
Estimating Statistical Power for Open Enrollment Group
Treatment Trials

Antonio A. Morgan-Lopez, Ph.D.1, Lissette M. Saavedra, Ph.D.2, Denise A. Hien, Ph.D.3,4,
and William Fals-Stewart, Ph.D.5,6

1L.L. Thurstone Psychometric Laboratory, Department of Psychology, University of North
Carolina at Chapel Hill, Chapel Hill, NC, 27599
2RTI International, Division of Health Services and Social Policy Research, Research Triangle
Park, NC 27709
3Department of Psychology, City University of New York at City College, New York, NY, 11030
4College of Physicians and Surgeons, Columbia University, New York, NY, 11032
5University of Rochester, School of Nursing, Rochester, NY, 14642

Abstract
Modeling turnover in group membership has been identified as a key barrier contributing to a
disconnect between the manner in which behavioral treatment is conducted (open enrollment
groups) and the designs of substance abuse treatment trials (closed enrollment groups, individual
therapy). Latent class pattern mixture models (LCPMM) are an emerging tool for modeling data
from open enrollment groups with membership turnover in recently proposed treatment trials. The
current article illustrates an approach to conducting power analyses for open enrollment designs
based on Monte Carlo simulation of LCPMM models using parameters derived from published
data from an RCT comparing Seeking Safety to a Community Care condition for women
presenting with comorbid PTSD and substance use disorders. The example addresses
discrepancies between the analysis framework assumed in power analyses of many recently-
proposed open enrollment trials and the proposed use of LCPMM for data analysis.

Introduction
In the early part of this decade, the majority of federally-funded behavioral treatment trials
were delivered using individual, one-on-one counseling formats while, in community
settings, group therapeutic approaches were the predominant delivery modality for substance
abuse and alcoholism treatment (NIDA, 2003; Weiss, Jaffe, de Menil & Cogley, 2004). In
response to this disconnect, NIDA and NIAAA sponsored requests for applications (RFAs)
specifically geared to support group therapy efficacy trials (e.g., RFA-DA-04-008; NIDA/
NIAAA, 2003a) and amended existing program announcements (PAs) to focus on group-
delivered therapies (e.g., PA-03-126; NIDA/NIAAA, 2003b); in particular, these
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announcements emphasized the development and delivery of “community friendly”
therapies including the use of open enrollment groups.

One of the more fundamental analytic challenges in modeling treatment outcomes from
group treatment data is the issue of group membership turnover, which can be more
problematic in open enrollment groups versus closed group (NIDA, 2003). For example, in
closed enrollment groups, once the group is formed, no new members are added to the
treatment group and any change in membership would only be due to termination, dropout
or treatment completion. In this case, group membership is clear and can be modeled easily
and defensibly in analytic frameworks that handle non-independence of observations
emerging from individuals nested within treatment groups in a conventional manner under
the hierarchical linear modeling framework. Yet closed enrollment groups are problematic
in community settings, primarily because the groups need to wait for a requisite number of
patients for the group to start; in the meantime, the treatment center loses billable hours and
patients may opt for other alternatives if they deem the wait for treatment to be too long
(Morgan-Lopez & Fals-Stewart, 2008a; Overholser, 2005; Yalom & Leszcz, 2005).

Conversely, in open enrollment treatment groups (OEGs), which recent data suggest are the
norm in community settings (Fals-Stewart, 2005), members are continually and
simultaneously added via new enrollments and removed via graduation, termination or
dropout. Yet nearly all analyses in the generalized linear mixed modeling family, from
repeated-measures ANOVA to latent growth models for non-normal outcomes, assume that
the membership composition of the groups does not change during the life of the trial
(Morgan-Lopez & Fals-Stewart, 2006). Because methods to model the impact of group
membership turnover in treatment outcome analyses had not been developed at the time, and
treatment researchers naturally wanted to avoid negative critiques from treatment review
study sections, OEG trials were avoided.

Recently, there have been significant conceptual and empirical advances in quantitative
methods for modeling data from community-friendly trials with OEGs, particularly from a
missing data theory perspective (Morgan-Lopez & Fals-Stewart, 2006, 2007, 2008a, 2008b;
Morgan-Lopez, Cluff & Fals-Stewart, 2009). In this work, the primary framework that has
shown promise for modeling treatment outcome data from open enrollment groups in a
defensible manner is latent class pattern mixture modeling (LCPMM; Lin et al., 2004; Roy,
2003). LCPMMs, primarily geared as a novel approach for modeling non-ignorable
missingness provide a framework that more closely represents the process of turnover in
group membership than traditional methods (e.g., latent growth models in structural
equation modeling or equivalent repeated measures mixed models; MacCallum et al., 1997;
Willett & Sayer, 1994) or even conventional pattern mixture models (Demirtas & Schafer,
2003; Hedeker & Gibbons, 1997).

LCPMMs handle the process of group membership turnover by allowing for fluctuations
over time in the proportions of different types of latent attendance patterns and, therefore,
session-to-session fluctuations in different subtypes of patients. The proportions of patients
under each attendance class are allowed to vary at any given slice in time which the trial is
running, which is consistent with changes over time/turnover in group composition

Statistical Power in Open Enrollment Group Trials
While progress has been made in this relatively new area of methodological research,
several concerns remain (Morgan-Lopez & Fals-Stewart, 2008a). One key concern is the
estimation of statistical power in open enrollment group trial designs, be they newly-
proposed trials or secondary analysis of existing OEG data. As the analytic and
methodological barriers to the development of community-friendly open enrollment group
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treatment trials have diminished, and as the number of grant applications involving OEG
trials has increased (Onken, L.S., personal communication, 1 October 2008), guidance on
the estimation of statistical power for OEG trials becomes paramount.

One of the more fundamental concerns in a power analysis, particularly as part of the
critique of NIH grant applications, is the extent to which there is a (mis)match between the
analytic model assumed in the power analysis and the actual analytic model used to analyze
data once collected. Several decades ago, prior to the popularizing and availability of models
under the generalized linear mixed modeling family (GLMM), the analytic options available
to most treatment researchers for data analysis (e.g., t-tests, correlations, χ2 contingency
tables, analysis of variance) matched very well with the frameworks that were addressed in
early texts on power (see e.g., Cohen, 1988) and readily available power analysis software
such as SAS Proc POWER and SPSS SAMPLEPOWER. However, with the advent of
methods under GLMM, power analyses in practice have not always mirrored the increase in
complexity of the analyses planned, and ultimately executed.

Specifically, in our experience in reviewing NIH behavioral treatment trial applications, the
most common discrepancy between the assumptions in the power analysis and in the
proposed analysis plan is the failure to take into account non-independence of observations.
The consequences for inference when failing to take non-independence into account in the
analysis are fairly well-documented: increased Type I error rates when group-level variance
components are not modeled when patients are nested within treatment groups (Baldwin,
Murray & Shadish, 2005; Barcikowski, 1981; Hox, 2002) and increased Type II errors when
the nesting of repeated measurements among individuals is not properly accounted for
(Duncan, Duncan, Strycker & Li, 2002).

For contexts where the nesting hierarchy is unambiguous, approaches to power analysis
based on analytic (Murray, 1998; Spybrook, Raudenbush, Congdon & Martinez, 2009) and
Monte Carlo simulation methods (Muthén & Muthén, 2002) have been explicated. However,
power analysis approaches for contexts where group membership is “fuzzy” or in constant
flux are in need of development (Blalock, 1990); in fact, the development of new statistical
methodologies and the subsequent lag in parallel development in power analysis approaches
linked to those methodologies is not unusual (Duncan et al., 2002).

As the advocacy for the development of a community-friendly behavioral treatment
portfolio remains salient (NIDA & NIAAA, 2003; NIDA, 2003a, 2003b; NIDA & NIH,
2008), the development of approaches to model data where continual group membership
turnover is present in community-friendly trials should include parallel considerations for
how to estimate statistical power for these community-friendly trials. The crux of the present
article is to present a set of initial recommendations for estimating statistical power under a
scenario where raw pilot data are not available and published summary data are the sole
source from which parameters can be derived.

Method
Monte Carlo Simulation and Power Analysis

Since the design of open-enrollment treatment trials incorporates analytic and design
complexities (e.g., group- and individual-level nesting, multiple attendance patterns,
changes in group membership) that are neither accounted for in many closed form power
analysis software packages nor power tables, the use of specially-tailored Monte Carlo
simulations for the estimation of statistical power are an option that offers considerable
flexibility (Muthén & Muthén, 2002).
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Simulations can be conducted in general statistical packages such as SAS and SPSS or in
many “model-specific” packages (e.g., Mplus, EQS, or LISREL in structural equation
modeling) using the random number generation facilities of each program. For a given an
underlying population model, a researcher can study many properties of the statistical
estimator and the model used to analyze sample data, whether or not the analysis model is
specified as the same as the data-generating model. A non-exhaustive set of examples of the
properties commonly examined in simulations include parameter estimate bias and
confidence interval coverage (e.g., Collins et al., 2001). It is also not uncommon for the
statistical power of newly-developed estimators to be evaluated (MacKinnon et al., 2002,
2004) or power to detect treatment effects for a proposed study (Muthén & Muthén, 2002) to
be examined via simulation.

Powering a New Secondary Analytic Project based on Published Data
It is well-known that the four general variables in a power analysis include a) the probability
of rejecting a true null (the alpha level), b) the effect size, c) the sample size and d) the
probability of rejecting a true null hypothesis (power). Depending on which factors are fixed
for a given research context, a researcher will be executing a power determination analysis,
a sample size determination analysis or a minimum detectable effect size (MDES) analysis
(Spybrook et al., 2009). In contexts where sample size is fixed, such as for secondary
analytic projects, a hybrid of a power determination and MDES analysis may be warranted
to determine what is the MDES that will lead to power of .80 for sample size N and/or what
is the power to detect particular value(s) of the effect size. In contexts where the sample size
is to be determined in the analysis and the desired power is fixed at .80, a hybrid of the
sample size and MDES analysis may be warranted.

In the current example, we illustrate both the power determination approach and the sample
size determination approach using the power analysis process used for one of the grants that
support this current article (R01DA025198, Morgan-Lopez, A.A., PI), a secondary analysis
project to re-analyze data from what is currently the largest trial examining Seeking Safety
(NIDA Clinical Trials Network protocol 0015; Hien, D.A., PI). Seeking Safety is an
empirically-supported behavioral treatment of comorbid PTSD and substance abuse
disorders among women who have experienced trauma (Hien, Nunes, Levin & Fraser, 2000;
Hien, Cohen, Litt, Miele, & Capstick, 2004; Najavits, 2007). The sample size in the dataset
is fixed at N = 353. However, we wish to also illustrate the sample size determination
approach, as though sample size was not fixed, to mimic the process for power analyses for
researchers determining sample size for new primary collection trials.

We wished to illustrate a situation where no raw pilot data were available1; all that was
available were a set of published articles in the area of the grant application we are
proposing upon which we would base our effect size(s) and other available parameters. The
necessary steps for executing this power analysis would be a) identification of the necessary
components for the power analysis model, b) estimation of individual-level fixed and
random effects from the summary data in the article(s) for use as population parameters for
treatment effects/effect sizes, c) solve for plausible values of group-level variance
components, d) determine a plausible structure for class-specific treatment attendance/
missingness patterns (i.e., treatment completers, dropouts, etc.), e) determine class-specific
effect sizes across each attendance patterns using the original effect size from Step 3 as a
base and f) execution of the simulation with the selected parameters. Prior to showing the
illustration, we present the steps in greater detail.

1Though raw data would, of course, be available from the third author.
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Power Analysis Steps
Step 1: Identify necessary components—The first step in conducting the power
analysis, as with any power analysis, is to identify the types of parameters specific to a
power analysis for open enrollment groups. The components for a power analysis for open
enrollment groups are many and include a) sample size, b) number of treatment groups, c)
amount of anticipated missing data, d) differences in slopes over time on the outcome across
treatment conditions (effect size(s)), e) group- and individual-level variance components, f)
class-specific distributions of the point(s) of treatment entry, g) the amount of deviation
from the overall effect size within each attendance class and h) the size of within-individual
error variability. Data for some components will be available from published articles and, as
in many power analyses, plausible values would have to have reasonable justification for
their use in the absence of available data for the particular component.

Step 2: Estimate individual-level fixed and random effects under LGM from
summary data—Summary data from tables in published articles provide a reasonable
source of information from which to estimate fixed effects and perhaps random effects as
well (assuming that fixed and random effects are not already reported in the article as part of
a growth modeling analysis; if so, they can be used as population parameters). If fixed and
random effect estimates are not already available, the task is to convert the means and
covariances (or correlations and standard deviations) into fixed- and random-effect
parameters for a population group-stratified latent growth model2,3 (LGM); though the
target model is a latent class pattern mixture model, the LGM gives us a good base by which
to estimate the parameters that will not vary across attendance patterns in the power analysis
as well as the parameters that will. From this model, we can then make decisions about
characteristics of the LCPMM model (i.e., different within-class treatment effects, different
patterns of attendance/missingness) in later steps.

Oftentimes information necessary for the derivation of the random effect parameters (i.e.,
covariances/correlations between repeated measures among individuals within groups,
group-level variance components) is not available in the article and in many cases are no
longer reported in articles due to journal space limitations. In this case, a correlation
structure for the repeated measures on the outcome variable must be assumed and chosen
with reasonable justification. Subsequent means, correlations and standard deviations for the
treatment and control conditions are then used as summary data input in a two-group LGM
model using any structural equation modeling software which accepts summary data as
input. Typical considerations that impact model fit in latent growth models (e.g., non-
linearity in change over time) need to be kept in mind just as would be the case in
conventional model estimation.

Step 3: Solve for group-level variance components—The next step would be to
select reasonable expected ratios of the variability in the growth parameters that are due to
group-level nesting, under the assumed study structure. In this case, the ratio of group-level
variability to total variability in a parameter is:

(1)

2The parameters from the initial group-nested latent growth model would serve as the basis for then building a population LCPMM
model, where treatment effects vary across attendance/missing data classes.
3For group-nested data with few groups, it is recommended that nesting be handled under the assumption that the groups are sampled
exhaustively via stratification as opposed to assumed that the groups are sampled from a universe of groups (i.e., clustering; see
Asparouhov, 2005).
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Where τβ is the group-level variance component for a parameter (e.g., intercept, slope) and
τπ is the corresponding individual-level variance component. With a value for the intraclass
correlation selected ahead of time and a value for τπ emerging from Step 2, one can solve
for τβ algebraically.

Step 4: Determine Attendance Class Structure—Next, we determine the attendance
class structure, where variation in class membership for is characterized by a) variation in
outcome trajectories and treatment effects, b) variation in the probabilities of missingness/
treatment attendance and c) differences in the distributions of calendar time with regard to
when each individual case began treatment (Morgan-Lopez & Fals-Stewart, 2007, 2008b).
With regard to the structuring of the joint outcome/attendance classes in such a power
analysis, one must consider a) the number of classes, b) the proportions of cases within each
class and c) the probability of missingness/attendance at each “timepoint” within each class;
the names of these classes are typically derived from the patterns of these probabilities over
time (Morgan-Lopez & Fals-Stewart, 2007). In recent applications of LCPMM in multiple
datasets, there have been three classes estimated with class membership jointly determined
by attendance patterns, treatment outcomes and point of treatment entry (Hien, Morgan-
Lopez, Campbell, Saavedra et al., under review; Morgan-Lopez & Fals-Stewart, 2007). In
each case, there was a class of patients who had consistently high probabilities of attending
treatment each session (Completers) and a class that, at a certain point, had virtually 0
probability of attending treatment (Dropouts); a third class emerged in each case with a set
of probabilities over time for treatment attendance that were higher than the Dropouts but
lower than the Completers so this three class structure will be used in the current illustration.

Step 5: Determine class-specific effect sizes within each attendance pattern—
A notable characteristic observed in open enrollment data is the fact that differences in
treatment effects have been observed that are dependent on the pattern of attendance. One
finding that appears to be reasonably consistent is that the patients who tend to have optimal
treatment outcomes in behavioral substance use treatment tend to self-titrate the dosage of
their treatment to around half the available sessions (Barkham, Connell, Stiles, Miles, et al.,
2006; Feaster, Newman & Rice, 2003; Hien et al., under review; Morgan-Lopez & Fals-
Stewart, 2007, 2008b). As a result, in order to limit the scope of the power analysis and to be
consistent with an emerging literature on treatment effects that are conditional on
attendance, we recommend using a) the effect size found in Step 2 for the Completers class,
b) ½ of the Completers effect size as the effect size for Dropouts and c) twice the effect size
for Completers would serve as the effect size for a class with “erratic” attendance.

We must first calculate the effect sizes from the base parameters. Several potential options
for effect size calculation in the context of latent growth models are available including
variants of standardized mean differences in slopes (Feingold, 2009; Muthén & Curran,
1997; Raudenbush & Liu, 2001) and R2 measures of the variance accounted for in latent
slope(s) as a function of treatment (Muthén & Muthén, 1998-2009). However, in power
analyses for latent growth models/longitudinal HLMs, Raudenbush & Liu (2001) note that
both the effect size and the precision of the measurement of the latent curves need to be
considered jointly; the concern is that even if other parameters (e.g., effect size, sample size)
were held constant in the power analysis, one can always increase statistical power by
increasing the reliability of the curves (i.e., by decreasing the value of the within-individual
residual variance). However, if this residual variance is set too low relative to the real value
in the population (i.e., higher reliability), the study may ultimately be underpowered not
because the effect size was over estimated but because the curve reliability may be lower in
reality than what was assumed in the power analysis.
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Calculation of the overall effect size in-treatment slope from the Hien et al., (2004) data in
Table 2 uses the standardized effect size for group-nested longitudinal data (Raudenbush &
Liu, 2001; Spybrook et al., 2009):

(2)

where βP is the unstandardized treatment slope of interest from Step 2,τπ1 is the individual-
level variance of the corresponding slope from Step 2 and τβ1 is the group-level variance of
the corresponding slope solved for in Step 3

The formula for the reliability of the growth curves (Raudenbush & Liu, 2001) is:

(3)

where τP is the variance of the slope of interest and VP is an expression of the total
variability among all observations that is not attributable to “true” variability among
individual slopes. VP is expressed as3 (Spybrook et al., 2009):

(4)

Where f is the number of observations per unit time (e.g., a “0, .5, 1…” time structure would
have 2 observations per unit of time), σ2 is the within-individual residual variance across all
timepoints and M = the number of timepoints + 1.

Hypothetical Context for the Power Analysis—The simulation mimics the design of
the NIDA Clinical Trials Network six-site study (NIDA CTN Protocol 0015, Hien, D.A., PI)
comparing Seeking Safety (SS) and a Women’s Health Education comparison condition.
Both treatments were delivered in the group modality with rolling enrollment, with each of
six sites running an SS group and a WHE group. Each of the rolling treatment groups could
have 3 or more “members” on any given week across a period of 20 “months”.

Model Overview—In this Monte Carlo power analysis, the population model is a three-
class, five timepoint (group-nested) LCPMM model as shown in Figure 1. The focal variable
in the model is “AttendK”, a latent class variable capturing unobserved heterogeneity across
three sets of variables: a) binary indicators of attending a treatment session (A2-A4) or
attending a follow-up assessment (A1Wk-A12m), b) differences in changes over time in
substance use (Ybase-Y12m) as captured by SS/WHE differences in growth parameters
(βITSi, βPTSi, αPTIi) which constitute treatment effects that are specific to each attendance
class and c) variation in the distribution of the month in which each patient started treatment
(StartMonth).

A piecewise linear structure is assumed for the outcome trajectories within each of the three
classes such that there are two periods of growth of interest: a) changes in substance use
from pre-treatment to 1-week post-treatment and b) changes from 1-week post-treatment
through 1-year post-treatment; timesteps in the population model were set such that the
intercept captured the estimated level of the outcome variable at the last time point (i.e., “1-
year follow-up”). Treatment effect sizes were set to differ across the three classes (see
section of Class-Specific Treatment Effects below).
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Illustration
Step 1: Identify necessary components—In the present case, we have published data
from Hien et al., (2004) from which we can draw information relevant to some of the
parameters. The key sets of information available from the Hien et al., (2004) article are the
means and standard deviations over time on Substance Use Severity (Weiss, Hufford,
Najavits, & Shaw, 1995) for women in the Seeking Safety and Community Care
(comparison) conditions across four waves (baseline, post-treatment, 6- and 9-month follow-
up; Table 2 of Hien et al., 2004, page 1429) and a conservative treatment completion rate of
60% (which will inform the attendance class membership probabilities; actual was 75%).

In the absence of information on the correlation structure, we assumed for the main power
analyses a) a correlation structure among the repeated measures in the population that was
consistent with our experiences in treatment outcome studies: correlations of .5 for adjacent
timepoints (e.g., Time1-Time2, Time2-Time3), .3 for repeated measures which were two
timepoints removed (e.g., Time1-Time3) and .1 for the correlation between Time1 and
Time4. The actual means and standard deviations from Hien et al., (2004) and the assumed
correlations are shown in Table 1.

Step 2: Estimate individual-level fixed and random effects under LGM from
summary data—The data in Table 1 were used as input data for the estimation of a 2-
group LGM model. A piecewise-linear model was specified, with timesteps structured such
that the two periods of growth were a) from baseline to post-treatment (in-treatment slope;
ITS) and b) from post-treatment through 9-month follow-up (post-treatment slope; PTS);
note also that Time = 0 was set to the 9 month follow-up assessment. In this case, the initial
period of growth is modeled with only two timepoints which would lead to a problem of
model underidentification unless additional constraints are made. The parameters in this
model can only be estimated uniquely when the residual variances of the within-individual
model are constrained to equality across time (and across groups).

Other random effect parameters (e.g., variances and covariances among the intercept, ITS
and PTS) are also constrained to equality across groups. The growth parameter means
(intercept, ITS and PTS) are allowed to vary across groups; however, in order to estimate the
mean differences across groups in a single step, additional parameters need to be specified
outside of the model in the multiple-group LGM framework (e.g., the Model Constraint
option in Mplus 5.2). The program used for this step is included in Appendix A.

The values of these differences constitute the fixed effect regression parameters (linking
treatment condition to differences in growth parameters) to be used subsequently in the
Monte Carlo power analysis. This model, however, did not fit the data well (to the extent
that the data are modeled with arbitrary correlations), X2(15) = 20.323, CFI = .93, RMSEA
= .08 (90% CI: .00-.16). The source of the model misfit was the assumption of the equality
of the within-individual residual variances across treatment conditions. Once this constraint
was relaxed across treatment conditions (but remained equated across-time within the two
treatment conditions), the model fit the data well in terms of stand-alone model fit (X2(14) =
10.207, CFI = 1.0, RMSEA = .00 (90% CI: .00-.09) and in comparison to the more
restrictive model ΔX2(1) > 10, p<.001. It would be ideal to have a single pooled within-
individual residual variance; the model, based in part on data from Hien et al., (2004),
suggests that this assumption may not hold, most likely due to the differences in standard
deviations between Seeking Safety and Community Care (see Table 1). Parameter estimates
from the LGM model, which would be used as population parameters in the subsequent
simulation, are shown in Table 2.
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Step 3: Solve for group-level variance components—In the Monte Carlo
simulation a) there are six treatment groups per condition as is the case in the larger Seeking
Safety trial and b) the level of group-level variability in growth parameters is non-zero. As
the treatment arms in Hien et al., (2004) were all delivered in the individual modality, no
estimates of the group-level variance components are available from the benchmark study.
There is limited guidance from the literature on the size of group-level variance components
relative to the total variability (group- and individual-level) among growth parameters in the
context of open enrollment trials; it has been suggested that the ratio of group-to-total
variability in growth parameters is lower than in closed group trials (Morgan-Lopez & Fals-
Stewart, 2006) with estimates ranging between .01-.02 (Morgan-Lopez & Fals-Stewart,
2007). With this in mind, we set out to calculate the values of the group-level variance
components that would yield a ratio of groups-to-total variability in growth parameters of .
02.

Using Equation 1, we solve for the value (g) that would yield a groups-to-total variability
ratio of .02 given an individual-level variance for the in-treatment slope of .201 (See Table
2):

In this case, g = .0041; a similar process were conducted to solve for group-level variability
in the post-treatment slope and post-treatment intercept for the power analysis.

Step 4: Determine Attendance Class Structure—We use information from both
Hien et al., (2004) and Morgan-Lopez and Fals-Stewart (2007) to guide the attendance class
structure. First, Morgan-Lopez and Fals-Stewart (2007) found a 3-class solution was
optimal, with an attendance pattern structure where one class had between a 74-93%
probability of attending each treatment session (Completers), a class which had a
monotonically decreasing probability of attending treatment over time which decreased to
near 0 before the end of the treatment protocol (Dropouts) and a third class where the pattern
of attendance varied wildly throughout treatment (Erratics). While the Completers class
accounted for 60% of the sample in Morgan-Lopez and Fals-Stewart (2007), Hien et al.,
(2004) report that 75% of women completed treatment; we decided to structure a
conservative rate for treatment completion in the proposed population structure with 3
classes (Completers, Dropouts, Erratics) with a 60%/20%/20% split respectively among the
classes.

Step 5: Determine class-specific effect sizes within each attendance pattern—
Recall that the standardized effect size for group-nested longitudinal data (Raudenbush &
Liu, 2001; Spybrook et al., 2009):

(2)

where βP is the unstandardized treatment slope of interest from Step 2 (-.209 in Table 2),τπ1
is the individual-level variance of the corresponding slope from Step 2 (.201 in Table 2) and
τβ1 is the group-level variance of the corresponding slope solved for in Step 3 (.0041 in
Table 2); the standardized ES in this case is -.461, considered slightly below a medium slope
effect showing reduced substance use for Seeking Safety compared to Community Care
from pre-treatment to treatment termination (Cohen, 1988); this ES was used for the
Completers class treatment effect. An effect size of -.230 (βP = -.105) was used for the
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population value for the Dropout class treatment effect and an effect size of -.922 (βP = -.
418) was used for the Erratics class treatment effect.

The formula for the reliability of the growth curves (Raudenbush & Liu, 2001) is:

(3)

where τP is the variance of the slope of interest and VP is an expression of the total
variability among all observations that is not attributable to “true” variability among
individual slopes. VP is expressed as3 (Spybrook et al., 2009):

(4)

Where f is the number of observations per unit time (e.g., a “0, .5, 1…” time structure would
have 2 observations per unit of time), σ2 is the within-individual residual variance across all
timepoints and M = the number of timepoints + 1.Since f = 1, M = 3 and σ2 = .204 for the
in-treatment slope, V = .102 and the slope reliability = .663.

Population Parameters
Attendance/Assessment Patterns—The classes are also distinguished by differences
in the probabilities of attending treatment sessions during the “in-treatment” phase (not
including the 1st observation) or post treatment assessments. These conditional probabilities
are described as follows: (a) Consistent Attenders: set to have a 90% probability of
“attendance/compliance” across the final six assessments; (b) Dropouts: set to have the
following probabilities of attendance across the final six assessments: (.90, .70, .40, .40, .
40, .20, .10) and (c) Erratics: set to have the following probabilities of attendance across: (.
20, .20, .80 .80, .20, .20, .80). It is noted that if a 0 is generated based on the conditional
probabilities for any given case in a simulated sample at a timepoint where there is a
corresponding measure of the outcome variable (e.g., baseline, termination, post-treatment
assessments), then the corresponding value on the outcome (YT) was set to missing.

Class-Specific Treatment Effects4—Class-specific population treatment effects,
defined as mean differences between Seeking Safety and WHE on two key growth
parameters (i.e., intercept at 1-year follow-up, slope from baseline to 1-week follow-up).
Three different effect sizes for the in-treatment slope differences were used within the three
classes: a) the actual effect size for the in-treatment slope for the Completers class from the
parameters in Table 2 (βP = -.209, standardized mean difference = -.461), b) twice the in-
treatment effect for the Erratics class (βP = -.418, standardized mean difference = -.922) and
c) half the in-treatment effect for the Dropouts class (βP = -.105, standardized mean
difference = -.230). The post-treatment slopes and the post-treatment intercept were held
constant across classes to the values shown in Table 2.

Class Proportions—The proportions of the population from each attendance class were
fixed to 60% Completers, 20% Dropouts and 20% Erratics.

4Recent concerns about the variability in effect sizes from pilot studies have been raised (Kraemer, Mintz, Noda, Tinklenberg &
Yesavage, 2006). Kraemer and colleagues recommend using effect sizes for power analyses that are the minimum effect sizes to be of
clinical interest; in this case, we argue that the effect size(s) obtained from the parameters derived from Hien et al., (2004) are of
clinical interest, given a primary effect size slightly below a treatment slope difference that would be considered medium.
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Sample Sizes—Sample sizes of 150, 250, 353 (the actual sample size in the current
Seeking Safety CTN trial) and 450 were used.

Simulation Heuristics—First, simulated data were generated in SAS v9 under a 3-class
latent class pattern mixture population structure, with population values corresponding to the
class-specific treatment effects and class proportions as listed above; 1000 replications were
generated under each specific sample size. Once generated, each of the 1000 datasets was
analyzed in Mplus v5.2 in the External Montecarlo analysis framework (Muthén & Muthén,
1998-2008) under maximum likelihood estimation for non-normal data and/or non-
independent observations under stratification (Asparouhov, 2005). Each dataset was
analyzed under a correctly-specified 3-class LCPMM model; power was also explored under
conventional growth modeling for comparison.

The weighted averaged treatment effect estimates under LCPMM were calculated by first
converting the multinomial logit parameter estimates in the model to estimated proportions
of class membership. Next, the proportions were used as weights against which the
weighted-averaged treatment effect and delta method standard errors were estimated using
the Model Constraint command in Mplus (see Hedeker & Gibbons, 1997, p.74-76). Across
each simulated sample, the proportion of times out of the total number of replications that
the weighted averaged treatment effect was significantly different from 0 was the observed
power to detect the effect.

Results
The results for statistical power for class-specific and weighted-averaged treatment effects
are shown in Table 3. Power estimates were examined in concert with other measures for
assessing the quality of model performance such as confidence interval coverage and
standardized bias (Collins, Schafer & Kam, 2001). Coverage is defined as the proportion of
times the population parameter falls within the sample confidence intervals across each
replications; the ideal value is .95 and values at or below .90 are problematic. Standardized
bias is defined as the difference between the population parameter and the average estimate
across all replications divided by the standard deviation of the estimates. Collins et al.,
(2001) recommend values exceeding |.40| as problematic.

Recall that the basic parameters for the power analysis were a) treatment effect sizes of -.46
for Completers, -.92 for Erratics and -.23 for Dropouts, b) ICC(s) of .02 and c) Growth
Curve Reliabilities of .66 for the in-treatment slope. Under LCPMM, power would only
approach .80 for overall/weighted-averaged treatment effects until the sample size was
raised to 450; for the actual sample size of N = 353 for the Seeking Safety dataset, power
was .678. Coverage and standardized bias were at acceptable levels.

Power was also examined under the LGM framework with the same simulated datasets.
Power under LGM reached .799 for an N of 450 and .737 for the actual N of 353. Despite
estimating power under a misspecified LGM model, standardized bias and coverage rates
were acceptable under LGM. However, it is noted that one of the conditions where LGMs
will not yield biased estimates and perform similarly to LCPMMs when data were generated
under LCPMM are when the class with intermediate missingness a) is the smallest class and
b) has the largest effect size; in a majority of other combinations of class structure, class size
and effect size, LGMs and (LC)PMMs can yield different inferences regarding overall
treatment effects which has been shown in simulated (Demirtas & Schafer, 2003) and real
data (Morgan-Lopez & Fals-Stewart, 2007).
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To illustrate this, we simulated data with the exact same properties except a) treatment effect
coefficients corresponding to the class-specific effect sizes from Morgan-Lopez and Fals-
Stewart (2007) were used and b) the class proportions were altered such that the patterns
were: 55% Completers, 35% Dropouts and 10% Erratics. First, the class-specific effect sizes
from Morgan-Lopez and Fals-Stewart (2007; Cohen’s ds for Completers = 0, Dropouts = .85
and Erratics = -1.5) were converted to path coefficients for the difference in in-treatment
growth for a given level of growth parameter variance using Equation 2 and solving for β.
βs, given the specified group- and individual-level variances were 0 for Completers, .3849
for Dropouts and -.6793 for Erratics. Weighting the parameters by the class proportions
yields an overall β of .0667. Data were simulated and analyzed under sample sizes of 150,
250, 353 and 450 (1000 replications each) just as for the original analysis.

As shown in Table 4, under a properly-specified 3-class LCPMM, standardized bias rates
hovered around the bounds of what is considered un/acceptable. Confidence interval
coverage did not decrease below .90. Under the LGM framework, standardized bias rates
were greater than twice the rate considered problematic as sample size exceeded 350. Also
under LGM, coverage rates generally were lower than .90.

Discussion
Within the last five to ten years, federal agencies and community treatment providers have
called for greater ecological validity in the designs of proposed behavioral treatment trials.
While several factors have accounted for the disconnect between treatment research and
treatment-in-practice (Barkham & Mellor-Clark, 2003; Greene, 2004; NIDA, 2003), analytic
difficulties in modeling data from designs resembling treatment-in-practice (i.e., open
enrollment groups) had been highlighted as a major concern (Weiss et al., 2004). As the
development of methodologies to handle data from open enrollment groups has progressed
(Bauer, Gottfredson & Morgan-Lopez, 2009; Morgan-Lopez & Fals-Stewart, 2007, 2008b),
and defensible analytic options have become available, the number of open enrollment
group trials proposed in behavioral treatment grant applications has increased. However, to
our knowledge, all of these proposed trials had power analyses that were incompatible with
the planned analysis, a phenomenon that is common when new analytic frameworks are
introduced (Duncan et al., 2002).

In this article, we illustrated an exemplar for the estimation of statistical power for the
recently-developed latent class pattern mixture model (Lin et al., 2004; Roy, 2003) which
may be parameterized to capture and model the impact of membership turnover in treatment
groups. The match between the analytic framework described in an analysis section of an
NIH grant and the analytic framework that underlies the power analysis for the study is
critical; if not present the justification of any trial can be compromised, as the study may be
powered based on faulty assumptions.

The interest in this power analysis was primarily to estimate statistical power for overall
treatment effects when treatment effects, particularly on the in-treatment slope, vary across
attendance classes. In powering a trial of the size of the Seeking Safety NIDA CTN
protocol, it is much more typical (and ideal) to have raw pilot data available from which to
base all population parameters for a power analysis, though cautions have been levied
against balancing effect sizes from pilots against powering studies to effect sizes that are
clinically meaningful (Kraemer et al., 2006). Historically this has been in the context of the
Stage Model for Behavioral Therapies Research (Carroll & Nuro, 2002; Rounsaville, Carroll
& Onken, 2001) where data from Stage I a/1b trials are used explicitly to test feasibility for
Stage II/III trials. Furthermore, this power analysis was geared to mimic the process of
sample size estimation for a newly-planned trial and illustrate power estimation for an
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already-fixed sample size for secondary analyses of existing data; however, as there has
been an increase in interest in secondary analysis of treatment and health services datasets
(e.g., PA-07-113; NIDA, 2007) this situation will not be uncommon.

Several aspects of this power analysis required a bit of educated guesswork that would not
otherwise be necessary with raw pilot data. For fixed-effect parameters, we could rely on
modeling the mean differences over time between the SS condition and the Community Care
comparison condition from Hien et al., (2004). Yet we had no knowledge of the class
structure (i.e., number of classes, class proportions, attendance patterns) in the data from the
larger Seeking Safety trial. We also did not have any guidance on the random effect
structure; we had a limited understanding of the size of group-level variance components in
open enrollment data from the behavioral treatment literature and little-to-no specific
guidance on the correlation structure among repeated measures (which contribute directly to
the individual-level random effects). As a result, we worked with a small range of plausible
parameters, each of which could have a small (e.g., number of individuals within cluster/
strata) or large impact (e.g., group ICC, effect size) on power (Spybrook et al., 2009).

In this power analysis demonstration, we focused primarily on treatment effects on the in-
treatment slope (as the parameter estimate represented a medium effect). The results of the
power analysis suggested that, for treatment effects on the in-treatment slope, power to
detect the overall in-treatment treatment effect would approach .80 when sample size
approaches 450. This would seem to present a quandary of sorts, because the effect sizes
correspond both to effect sizes from previous research on Seeking Safety and effect sizes
that are clinically meaningful according to Kraemer et al., (2006) but require a sample size
that exceeds the upper end of the range of sample sizes typically observed in NIDA- and
NIAAA-funded behavioral treatment trials; in our experience as reviewers of behavioral
treatment trial applications, these trials rarely are funded at Ns above 350.

An additional consideration in structuring such a power analysis may be the basics on the
type of comparison condition. The original power analysis examined in this paper was based
on a comparison between an active treatment (Seeking Safety) and an attention control
condition (Hien et al., 2004). However, this is contrasted against Morgan-Lopez and Fals-
Stewart (2007) where two active treatments were compared in different modalities
(individual versus group), which may be more likely to lead to conflicting inferences across
attendance classes – and thus different inferences across the types of analyses. This leads to
an interesting irony: the conditions that may be most likely to lead to different inferences
between LCPMM and LGM may be the least conducive to statistical power. Additional
studies using the LCPMM framework will shed light on which class structure may be most
likely to be observed in treatment outcome studies regarding ordering and sizes of effect
sizes across classes: one that is maximally likely to lead to different results or a structure
that may yield similar results between LCPMMs and LGMs.

Conclusion
Despite the call from federal agencies and community treatment providers for ecological
validity in drug and alcoholism treatment research, analytic challenges of rolling group/open
enrollment data has hindered research in this area (NIDA, 2003; NIDA & NIH, 2008). As
analytic and methodological tools become available to behavioral treatment researchers, it
has increased the volume of NIH grant submissions incorporating ecologically-consistent
designs which will hopefully lead to a bridging of the gap between the treatment research
portfolios at NIDA, NIAAA and other relevant agencies. But as the number of applications
for these types of trials increases (particularly those who proposed the use of latent class
pattern mixture models), there have been discrepancies between the planned analysis model
and the model assumed in the power analysis; we assume that this is because the analysis

Morgan-Lopez et al. Page 13

J Subst Abuse Treat. Author manuscript; available in PMC 2013 June 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



framework is relatively novel and power analysis examples for new frameworks typically
lag behind illustrations of the frameworks themselves (Duncan et al., 2002). Hopefully this
step-by-step power analysis demonstration for data from open enrollment groups will
provide researchers within and outside of the behavioral treatments area with guideposts for
powering new trials and secondary analytic projects which will further bridge the gap
between treatment research and treatment-in-practice.
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Appendix A

Converting Means, Correlations and Standard Deviations to Model
Parameters (using data in Table 1)

DATA:
FILE IS “C:\Users\aaml\My Documents (RTI)\Q Drive Backup\001 NIDA - RGG I
\Paper 7 - Power\dahmcovA2.dat”;
TYPE IS MEANS fullcov;
NGROUPS = 2;
NOBSERVATIONS = 53 54;
VARIABLE:
NAMES ARE x1 x2 x3 x4;
USEVARIABLES ARE x1-x4;
ANALYSIS:
TYPE IS meanstructure;
ESTIMATOR IS ML;
ITERATIONS = 1000;
CONVERGENCE = 0.00005;
MODEL:
a b1 ∣ x1@-1 x2@0 x3@0 x4@0;
a b2 ∣ x1@-2 x2@-2 x3@-1 x4@0;
Model g1:
[a](a);
[b1](b);
[b2](c);
a(1);
b1(2);
b2(3);
a with b1(4);
a with b2(5);
b1 with b2(6);
x1-x4(7);
Model g2:
[a](d);
[b1](e);
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[b2](f);
a(1);
b1(2);
b2(3);
a with b1(4);
a with b2(5);
b1 with b2(6);
x1-x4(8);
Model constraint:
NEW(intdif s1dif s2dif);
intdif = a-d;
s1dif=b-e;
s2dif=c-f;
OUTPUT: SAMPSTAT standardized;

Appendix B

SAS Program for Generating Group-Stratified LCPMM Data

%let d=.dat;
%macro 
q(set,combo,egit,r0gi,r1gi,r2gi,a000,b100,b200,g001,g101,g201,p0g,p1g,p2g
,a00c,b10c,b20c,g01c,g11c,g21c,a00d,b10d,b20d,g01d,g11d,g21d,
a00e,b10e,b20e,g01e,g11e,g21e); *Macro variables for all parameters;
%do i=1 %to &set;
data a;
do f=1 to 12; *12 Treatment Groups
group=f;
x=ranbin(2,1,.5); *Seed of 2 yields a draw of 6 treatment and 6 control 
groups across each replication;
*Group Randomization to Conditions with equal probability;
int=&a000+&g001*x+rannor(0)*(sqrt(&p0g));
*Group-level random intercept. Treatment Effect = -.261, Variance of .0045 
(see end of macro/Table 2);
slope1=&b100+&g101*x+rannor(0)*(sqrt(&p1g));
*Group-level random in-treatment slope. Treatment Effect = -.209. Variance 
of .0041;
slope2=&b200+&g201*x+rannor(0)*(sqrt(&p2g));
*Group-level random post-treatment slope. Treatment Effect = .110, Variance 
of .0012;
output;
end;
data b;
do g=1 to 353;
*Generate 353 individuals within 12 treatment groups;
id=g;
group=1+round((12-1)*ranuni(0),1);
output;
end;
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run;
proc sort data=b;
by group id; run;quit;
proc sort data=a;
by group;run;quit;
data c; merge a b; by group;
/*Multinomial logits which yield a 60/20/20 split*/
Z1=1.101;
Z2=.00323;
p1 = exp(z1)/(1+ exp(z1)+ exp(z2));
p2 = exp(z2)/(1+ exp(z1)+ exp(z2));
p3 = 1/(1+ exp(z1)+ exp(z2));
/*Class membership draws with 60/20/20 probability*/
class = rantbl(0, p1, p2);
/*Individual Random Effects - correspond to .222, .201, .058 (see Table 2)*/
u0=rannor(0)*sqrt(&r0gi);
u1=rannor(0)*sqrt(&r1gi);
u2=rannor(0)*sqrt(&r2gi);
/*Completers - always @ 60% of the mixture*/
if class=1 then alpha=&a00c+&g01c*x+u0;
if class=1 then beta1=&b10c+&g11c*x+u1;
*Class-specific deviation in the treatment effect: 0 for completers;
if class=1 then beta2=&b20c+&g21c*x+u2;
if class=1 then m2=ranbin(0,1,.9);
*Probabilities of showing up for treatment/assessment = 90% for each 
observation;
if class=1 then m2a=ranbin(0,1,.9);
if class=1 then m2b=ranbin(0,1,.9);
if class=1 then m3=ranbin(0,1,.9);
if class=1 then m4=ranbin(0,1,.9);
if class=1 then m5=ranbin(0,1,.9);
if class=1 then m6=ranbin(0,1,.9);
if class=1 then 
startwk=rantbl(0,.05,.05,.05,.05,.05,.05,.05,.05,.05,.05,.05,.05,.05,.05,.05,
.05,.05,.05,.05,.05);;
*Across months 1-20, equal probability of starting treatment in Months 1-20 
(5%);
/*Droppers - always 20% of the mixture*/
if class=2 then alpha=&a00d+&g01d*x+u0;
if class=2 then beta1=&b10d+&g11d*x+u1;
*Difference in treatment effect from overall treatment effect for Droppers 
= .104 (-.209 versus -.105);
if class=2 then beta2=&b20d+&g21d*x+u2;
if class=2 then m2=ranbin(0,1,.9);
*Probabilities of showing up for treatment/assessment = drop from 90% to 10% 
over time;
if class=2 then m2a=ranbin(0,1,.7);
if class=2 then m2b=ranbin(0,1,.4);
if class=2 then m3=ranbin(0,1,.4);
if class=2 then m4=ranbin(0,1,.4);
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if class=2 then m5=ranbin(0,1,.2);
if class=2 then m6=ranbin(0,1,.1);
if class=2 then 
startwk=rantbl(0,.05,.05,.05,.05,.05,.05,.05,.05,.05,.05,.05,.05,.05,.05,.05,
.05,.05,.05,.05,.05);
*Across months 1-20, equal probability of starting treatment in Months 1-20 
(5%);
/*Erratics - always 20% of the mixture*/
if class=3 then alpha=&a00e+&g01e*x+u0;
if class=3 then beta1=&b10e+&g11e*x+u1;
*Difference in treatment effect from overall treatment effect for Erratics = 
-.209 (-.418 versus -.209);
if class=3 then beta2=&b20e+&g21e*x+u2;
if class=3 then m2=ranbin(0,1,.2);
if class=3 then m2a=ranbin(0,1,.2);
if class=3 then m2b=ranbin(0,1,.8);
if class=3 then m3=ranbin(0,1,.8);
if class=3 then m4=ranbin(0,1,.2);
if class=3 then m5=ranbin(0,1,.2);
if class=3 then m6=ranbin(0,1,.8);
if class=3 then startwk=rantbl(0,.20,.0334,.03333333,.03333333,
.03333333,.03333333,.03333333,.03333333,.03333333,.03333333,
.03333333,.03333333,.20,.03333333,.03333333,.03333333,.03333333,
.03333333,.03333333,.03333333); /*Months “1” and “13” have a total of 40% of 
the members of the Erratic Class*/
/*Generate Repeated Measures based on group- and indiviudal-level fixed and 
random effects*/
y1=alpha+int+(slope1+beta1)*-1+(slope2+beta2)*-1+rannor(0)*(sqrt(&egit));
y3=alpha+int+(slope1+beta1)*0+(slope2+beta2)*-1+rannor(0)*(sqrt(&egit));
y4=alpha+int+(slope1+beta1)*0+(slope2+beta2)*-.67+rannor(0)*(sqrt(&egit));
y5=alpha+int+(slope1+beta1)*0+(slope2+beta2)*-.33+rannor(0)*(sqrt(&egit));
y6=alpha+int+(slope1+beta1)*0+(slope2+beta2)*0+rannor(0)*(sqrt(&egit));
/*Impose missingness*/
if m3=0 then y3=999;
if m4=0 then y4=999;
if m5=0 then y5=999;
if m6=0 then y6=999;
data c; set c;
array cat y1--y6;
do over cat;
cat=round((cat),.001);
end;
run;
data c; set c;
*if _imputation_=&imp;
file “C:\Users\aaml\My Documents (RTI)\Q Drive Backup\001 NIDA - RGG I\Paper 
7 - Power\rnrcombo&combo\test&i&d”;
/*Save ASCII datasets for external monte carlo analysis in Mplus*/
put @1 group @6 x @20 m2 @25 m2a @30 m2b @35 m3 @40 m4 @45 m5 @50 m6 @55 
startwk @60 y1 @100 y3 @110 y4 @120 y5 @130 y6;
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run;
%end;
%mend;
%q(set=1000,combo=1,egit=.204,
r0gi=.222,r1gi=.201,r2gi=.058,
a000=0,b100=0,b200=0,
g001=-.261,g101=-.209,g201=.110,
p0g=.0045,p1g=.0041,p2g=.0012,
a00c=0,b10c=0,b20c=0,
g01c=0,g11c=0,g21c=0,
a00d=0,b10d=0,b20d=0,
g01d=0,g11d=.104,g21d=0,
a00e=0,b10e=0,b20e=0,
g01e=0,g11e=-.209,g21e=0);

Appendix C

Mplus program for External Monte Carlo Power Analysis

DATA:
FILE IS C:\Users\aaml\My Documents (RTI)\Q Drive Backup\001 NIDA - RGG I
\Paper 7 - Power\rnrcombo1\test.dat;
type=montecarlo;
VARIABLE:
NAMES ARE group x m2 m2a m2b m3 m4 m5 m6 startwk
y1 y3 y4 y5 y6;
USEVARIABLES ARE x m2 m2a m2b m3 m4 m5 m6 startwk
y1 y3 y4 y5 y6;
stratification IS group;
!BETWEEN ARE x;
missing are all(999);
classes=miss(3);
categorical are m2 m2a m2b m3 m4 m5 m6;
ANALYSIS:
TYPE IS mixture missing complex;
! LOGHIGH = +15;
! LOGLOW = -15;
! UCELLSIZE = 0.01;
ESTIMATOR IS mlr;
H1ITERATIONS = 1000;
H1CONVERGENCE = 0.0001;
COVERAGE = 0.10;
LOGHIGH = +15;
LOGLOW = -15;
UCELLSIZE = 0.01;
LOGCRITERION = 0.0000001;
ITERATIONS = 1000;
CONVERGENCE = 0.000001;
MITERATIONS = 500;
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MCONVERGENCE = 0.000001;
MIXC = ITERATIONS;
MCITERATIONS = 2;
MIXU = ITERATIONS;
MUITERATIONS = 2;
starts = 0;
processors=4;
information=observed;
link=probit;
MODEL:
%overall%
ba bb1 ∣ y1@-1 y3@0 y4@0 y5@0 y6@0;
ba bb2 ∣ y1@-1 y3@-1 y4@-.67 y5@-.33 y6@0;
ba on x;
bb1 on x;
bb2 on x;
[miss#1*1.101] (logit1);
[miss#2*.00323] (logit2);
y1-y6*.204;
ba*.222;
bb1*.201;
bb2*.058;
%miss#1%
[ba*0 bb1*0 bb2*0];
[startwk*10];
startwk*25;
ba on x*-.261(a1);
bb1 on x*-.209(b11);
bb2 on x*.110(b21);
[m2$1-m6$1*-1.28];
%miss#2%
[ba*0 bb1*0 bb2*0];
[startwk*10];
startwk*25;
ba on x*-.261(a2);
bb1 on x*-.105(b12);
bb2 on x*.110(b22);
[m2$1*-1.28 m2a$1*-.524 m2b$1*.253 m3$1*.253 m4$1*.253 m5$1*.84 m6$1*1.28];
%miss#3%
[ba*0 bb1*0 bb2*0];
[startwk*9];
startwk*36;
ba on x*-.261(a3);
bb1 on x*-.418(b13);
bb2 on x*.110(b23);
[m2$1*.84 m2a$1*.84 m2b$1*-.84 m3$1*-.84 m4$1*.84 m5$1*.84 m6$1*-.84];
MODEL CONSTRAINT:
NEW(p1 p2 p3 awa*-.261 b1wa*-.214 b2wa*.110 cvd cve dve);
p1 = exp(logit1)/(1+ exp(logit1)+ exp(logit2));
p2 = exp(logit2)/(1+ exp(logit1)+ exp(logit2));
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p3 = 1/(1+ exp(logit1)+ exp(logit2));
awa = p1*a1 + p2*a2 + p3*a3;
b1wa = p1*b11 + p2*b12 + p3*b13;
b2wa = p1*b21 + p2*b22 + p3*b23;
cvd = b11-b12;
cve = b11-b13;
dve= b12-b13;
OUTPUT: sampstat tech1 tech8 tech9;
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Figure 1.
Latent Class Pattern Mixture Model. AttendK = Latent Attendance Class Variable. YBASE-
Y12M = Observed simulated outcome variable (e.g., past week substance use) from each
individual’s baseline assessment through 1 year follow-up (noting that calendar time may be
different for each “individual” for when they “came in for baseline”). A2-A12M = Binary
indicators of treatment attendance/assessment from the session after baseline through 1-year
follow-up. SS/WHE = Treatment condition (Seeking Safety = 1; Women’s Health Education
= 0). αPTIi = estimated level of the outcome at time = 0 (i.e., 1-Year Follow-up). βITSi =
estimated rate of change from baseline to immediate post-treatment. βPTSi = estimated rate
of change from immediate post-test through 1-year follow-up. Paths from “Attend” to the
growth parameters indicate that the conditional means of the growth parameters vary across
attendance class. Paths from “Attend” to the SS/WHE → growth parameter links (as
connected by the “dots”) indicate that the treatment effects vary across attendance classes.
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Table 2

Population Parameters Derived from Table 1 Sufficient Statistics

Effects Parameters

Mean of SS/WHE Dummy Variable .500

Variance of SS/WHE Dummy Indicator .250

Fixed Effects

 In-Treatment Slope (ITS) .178

 Post-Treatment Slope (PTS) .138

 Post-Treatment Intercept (PTI) -.075

 SS/WHE differences in ITS -.209

 SS/WHE differences in PTS .110

 SS/WHE differences in PTI -.261

Individual-Level Random Effects

 In-Treatment Slope (ITS) .201

 Post-Treatment Slope (PTS) .058

 Post-Treatment Intercept (PTI) .222

 Within-Individual Residuala .204b

Site-Level Random Effects

 In-Treatment Slope (ITS) .0041

 Post-Treatment Slope (PTS) .0012

 Post-Treatment Intercept (PTI) .0045

Notes.

a
Constrained to equality across all timepoints.

b
Average of the treatment condition-specific values. ITS = in-treatment slope. PTS = post-treatment slope. PTI = post-treatment intercept.
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