phosgene (0.4 mL, 20 mol % soln) was added over ~5

min, and the reaction mixture was left stirring upon warming up to −5 °C. The reaction was

then quenched with a saturated ammonium chloride solution and the organic components

were extracted with ether (3 × 40 mL). The combined extracts were washed with saturated

aqueous sodium chloride (60 mL). The solution was then dried over MgSO4, concentrated

under reduced pressure, and purified by column chromatography (silica, CH3COOC2H5
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(50%)/CH2Cl2 (50%)) resulted in a white crystalline powder of dl-1b (0.150 g, 0.39 mmol,

50%), mp = 133–135 °C. 1H NMR (CDCl3) 7.34–7.31 (m, 2H), 7.28–7.25 (m, 1H), 7.24–

7.21 (m, 2H), 3.34–3.27 (m, 2H), 3.1–3.05 (m, 1H), 2.87 (s, 3H), 1.92–1.87 (m, 1H), 1.92–

1.87 ppm (m, 1H). 13C NMR (CDCl3) 200.7, 171, 138.8, 128.6, 127.2, 127.1, 67.6, 46.4,

32.9, 30.4 ppm. FTIR (neat) 1685, 1491, 1399, 1272 cm−1; HRMS (MALDI-TOF) m/z

calcld for C23H24N2O3 + H 377.1865, found 377.1449.

meso-1,1,Di-{3-[1-(4-methyl)-3-phenylpyrrolidin-2-one]yl}methanone (meso-1b)

To a cooled solution of (−100 °C) Me-protected pyrrolidinone 2 (0.135 g, 0.77 mmol) in

tetrahydrofuran (20 mL), lithium bis(trimethylsilyl)amide (1 mL, 1M) was added at once

and the reaction stirred for 20 min. Carbonyl Diimidazole (CDI) (0.062 g, 0.38 mmol) was

added at once and the reaction mixture was left stirring with constant warming and cooling

from −115 to −75 °C over 4 h. The reaction was then quenched with a saturated ammonium

chloride solution and the organic components were extracted with ether (3 × 10 mL). The

combined extracts were washed with saturated aqueous sodium chloride (20 mL). The

solution was then dried over MgSO4, concentrated under reduced pressure and purified by

column chromatography (silica, CH3COOC2H5 (70%)/Hexanes (30%)) resulted in a white

crystalline powder of meso-1b (0.050 g, 0.13 mmol, 35%), mp = 195–197 °C. 1H NMR

(CDCl3) 7.48–7.46 (m, 2H), 7.35–7.32 (m, 2H), 7.26–7.22 (m, 1H), 3.31–3.26 (m, 1H),

2.99–2.96 (m, 1H), 2.76–2.71 (m, 1H), 2.56 (s, 3H), 2.33–2.27 ppm (m, 1H). 13C NMR

(CDCl3) 201.5, 170.3, 138, 128.2, 127.5, 127.4, 66.5, 45.6, 31.2, 29.9 ppm. FTIR (neat)

1712, 1677, 1495, 1271 cm−1; HRMS (MALDI-TOF) m/z calcld for C23H24N2O3 + Na

399.1685, found 398.9608.

(S)-1-Methyl-2-oxo-3-phenylpyrrolidine-3-carboxylic acid [(S)-6b]

H2 gas was bubbled into a solution of Naphthyl ester 4 (0.05 g, 0.11 mmol) in 10 mL of

ethyl acetate. Palladium on carbon 10 wt % (17 mg) was added and the flask was secured

applying a pressure of H2 (ca. 15 psi) with vigorous stirring for two hours. The black

suspension was filtered over a bed of Celite and the filtrate concentrated over reduced

pressure. Recrystallization with ethyl ether yielded the corresponding acid (S)-6 in

quantitative yields (0.023 g, 0.011 mol) as colorless crystals. [α]21
D = + 195.2, CHCl3. 1H

NMR (CDCl3) 7.43–7.37 (m, 5H), 3.39–3.36 (m, 2H), 3.10 (s, 3H), 2.93–2.87(m, 1H),

2.60–2.56 ppm (m, 1H); 13C NMR (CDCl3) 174.2, 170.7, 136.7, 129.1, 128.4, 126.0, 58.8,

45.9, 31.5, 30.4 ppm. FTIR (neat) 1726, 1653, 1212 cm−1; HRMS (MALDITOF) m/z calcld

for C12H13N2O3 + Na 242.0793, found 241.9872.

(S,S)-1,1,Di-{3-[1-(4-methyl)-3-phenylpyrrolidin-2-one]yl}methanone (S,S)-1b

A mixture of carboxylic acid (S)-6b (0.13 g, 0.59 mmol) in oxalyl chloride (10 mL, 2 M in

methylene chloride) was stirred vigorously for a period of 14 h. The yellowish solution was

then concentrated under reduced pressure, washed with methylene chloride (10 mL),

concentrated, and dried under high vacuum. The yellow oil was dissolved in dry

tetrahydrofuran and added to a flask containing the enolate form of 2 at −78 °C formed as

follows. To a cooled (−78 °C) solution of 2 (0.105 g, 0.6 mmol) in THF (10 mL) was added

lithium bis(trimethylsilyl)amide (0.65 mL, 1M) and stirred for 30 min. The mixture of the
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acyl chloride of (S)-6b and the enolate of 2 was stirred until a temperature of ca. −40° was

reached and then quenched with a saturated ammonium chloride solution; the organic

components were extracted with ether (3 × 20 mL). The combined extracts were washed

with saturated aqueous sodium chloride (20 mL). The solution was then dried over MgSO4,

concentrated under reduced pressure, and purified by column chromatography (silica,

CH3COOC2H5 (80%)/hexanes (20%)) resulting in a white crystalline powder of compound

(S,S)-1b (0.13 g, 0.34 mmol, 58%). [α]23
D = + 244.5, CHCl3. 1H NMR (CDCl3) 7.34–7.22

(m, 5H), 3.34–3.30 (m, 2H), 3.08–3.07 (m, 1H), 2.88 (s, 3H), 1.93–1.90 ppm (m, 1H); 13C

NMR (CDCl3) 200.7, 171, 138.8, 128.6, 127.2, 127.1, 67.6, 46.4, 32.9, 30.4 ppm. FTIR

(neat) 1685, 1491, 1399, 1272 cm−1; HRMS (MALDI-TOF) m/z calcld for C23H24N2O3 +

Na 399.1685, found 398.9867.

(R)-1-Methyl-2-oxo-3-phenylpyrrolidine-3-carboxylic Acid [(R)-6b]

The same procedure as that described for compound (S)-6b above was followed to obtain

the corresponding acid (R)-6b in quantitative yields in the form of colorless crystals. [α]21
D

= −194.1, CHCl3. 1H NMR (CDCl3) 7.46–7.36 (m, 5H), 3.39–3.36 (m, 2H), 3.10 (s, 3H),

2.93–2.87(m, 1H), 2.60–2.56 ppm (m, 1H); 13C NMR (CDCl3) 174.2, 170.7, 136.7, 129.1,

128.4, 126.0, 58.8, 45.9, 31.5, 30.4 ppm. FTIR (neat) 1726, 1654, 1211 cm−1; HRMS

(MALDI-TOF) m/z calcld for C12H13N2O3 + Na 242.0793, found 242.0539.

(R,R)-1,1,Di-{3-[1-(4-methyl)-3-phenylpyrrolidin-2-one]yl}methanone (R,R)-1b

The same procedure as that described for compound (S,S)-1 above was followed to obtain

the corresponding acetone (R,R)-1b in the form of white crystalline powders recording

slightly higher yields (69%). [α]23
D = −240.8, CHCl3. 1H NMR (CDCl3) 7.35–7.22 (m, 5H),

3.36–3.28 (m, 2H), 3.11–3.06 (m, 1H), 2.88 (s, 3H), 1.93–1.88 ppm (m, 1H); 13C NMR

(CDCl3) 200.7, 171, 138.8, 128.6, 127.2, 127.1, 67.6, 46.4, 32.9, 30.4 ppm. FTIR (neat)

1685, 1491, 1399, 1272 cm−1; HRMS (MALDI-TOF) m/z calcld for C23H24N2O3 + Na

399.1685, found 398.9422.

meso-3,3-Bis(1-methyl-3-phenylpyrrolidin-2-one) (meso-3b)

To a cooled (−78 °C) solution of 2 (0.19 g, 1.08 mmol) in dried and degassed

tetrahydrofuran (50 mL), lithium bis(trimethylsilyl)amide (5.4 mL, 1M) was added at once

and the reaction stirred for 25 min. Copper(II) bromide (1.21 g, 5.4 mmol) was added at

once and the reaction mixture was left stirring while slowly warming to room temperature

over a period of ca. 3 h. The reaction was then quenched with a saturated ammonium

chloride solution and the organic components were extracted with ether (3 × 10 mL). The

combined extracts were washed with saturated aqueous sodium chloride (20 mL). The

solution was then dried over Na2SO4, concentrated under reduced pressure, and purified by

column chromatography (silica, CH3COOC2H5). The first fraction was collected as a white

crystalline powder and identified as compound meso-3b (0.035 g, 0.1 mmol, 9.2%). 1H

NMR (CDCl3) 7.95–7.93 (m, 2H), 7.34–7.3 (m, 2H), 7.26–7.23 (m, 1H), 3.51–3.46 (m, 1H),

2.77–2.73 (m, 1H), 2.54 (s, 3H), 2.44–2.39 (m, 1H), 1.97–1.92 ppm (m, 1H); 13C NMR

(CDCl3) 173.9, 140.7, 128.8, 127.5, 127.1, 56.6, 46.1, 29.8, 29.3 ppm. FTIR (neat) 1667,
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1396, 1264 cm−1; HRMS (MALDI-TOF) m/z calcld for C22H24N2O2 + Na 371.1735, found

370.9512.

dl-3,3-Bis(1-methyl-3-phenylpyrrolidin-2-one) (dl-3b)

The same procedure to obtain compound meso-3 (above) was employed. Purification

through column chromatography (silica, CH3COOC2H5) resulted in the more polar fraction

being isolated as a white crystalline powder and identified as compound dl-3 (0.042 g, 0.12

mmol, 11.1%). 1H NMR (CDCl3) 7.33–7.27 (m, 5H), 3.5–3.46 (m, 1H), 3.2–3.17 (m, 1H),

2.85 (m, 1H), 2.82 (s, 3H), 1.81–1.78 ppm (m, 1H); 13C NMR (CDCl3) 175.5, 136.9, 129.1,

127.4, 127.2, 55.5, 45.4, 30.1, 29.0 ppm. FTIR (neat) 1669, 1397, 1269 cm−1; HRMS

(MALDI-TOF) m/z calcld for C22H24N2O2 + Na 371.1735, found 371.1153.

Enantiomeric Excess Determination for (R)- or (S)-3,3-Bis(1-methyl-3-phenylpyrrolidin-2-
one), (R)- or (S)-3

Benzene milimolar solutions (ca. 3 mM) of either (S,S)-1 or (R,R)-1 were prepared and

degassed with Argon gas for 30 min. All samples were placed at similar distances (ca. 10

cm) from a medium pressure Hg Hanovia lamp (λ > 290 nm) and stirred while keeping the

reaction at room temperature. The solutions were concentrated under reduced pressure and

purified through column chromatography (silica, CH3COOC2H5 (80%)/hexanes (20%)).

Dissolution of the corresponding products in CDCl3 followed by addition of 0.5 equiv of

europium tris[3-(trifluoromethylhydroxymethylene)-(+)-camphorate] lead to separation of

the corresponding N–CH3 signals. Integration of these signals provided the reported ee

values.

Variable-Temperature Photolysis

To perform variable-temperature experiments, a reaction setup was devised that would place

the sample in contact with the vapors of an appropriate refluxing solvent in order to maintain

the temperature as constant and as accurate as possible. For example, for a photolysis at 69

°C, a sealed tube with ca. 2 mM (S,S)-1b in deoxygenated benzene was suspended over

refluxing n-hexane and once the reflux had equilibrated the sample was exposed to the

output of the UV lamp. Additional experiments at 35, 41, and 56 °C were carried out,

respectively, under vapors of refluxing diethyl ether, dichloromethane, and acetone.

Time-Resolved CIDNP Experiments

These experiments were run on a 200 MHz Bruker instrument with 308 nm excitation of 13

mM samples of compounds (S,S)-1b, dl-1b, and meso-1b in deuterated benzene at room

temperature, with a 3 μs rf pulse. Samples were presaturated with random high-power rf

pulses to eliminate dark NMR signals. Spectra were acquired at 0, 20, and 100 μs after the

laser flash and showed no enhancement above Boltzmann spin state populations. A test

system of dicumyl ketone was run first at a similar optical density and with the same

spectrometer settings. The test system exhibited strong CIDNP signals at the same delay

times after the laser flash.
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Figure 1.
(Left) CD spectra of (S)-(+)-6 (blue line) and (R)-(−)-6 (red line). (Right) CD spectra of

(S,S)-(+)-1 (blue line) and (R,R)-(−)-1 (red line).
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Figure 2.
ORTEP diagrams of (a) (R)-(+)-α-methyl-2-naphthalene-methylester 5 (left) and (b) ketone

(R,R)-1b (right).
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Figure 3.
(A) CD spectra from samples of (+)-(S,S)-3b and (−)-(R,R)-3b. (B) 1H NMR signal the N–

CH3 protons in CDCl3 of a racemic sample, (C) of a racemic sample with (+)-Eu(tfc)3

added, (D) of a photolyzed and purified sample of (R,R)-1b with (+)-Eu(tfc)3, and (E) of a

photolyzed and purified sample of (S,S)-1b with (+)-Eu(tfc)3 added.
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Figure 4.
Chromatogram using LC-MS/MS where peak a is the meso-3b, peak b is (S,S)-3b, peak c is

(S,S)-1b, and peak d is (R,R)-3b. The green trace is the 349.2/175.1 transition specific to

(S,S)-1b, and the purple is the 377.1/175.1 transition specific to the isomers 3b.
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Figure 5.
Product fraction of (S,S)-3b (red line with squares), meso-3b (blue line with diamonds), and

(R,R)-3b (green line with triangles) as a function of temperature. The viscosity is shown as a

function of temperature in the dotted line with circles. The dotted red, blue, and green lines

lead to the product fractions of the free-radical reaction.
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Figure 6.
Structures along the reaction coordinate for the decarbonylation of ketone (R,R)-1b to yield

(R,R)-3b.
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Scheme 1.
Double Memory of Chirality (2MOC)

Resendiz et al. Page 21

J Am Chem Soc. Author manuscript; available in PMC 2014 July 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Scheme 2.

Resendiz et al. Page 22

J Am Chem Soc. Author manuscript; available in PMC 2014 July 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Scheme 3.
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Scheme 4.

Resendiz et al. Page 24

J Am Chem Soc. Author manuscript; available in PMC 2014 July 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Resendiz et al. Page 25

Table 1

Results from the Photolysis of Optically Pure Ketones (S,S)-1b and (R,R)-1b That Proceeded by Complete

Retention (2MOC), Single Rotation (EPI), and Double Rotation (INV) As Determined by CSR and Chiral LC-

MS/MS

mode of reaction

product fraction

based on 1H NMR CSR based on LC MS/MS

retention (2MOC) 0.65 ± 0.06 0.70 ± 0.07

single rotation (EPI) 0.35 ± 0.04 0.21 ± 0.02

double rotation (INV) 0.10 ± 0.01 0.09 ± 0.01
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