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Abstract
A formal semiparametric statistical inference framework is proposed for the evaluation of the age-
dependent penetrance of a rare genetic mutation, using family data generated under a case-family
design, where phenotype and genotype information are collected from first-degree relatives of
case probands carrying the targeted mutation. The proposed approach allows for unobserved risk
factors that are correlated among family members. Some rigorous large sample properties are
established, which show that the proposed estimators were asymptotically semi-parametric
efficient. A simulation study is conducted to evaluate the performance of the new approach, which
shows the robustness of the proposed semiparamteric approach and its advantage over the
corresponding parametric approach. As an illustration, the proposed approach is applied to
estimating the age-dependent cancer risk among carriers of the MSH2 or MLH1 mutation.
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1 Introduction
A precise estimation of the age-dependent risk for people carrying disease-causing
mutations is critical for defining prevention/intervention strategies and understanding the
underlying mechanisms of disease progression. A large number of disease-associated
genetic mutations have been found to be rare. To estimate the penetrance function for a rare
mutation, the cohort design is not cost-efficient for estimating penetrance function, since a
large number of subjects are needed in order to have enough cases to ensure a sufficiently
precise estimate. The case-control design is a more cost-efficient design but it needs
additional knowledge such as composite incidence estimates from cohort data to estimate
penetrance function (Gail et al., 1989). Compared with the cohort or case-control design, the
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kin-cohort design (Wacholder et al., 1998; Gail et al. 1999b; Chatterjee and Wacholder,
2001; Chatterjee et al., 2006; Wang et al., 2007; among others) has several practical
advantages, including comparatively rapid execution and a modest reduction in required
sample size. However, the kin-cohort design can lead to a biased estimate of penetrance if
sampling is dependent on the phenotypes of relatives (Gail et al., 1999a). If the information
from the relatives’ genotypes is available in the kin-cohort design, it is possible to have a
more robust penetrance estimate that is less vulnerable to sampling bias.

In this paper, we focus on a so called case-family design. Under this design, those probands
who are affected with disease and are mutation carriers are ascertained; at least one first-
degree relative of each case probands is genotyped at the targeted mutation locus; for those
relatives, their current ages and the ages at disease onset if affected and other relevant
covariate information are recorded. In the case-family design, the ascertainment procedure is
related to both probands’ mutation status and all individuals’ phenotypes including their
disease status. In literature, few approaches have been proposed to deal with such kind of
data, the exceptions include two parametric approaches by Carayol and Bonaïti-Pellieé
(2004) and Zhang et al. (2010) and one nonparametric approach by Wang et al. (2006).
Carayol and Bonaïti-Pellieé (2004) proposed a conditional-likelihood based approach by
accounting for ascertainment procedure, their approach can reduce penetrance estimation
bias considerably when the cumulative penetrance is not small, but it needs to specify the
prevalence of the mutation and a parametric form of the penetrance function. In the
nonparametric approach of Wang et al. (2006) method, a rare disease assumption is needed
and only unaffected relatives are used, and violation of the rare disease assumption can lead
to substantial bias in the penetrance estimate. Zhang et al. (2010) recently developed a
general parametric statistical approach, which can estimate age-dependent penetrance
function with some covariates being adjusted for if needed. The validity of the two
parametric approaches rely on the parametric specification of the hazard function.

In this paper, by relaxing the parametric assumption of the baseline hazard function in
Zhang et al. (2010), we propose a more robust semiparametric approach for the inference of
the age-dependent penetrance of a rare mutation. Large-sample properties of the approach
are established using empirical process theory, showing that the proposed estimators of the
regression parameters for the effects of rare mutation and covariates are asymptotically
semiparametric efficient.

The estimation and inference procedure is described in the next section. A simulation study
is performed in Section 3. A real data application can be found in Section 4. Some
conclusions and discussions are given in Section 5.

2 Methods
2.1 Notation and Likelihood function

An individual is said to be a carrier of mutation s/he carries at least one copy of mutation
allele. We assume that I unrelated case probands carrying mutation are ascertained, and ni
first-degree relatives (sibs, offspring, and parents) of the ith proband are recruited. Denote

by  the total number of recruited first-degree relatives. The observation
information include the current ages for the relatives, the ages at disease onset for those
affected relatives, and the genotypes of the relatives at the mutation locus. The genotype at
the target mutation locus is coded by 1 for a carrier and 0 for a non-carrier. Let the genotype
and the affection status of the jth relative (the 0th relative is the case proband) of the ith case
proband be coded by Gij and Dij, respectively; that is, Gij = 1 if the jth relative is a carrier
and 0 otherwise, and Dij = 1 if the jth relative is affected with disease and 0 otherwise. Let
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Cij and Tij denote the current age and the age at onset of the jth relative, respectively. Let Yij
= min{Tij, Cij}. We assume that a p-vector of covariates Xij is observed for each relative,
and allow for an unobserved risk factor vector Rij that can be correlated among family
members. We assume a Cox proportional hazards model with survival function for Tij (Cox,
1972):

(1)

where S(t | Gij, Xij, Rij) is the survival function of Tij and Λ(t) is the baseline cumulative
hazard function.

To reduce potential penetrance estimation bias caused by the phenotype-dependent sampling
in the case-family design, we formulate a conditional likelihood for the ith family’s data as

where Gi = (Gi1, …, Gini), Di = (Di1, …, Dini), Yi = (Yi1, …, Yini), and Xi = (Xi1, …, Xini).
To derive the likelihood function, we make the following assumptions:

A1 the targeted mutation is rare;

A2 in the general population, Hardy-Weinberg equilibrium holds for the targeted
mutation, mating is random, and Mendel’s Law of Heredity holds;

A3 the unobserved risk factors are independent of the targeted mutation and the
covariates in the general population;

A4 the disease is rare.

Remark 1—The rare mutation assumption A1 is a key assumption, and A1 and A2 imply
that the first-degree relatives’ genotypes of a proband carrying mutation are independent and
have the probability 0.5 to be a mutation carrier (refer to the proof of Theorem 1). This joint
distribution is essential for the derivation of a simple likelihood function presented in
Theorem 1. The assumption A3 is used to reduce the impact of the unobserved risk factors
on the penetrance estimation. The rare disease assumption A4 is a technical one, and our
simulation study demonstrates that this assumption has minor impact on the penetrance
estimation, even if there are risk factors that are correlated among family members.

We have the following result:

Theorem 1—Under assumptions A1–A4, the overall likelihood

 can be approximated by

(2)

where f(· | G, X) and S(· | G, X) are the density function and the survival function,
respectively, of the age at onset of an individual with genotype G and covariate vector X.

Refer to Supplemental A for a proof of Theorem 1.
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Remark 2—The conditional independence of the relatives’ genotypes of a proband given
the proband is a carrier is not an assumption, but a derived conclusion under the mild
assumptions A1–A4. We allow for unobserved risk factors that are correlated among family
members, as often is the case in real applications.

Remark 3—In Supplemental B, we show that the parameters β, γ, and Λ are identifiable
under the mild assumptions A1–A4. Therefore, the absolute penetrance functions are
estimable. In the conventional case-control design, the absolute penetrances are not
estimable when the exposure distribution is unknown, and in practice a conditional
likelihood is used to estimate the odds ratio parameters. If the exposure distribution is
known, then the absolute penetrances are estimable under the case-control design. In the
current case-family design, the probands are assumed to be mutation carriers so that the joint
distribution of relatives’ genotypes (exposures) are known, this makes sure the absolute
penetrances are estimable as shown rigorously in Supplemental B.

If the genotypes are not available for affected relatives, β is not identifiable and the
likelihood function (2) is not applicable. For rare diseases, most of the relatives would be
unaffected and it is appropriate to assume that the survival function for non-carriers, S(t | 0,
X, R), is 1. In this situation, we only need to model the survival function for carriers, that is,

(3)

under the proportional hazards model. Under the model (3), the likelihood function (2)
becomes

(4)

Remark 4—It is straightforward to verity that L1n(log 2, γ, Λ) = L2n(γ, Λ). This indicates
that the likelihood function (2) is a generalization of the likelihood function (4) that requires
the assumption S(t | 0, X, R) = 1.

Remark 5—In the situation where the genotype is available from only one relative of each
proband and no covariate is involved, the likelihood function (4) reduces to

which is exactly the same as that proposed by Wang et al. (2006), where S(·) is the marginal
survival function of mutation carriers. In the situation where some probands have more than
one relatives, Wang et al. (2006) proposed to weight the likelihoods for relatives with the
weights depending on pedigree structure, while our simple likelihood with multiple relatives
is derived rigorously under some mild assumptions and can account for covariates in a
natural manner.

Remark 6—Notice that the likelihood functions (2) and (4) are independent of ξ, and they
can be derived from the survival functions
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(5)

and

(6)

respectively, as if the unobserved risk factors R do not exist.

2.2 Maximum likelihood estimation of unknown parameters
The parameters of most interest are the penetrance functions of both carriers and non-
carriers, with adjustment of some covariates if needed. Notice that the survival functions, or
equivalently the penetrance functions, depend on unknown parameters β, γ, and Λ under
model (5) or (6), we can estimate the unknown parameters using a likelihood principle and
consequently obtain penetrance estimates using a plug-in rule.

When the baseline cumulative hazard function Λ is known up to a finite number of unknown
parameters η, a standard optimization algorithm can be used to obtain the maximum
likelihood estimates of β, γ, and η (Zhang et al., 2010). However, such a parametric
approach could produce considerable bias in the penetrance function estimate when the
parametric form of Λ is not properly specified, as shown by our simulation study in the next
section. Therefore, it would be advantageous to estimate the penetrance function without
specifying a parametric form for Λ.

We consider as the maximum likelihood estimator Λ̂n of Λ a right-continuous increasing
step function with jumps only at Yij. That is, we define a maximum likelihood estimator of
Λ by

Here 0 = t0 < t1 < · · · < tK, and t1, …, tK are distinct values of Yij, j = 1, …, ni; i = 1, …, n.
Let the jump sizes be δk = Λ(tk) − Λ(tk−1), k = 1, …, K; then Λ(Yij) =Σk:Yij≥tk δk. The
parameters to be estimated are {β, γ, δ} with δ = (δ1, …, δK), and the number of all
unknown parameters is m = 1 + p + K.

Remark 7—In the standard prospective cohort design with right-censored data, only
uncensored times have positive jump sizes. In the current case-family design, it is possible
that censored times (Dij = 0) have positive jump sizes. This is particularly true under model
(6) where all survival times are censored. Similar phenomenon happens in the situation
where all survival times are interval censored in the standard cohort design.

For Gij = 0 and Gij = 1, it can be immediately verified that
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Therefore, the logarithm of the likelihood function (2) can be written as

(7)

It is straightforward to verify that ln(β, γ, Λ) is concave in γ and δ. Notice that the log-
likelihood functions (2) and (4) are twice differentiable with respect to {β, γ, δ}, we can use
the interior-reflective Newton method that is implemented in the function “fmincon” in the
Optimization Toolbox of Matlab (Coleman and Li, 1994; 1996).

Notice that the number of unknown parameters m is an increasing function in the sample
size, which has a great impact on the convergence speed of the optimization algorithm. In
practice, with little information loss we can round Yij to integers so that K is no more than
the maximum age, say 120, no matter how large the sample size is. When p is small or
moderate, the number of all unknown parameters m should also be at most moderate. Our
numerical experiment shows that the MLEs of β, γ, and δ can be obtained in a few to no
more than 100 seconds using a desktop PC with a 2.33 GHz processor when the sample size
is around several hundred. The desired performance of the proposed algorithm might be
partly due to the concavity of the likelihood function (7) in γ and δ.

When the number of relatives n is small, K would be close to or even equal to n, and the
total number of parameters can be greater than n. The phenomenon that the number of
parameters (including nuisance parameters and regression parameters) is greater than the
sample size is commonly seen in the framework of semiparametric setting such as Cox’s
proportional hazards model (Cox, 1972). Although the convergence speed of the nuisance
parameter estimates is usually slower than that of the regression parameter estimates (of
fixed dimension), the estimation of regression parameters is asymptotically efficient in
general (Muphy and van der Vaart, 2000). Our preliminary simulation study shows that all
unknown parameters in (2) and (4) can be reliably estimated when the number of unknown
parameters is greater than the number of relatives.

The survival functions and the corresponding cumulative penetrance functions can be
estimated using a plug-in rule.

2.3 Variance estimation and large sample properties
Denote by (β̂n, γ̂n, Λ̂n) the resulting MLEs of (β, γ, Λ). In Supplemental B, we show that
the MLE θ̂n = (β̂n, γ̂n) is consistent, asymptotically normally distributed, and asymptotically
efficient. Therefore, we can estimate the variances of θ̂n by virtue of the asymptotic
normality. Here we focus on the likelihood function (2), since (4) is its special form. We can
estimate the variance-covariance matrix of θ̂n = (β̂n, γ̂n) as follows. Denote the profile log-
likelihood function of θ = (β, γ) by

The (s, t)th element of the inverse of the estimated variance-covariance matrix of θ̂n takes
the form

(8)

Zhang et al. Page 6

J Stat Plan Inference. Author manuscript; available in PMC 2014 February 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



where hn is a constant of order n−1/2 and es and et are the sth and tth canonical vectors,
respectively (Murphy and van der Vaart, 2000).

Because the survival function S1(t | G, X; β, γ, Λ) defined in (5) depends on the high-
dimensional unknown parameter Λ, it is difficult to obtain an explicit expression of the
variance-covariance matrix of the resulting survival function estimate. Instead, we propose
to use a nonparametric bootstrap strategy (Efron and Tibshirani, 1993). First, we generate a

large number of estimates of (β, γ, Λ), , using bootstrap samples; then, we

use  to estimate the variance of S1(t|G, X; β̂, γ̂, Λ̂), and construct the
confidence interval of S1(t|G, X; β, γ, Λ) based on the asymptotic normality of S1(t|G, X; β̂,
γ̂, Λ̂).

3 A simulation study
We conducted a simulation study to examine the performance of two proposed
semiparametric estimators. For the purpose of comparison, we also examined two
parametric estimators proposed by Zhang et al. (2010) with the baseline cumulative hazard
function being specified to be of Weibull form. The first parametric estimator uses both
affected and unaffected relatives (PARA1) and the second parametric estimator only
unaffected relatives (PARA2). The first semiparametric estimator is based on the likelihood
function (2) which uses both affected and unaffected relatives (SEMI1) and second
semiparametric estimator is based on the likelihood function (4) which uses only unaffected
relatives (SEMI2).

We assumed that there were two single-nucleotide polymorphisms (SNPs) responsible for
the disease of interest, with one SNP’s genotype information available and the other one not
available. The observed SNP had minor allele frequency (MAF) 0.001, and the unobserved
SNP had MAF 0.2. We considered the Cox model with hazard function

(9)

where λ0(t) was the baseline hazard function, gO (gU ) was 1 if the genotype of the observed
SNP (unobserved SNP) had at least one copy of minor allele and 0 otherwise (i.e., the mode
of inheritance is dominant), and OR was the odds ratio parameter for the unobserved SNP,
which took value 1 (the unobserved risk factor is absent) or 1.5 (the unobserved risk factor is
present). The baseline hazard function λ0(t) was assumed to be piecewise constant such that
the cumulative penetrances at ages 20, 60, and 80 were 0.05, 0.1, and 0.2, respectively. The
current age of the proband a was uniformly distributed in the interval (10, 90). The ages of
the first-degree relatives (sibs and parents) of a proband were assumed to be independently
distributed, with the ages of sibs being uniformly distributed in the interval (a − 5, a + 5) and
the ages of the parents being uniformly distributed in the interval (a + 25, a + 35). In each
family, the genotypes of the proband’s parents at two loci were independently generated
under the Hardy-Weinberg equilibrium and random mating, and the genotypes of the
proband and sibs were generated under Mendel’s Law of Heredity. Conditionally on the
genotypes, the ages at onset of disease were generated based on model (9). Those first-
degree relatives (sibs and parents of the probands) aged between 10 and 90 were used for
analysis, so that the sampling is phenotype dependent. We generated 400 such families and
applied SEMI1, SEMI2, PARA1, and PARA2 to these families. The baseline cumulative
hazard function and the regression parameter were estimated by ignoring the unobserved
SNP, and the cumulative penetrance functions of carriers and non-carriers were then
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estimated using a plug-in rule. Based on 2000 replicates, we calculated the mean estimated
cumulative penetrance functions of non-carriers and carriers as displayed in Figure 1.

It is seen that SEMI1 have only minor bias no matter the unobserved SNP has effect or not.
On the other hand, PARA1 produces noticeable bias. Furthermore, SEMI2 and PARA2
underestimate the penetrance functions systematically, this is due to the fact that these two
estimators treat the penetrance of non-carriers to be zero. In the simulation situation, the
penetrance function of non-carriers is actually not that small, for example, the cumulative
penetrance at age 60 is 0.1. This shows that SEMI1 is quite robust to the rare disease
assumption.

We also considered a larger number of families, i.e., 800. The results are given in Figure 2.
We can see that the bias of SEMI1 gets even smaller. We conducted additional simulations
to study the situation where the penetrance function is smaller. The results (not shown)
demonstrate that the bias of SEMI2 gets smaller as expected. When the odds ratio of
unobserved SNP is very large, the bias of SEMI1 can be considerable (results not shown).

We further considered a generalized gamma baseline hazard function with shape parameter
λ = 50 (λ ≠ 1 corresponds to a non-Weibull baseline hazard function), and the scale
parameter and another scale parameter were chosen such that the baseline cumulative
penetrances at ages 20 and 80 were 0.05 and 0.2, respectively. The other settings were the
same as those for Figure 1 and 2. The results are given in Figures 3 and 4 for family sizes
400 and 800, respectively. Again, SEMI1 has much smaller biases than PARA1, PARA2,
and SEMI2 have.

To check the validity of the bootstrap method, we focused on the settings for upper panel of
Figure 2 where the unobserved risk factor was absent. Based on 200 bootstrap samples, we
estimated the standard error of the estimated survival function and hence the 95%
confidence interval of the true survival function, with each family being treated as a single
unit in the bootstrapping. The mean estimated standard error (SEE) and coverage probability
(CP) of the confidence interval were then estimated based on 500 simulations. Table 1
displays the relative bias of the estimates (Rbias), standard errors (SEs), SEEs, and CPs, for
ages 30, 50, and 70. Overall, the SEEs of all estimators are close to the SEs. Among the four
estimators, SEMI1 has CPs closest to the nominal level 95%, and PARA1, PARA2, SEMI2
can have very poor coverage probabilities due to their biased estimates.

4 Application to a study of Lynch syndrome
We applied three considered approaches (the semiparametric approach of Wang et al., 2006,
the parametric approach of Zhang et al., 2010, and the proposed semiparametric approach)
to a study of Lynch syndrome (Olschwang et al., 2009). In this study, the data were obtained
via a retrospective questionnaire sent to eight genetic units in France and Switzerland that
offered germline analysis of MSH2 and MLH1 genes. Phenotypes and genotypes from 856
asymptomatic first-degree relatives of MSH2 or MLH1 carriers were collected from the
eight centers. For each relative, the mutation status at genes MSH2 and MLH1 were
obtained. The phenotypes of the relatives include but are not limited to ages (18 to 89 years)
and genders (402 males and 454 females). There is little difference between the disease
penetrances of MSH2 and MLH1 genes according to Olschwang et al. (2009), so we will not
distinct the two genes in our analysis. Since the ages of the relatives were available, we
could estimate the age-dependent penetrance function.

For the MSH2 and MLH1 genes, it has been estimated that the prevalence of the
corresponding mutations in the general population of European origin is between 0.002 and
0.001 (Salovaara et al., 2000). Therefore, the mutations are rare enough and our approach is
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applicable. Furthermore, Lynch syndrome only accounts for 3% to 5% of all colorectal
cancers (Bonadona et al., 2011), so the prevalence of Lynch syndrome is also very small.
Small prevalences of both mutation and Lynch syndrome imply that the penetrance of non-
carriers is close to zero by the law of total probability. Therefore, we can use the information
from unaffected relatives only to estimate the cumulative penetrance function of carriers. In
the parametric approach (PARA2), we assumed a Weilbull baselline hazard function.
Gender was adjusted for as a covariate in both PARA2 and SEMI2. The resulting
cumulative penetrance functions are plotted in Figure 5 for both males and females. Overall,
the difference between PARA2 and SEMI2 is small. By assuming each proband has only
one relative, we also applied the nonparametric approach (WANG) of Wang et al. (2006) to
male and female relatives, separately. All of the three estimators suggest that male carriers
have higher cumulative risk than female carriers at most ages, except that WANG gave
reverse conclusion for old carriers. It is believed that there exists a threshold value of age
under which an individual will not be affected by Lnych syndrome. The two semiparametric
approaches gave a threshold at the age of 26, which is close to that estimated by Olschwang
et al. (2009), 28 years.

5 Discussion
In this paper, we propose a robust semiparametric approach for the inference of age-
dependent penetrance of a rare mutation. The estimation of unknown parameters, including
the baseline cumulative hazard function and regression parameters, can be reliably obtained.
Large-sample properties are established via empirical process theory, which shows that the
estimator is semiparametric efficient. Through simulations, we demonstrated the robustness
of the proposed semiparamteric approach and its advantage over the corresponding
parametric approach.

Our penetrance estimate is derived from the likelihood model conditioning on the
phenotypes of all subjects and genotypes of the probands. We adopt this conditional
approach in order to minimize the bias that could potentially arise when the ascertainment
procedure of families is influenced by the proband’s genotype and the family members’
phenotypes. In the situation where the ascertainment procedure is known, it is more
appropriate to use a joint likelihood approach that simultaneously models genotypes and
phenotypes of family members. Some methods have been proposed for estimating age-
dependent penetrance function by properly modeling residual familial aggregation
(unobserved risk factors) in the case-control family design (Li et al., 1998; Shih and
Chatterjee, 2002; Hsu et al., 2004; Hsu and Gorfine, 2006), where the ascertainment
procedure for genotyped relatives is assumed to be independent of their phenotypes. When
the ascertainment procedure depends on both probands’ genotypes and family members’
phenotypes, it deserves further investigations to develop an efficient approach by fully
utilizing the information from genotypes and phenotypes and accounting for residual
familial aggregation. In real applications, some relatives’ phenotype information is available
but their genotype information is not available, making the statistical analysis of such data
very complicated.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Mean estimated cumulative penetrances (piecewise constant hazard, number of families =
400).
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Figure 2.
True and mean estimated cumulative penetrances (piecewise constant hazard, number of
families = 800).
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Figure 3.
True and mean estimated cumulative penetrances (generalized gamma hazard, number of
families = 400).
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Figure 4.
True and mean estimated cumulative penetrances (generalized gamma hazard, number of
families = 800).
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Figure 5.
Estimated cumulative penetrance functions for MSH2 or MLH1 carriers in the Lynch
syndrome study.
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