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Abstract
We consider a problem of estimating the minimum effective and peak doses in the presence of
covariates. We propose a sequential strategy for subject assignment that includes an adaptive
randomization component to balance the allocation to placebo and active doses with respect to
covariates. We conclude that either adjusting for covariates in the model or balancing allocation
with respect to covariates is required to avoid bias in the target dose estimation. We also compute
optimal allocation to estimate the minimum effective and peak doses in discrete dose space using
isotonic regression.

Keywords
Dose-ranging; Minimum effective dose; Peak dose; Phase II trials; Up-and-down designs

1. Introduction
High precision of estimation of doses of interest in dose-ranging studies is essential for
evaluating a drug. The minimum effective dose (MED) and the peak dose are the two doses
of most interest. The MED is the smallest dose with a discernible useful effect (ICH E4
Guideline, 1994). The MED is often defined as the lowest dose with response significantly
different (referring to statistical significance) from placebo. Alternatively, it can be defined
in continuous dose space as the dose with mean response equal to μ0 + η, where μ0 is the
mean response on placebo and η is the minimum clinically important difference. The MED
does not exist if mean response at all doses in the range studied is less than μ0 + η. The peak
dose, also sometimes referred to as the maximum useful dose, is the maximum dose beyond
which no further beneficial effect is seen (ICH E4 Guideline, 1994). Locating the peak dose
is usually of interest after the drug has been shown to be efficacious. The peak dose is the
lowest dose on the plateau of a dose-response curve. Mathematically, in continuous dose
space we define the peak dose as the lowest dose with mean response of μmax − γ, where
μmax is the maximum mean response and γ is a small constant.

There is a long history of adaptive dose-finding methods for estimating a dose with a certain
mean response for binary (e.g. Wetherill, 1963; O’Quigley et al., 1990; Babb et al., 1998)
and for continuous outcomes (e.g. Eichhorn and Zacks, 1973; Ivanova and Kim, 2009). All
of these methods have been developed under the assumption that the mean response is
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strictly increasing with dose. When the dose-response curve plateaus near the value of the
mean response of interest, the goal is usually to find the lowest dose on the plateau. Cheung
(2008) pointed out that existing methods might not be appropriate in this case. For example,
the CRM converges to one of such doses and not necessarily the lowest one; the stationary
distribution of a group design (Wetherill, 1963) will be uniformly spread across all target
doses (Xiao and Ivanova, 2011). That is, many existing adaptive methods will not work well
for estimating the peak dose, the lowest dose on the plateau. Also, many of existing methods
were not designed for the case when finding the target dose requires estimating mean
responses at other doses. For example, finding the location of the MED requires estimation
of placebo response.

We make the assumption that the mean response is non-decreasing with dose. Such isotonic
assumptions are made in most of dose-finding trials. For a non-decreasing curve, using the
isotonic assumption usually leads to increased efficiency in estimation of the target dose
compared to a trial where this assumption is not utilized. Our investigation shows that this is
especially true if the dose-response curve is non-decreasing and has a plateau. Isotonic
estimates were successfully used in adaptive dose finding by Conaway et al. (2004); Yuan
and Chappell (2004); and recently by Li et al. (2008) and Bekele et al. (2008) in the context
of a Bayesian dose-finding trial.

Often there is a set of known covariates that are believed to be associated with response to
treatment. Our motivating example is a recent Phase II dose-finding trial conducted by a
large pharmaceutical company where it was believed that in- and out-patient status were
associated with therapeutic response to treatment. A number of adaptive designs address the
problem of estimating the target dose for each level of covariate (e.g., O’Quigley and
Paoletti, 2003; Ivanova and Wang, 2006). Both the MED and the peak dose are defined
using a reference dose, placebo or the highest dose. When defined this way, the target dose
will not depend on covariates as long as effects of dose and covariates are additive (no
interaction). In dose-finding trials the role of covariates is similar to that in a comparative
multi-arm trial: balancing with respect to covariates is preferred (Atkinson, 1999) for
validity and to increase efficiency of estimation. Balancing is more challenging in the
context of an adaptive dose-finding trial compared to a parallel group study. We describe
how to randomize subjects to doses in the course of an adaptive trial while balancing
allocations with respect to known covariates.

2. Optimal allocation for estimating the MED and peak doses
2.1 Notation

Let {d0,…, dK} be the set of ordered dose levels selected for a trial with d0 denoting placebo
and dK denoting the highest dose, for example, the maximum tolerated dose established in
earlier trials. Let n be the total sample size and ni be the number of subjects assigned to di by
the time a total of n subjects have been assigned, n0 + … + nK = n. Let Yij denote the
response of the jth subject assigned to di, j = 1, 2,…, ni, i = 0, 1,…, K, and let xij be a K×1
vector of covariates associated with that subject. We assume the linear model

(1)

Where μi is the mean response at di when xij = 0, β is the regression parameter associated
with covariate vector xij and εij ~ N(0,σ2).

The MED is defined as the dose with mean response μ0 + η, where η > 0 is the minimum
clinically important difference specified before the trial. The peak dose is defined as the
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lowest dose with mean response μK − γ, where γ, γ ≥ 0, reflects the proximity to the
highest mean response. For example, in a seven-dose trial with true mean response at the
seven doses of (0.2, 0.21, 0.25, 0.5, 0.74, 0.79, 0.8), the MED defined with η = 0.35 is d3,
while the peak dose defined with γ = 0.06 is dose d4.

2.2 Isotonic estimation of the target dose

Let  be the vector of unconstrained maximum likelihood estimates (MLE)
obtained from model (1), and let Σ be its covariance matrix. The constrained MLE, μ̂ = (μ̂0,
…, μ̂K), is the estimator that maximizes the likelihood based on model (1) under the

restriction μ̂0 ≤ … ≤ μ̂K. When the components of  are independent, the
constrained MLEs can be computed by applying the pool adjacent violator algorithm to the

unconstrained estimates (Robertson et al., 1988). That is, if , μ̂ = μ̂U;
otherwise, the data from adjacent doses where the assumption of monotonicity is violated
are pooled (see Robertson et al., 1988, or Stylianou and Flournoy, 2002, for more details). In
presence of covariates the pool adjacent violator algorithm applied to unconstrained MLEs
will not yield the constrained MLEs and might result in estimates with increased mean
squared error (Hwang and Peddada, 1994). A projection approach that takes covariance into
account (Silvapulle and Sen, 2005) cannot be used here since the covariance is unknown.
We computed constrained MLEs directly by maximizing the likelihood in (1) under
restriction.

Further, we define two estimators based on μ̂. The first will be referred to as the lowest dose
estimator and is defined as the lowest dose on the plateau of doses with the estimated mean
response closest to the target. This estimator is suitable for estimating the peak dose. For
example, if μ̂ = (0.22,0.22,0.45,0.45,0.76,0.76,0.76), the estimated mean response closest to
μ̂6 − γ = μ̂6 − 0.06 = 0.7 is μ̂4 = μ̂5= μ̂6 = 0.76, and the lowest dose estimator will select d4
as the estimated peak dose. The second estimator is referred to as the closest dose estimator
and is suitable for estimating the MED. It selects the lowest dose among doses with the
mean response closest to the target if their estimated mean is higher than the target; and
selects the highest of the doses if their estimated mean is lower than the target. In the
example above, when estimating the MED with η = 0.3 the estimated mean response closest
to μ̂0 + 0.3 = 0.52 is μ̂2 = μ̂3 = 0.45, and the closest dose estimator will select the highest
dose on the plateau, d3, as the estimated MED since 0.45 < 0.52.

2.3 Optimal allocation to estimate the MED and peak dose
When developing an adaptive allocation it is important to know which fixed allocation is the
most efficient for estimating the target dose. An optimal design is an allocation that
optimizes a certain criterion with respect to the proportion of subjects (w0,…, wK), wi ≥ 0,
assigned to each dose, (d0,…, dK). The classical optimal design (Pukelsheim, 1993) in
continuous dose space optimizes a criterion such as the volume of the confidence ellipsoid
(D-optimal design) or the average variance of parameter estimates (A-optimal design). With
discrete dose space, it is most natural to maximize the probability of correct selection of the
target dose. Since in most dose-finding trials we work with a set of doses that have been
selected before the trial, we are concerned with identifying the optimal proportions (w0,…,
wK). In most cases, the optimal design depends on the true model parameters that are not
known. This is true in the case of isotonic estimation as well.

In the result below s = 0 and ν = η when the MED is being estimated; s = K and ν = −γ
when the peak dose is being estimated. The following is true (the proof is in Appendix).
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Proposition—The probability of correctly selecting the target dose defined as the dose
with mean response equal to μs + ν, s ∈{0, K} by applying the closest dose or the lowest
dose estimator to the weighted average of components of μ̂U depends only on {wi},

 and (n/σ2)Σ.

When the pool adjacent violator algorithm is used, the resulting isotonic estimates are
weighted averages of components of μ̂U, hence it follows from the Proposition that the

optimal weights are a function of  and (n/σ2)Σ. If the components of μ̂U are

uncorrelated, the optimal weights are a function of  only.

Consider the problem of estimating a dose with mean response ν, where ν is a known
constant. We use a two-step approach to compute the optimal design. In the first step we
determine which support points have non-zero weight. Then, compute optimal weights for

these support points. In the first step, for given  we compute the optimal design
numerically using the Nelder-Mead simplex algorithm (Nelder and Mead, 1965). In all dose-
response scenarios the optimal design for the lowest dose estimator is at most a three-point
design with allocations to dτ−1, dτ, and dτ+1, where dτ is the true target dose. Moreover,
unless μτ+1 − μτ is very large, the optimal design for the lowest dose estimator is a two-
point design with allocations to dτ−1 and dτ. Since in the peak dose estimation a dose-
response curve plateaus and μτ+1 − μτ ≤ γ, where γ is small, the optimal design to estimate
the peak dose using the lowest dose estimator is a three-point design with allocation to dτ−1,
dτ and dK, where dτ is the true peak dose. For the closest dose estimator, the optimal design
is at most a three-point design with non-zero weights at the true target dose, dτ, the dose
right below, dτ−1, and the dose right above, dτ+1. Therefore the optimal design to estimate
the MED using the closest dose estimator is at most a four-point design with allocation to
d0, dτ−1, dτ, and dτ+1, where dτ is the true MED.

In the second step of the optimal design calculations, we use the normal cumulative
distribution function to compute optimal weights. The optimal weights to estimate the peak

dose are computed based on  and . The probability of
correctly selecting di as the estimated target dose is equal to

where  denotes the sample mean of a pooled sample obtained at dτ and dK. Equivalently,

(2)

Note that the expression to the right of 2γ can be written as a function of

( ). The vector ( ) follows a bivariate normal
distribution with mean vector (μτ−1 − μK, μτ − μK) and a covariance matrix with diagonal
σ2/n (1/wτ−1 + 1/wK, 1/wτ + 1/wK) and off-diagonal element −σ2/(wKn). The probability P
is computed using the cumulative function of the multivariate normal distribution. The
optimal allocation (wτ−1, wτ, wK) is the one that maximizes P over (wτ−1, wτ, wK), 0 ≤ wK
≤ 1, k = τ − 1, τ, K. Figure 1 displays (wτ−1, wτ, wK) plotted against total sample size for
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(μτ−1, μτ, μK) = (0.5,0.74,0.8) with σ = 0.25. This mean vector is one of the scenarios in
Bretz et al. (2005) (Table 1, scenario 5). The optimal allocation for sample sizes larger than
those in a typical trial is displayed to illustrate that, for the set-up considered, the optimal

allocation proportion to dτ−1 gets smaller and the allocations to dτ and dK increase as 
gets smaller. This is because μτ is closer to μK than it is to μτ−1, therefore it is more
efficient to spend resources on distinguishing between μτ and μK, than between μτ and
μτ−1. The probability of correctly identifying the target dose in the range of sample sizes of
interest for optimal allocation is similar to equal allocation to the three doses with minimum
relative efficiency of

That is, to estimate the peak dose well, we need to assign about equal number of subjects to
the peak dose, the dose right below it, and the highest dose with no assignments to other
doses. Interestingly, unbalanced allocation with many more subjects assigned to the peak
dose is only beneficial when the standard error of the estimated mean is very small
compared to the difference between means. Also, in estimation of the peak dose, increased
allocation to the doses on the plateau other than the peak and the high dose, substantially
decreases the precision of the estimate of the peak dose.

The optimal weights for the four-point design for estimating the MED are calculated
similarly. Figure 2 displays (w0, wτ−1, wτ, wτ+1) plotted against total sample size for (μ0,
μτ−1, μτ, μτ+1) = (0.2,0.25,0.5,0.74) with σ = 0.25 (Table 1, scenario 5). The conclusion is
similar, allocating approximately equal numbers of subjects to each of the four doses yields

good quality of estimation of the target dose. As  gets smaller, the allocation
proportions to dτ−1 and dτ+1 decreases and the allocations to d0 and dτ increase.

Optimal allocations in Section 2 were computed under the assumptions of independence
among unconstrained estimates. When covariates are present the unconstrained estimates are
no longer independent, and optimal allocations are computed under a given correlation
structure. Our simulation study of trials with covariates yielded similar optimal designs:
three or four point designs with balanced allocation are nearly optimal.

3. Adaptive design to estimate the MED and peak doses
3.1 Adaptive strategy to estimate the MED and the peak dose

In Section 2 we computed the optimal design for estimating the MED and peak doses. As is
the case for most parametric models, the optimal allocation depends on the true model. For
isotonic model, one needs to know the location of the target dose to construct the optimal
design. Therefore our adaptive strategy will be to locate the target dose and to make
allocations to the target dose and other two or three key doses approximately equal. We use
this as a guideline to design an adaptive strategy. Ivanova and Kim (2009) introduced a
dose-finding design based on t-statistic to locate the dose with a certain mean response. We
modify their strategy to target optimal (or nearly optimal) allocation. According to the t-
statistic design, subjects can be assigned in groups or one at a time. Assume that the most
recent assignment was to dose di. Let Ti be the test statistic testing H0: μi − (μ0 − η) = 0
against the two-sided alternative computed using constrained MLEs μ̂i, μ̂K and the
estimated common variance from linear model (1).

Then,
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i. If Ti ≤ −Δ, the next group of subjects is assigned to doses di+1;

ii. If −Δ< Ti < Δ, the next group of subjects is assigned to doses di;

iii. If Ti ≥ Δ, the next group of subjects is assigned to doses di−1.

Applying this rule when the current dose is d1 or dK might cause the dose assignment to be
outside {d1,…,dK}. Thus for i = 1 or K, when the rule would cause a treatment to be outside
of the dose levels, the current dose is repeated instead.

To estimate the MED, we set Δ = 0, in the above design in which case the adaptive rule will
allocate to either di−1 or di+1 after allocating di. If μτ = μ0 − η, the limiting allocation for the
t-statistic design is allocating to dτ−1, dτ, and dτ+1 with proportion (0.25,0.5,0.25). This
proposed strategy provides acceptable balance in allocations to dτ−1, dτ, and also allows the
design to “move fast” among doses in the early stages of the trial (Ivanova and Kim, 2009).

To estimate the peak dose, one needs to make sure that the design converges to the lowest
dose on the plateau and also that the allocation close to optimal is achieved. We accomplish
this by a choice of Δ and by modified the decision rule in the design. To make sure that the
design reaches the lowest dose of the plateau, we replace the action “if −Δ< Ti < Δ, repeat
the dose” in the design described above with the action “if −Δ <Ti < Δ, assign next subject
to di−1 with some probability ϕ or repeat the dose with probability 1 − ϕ while keeping Δ
strictly above 0. Ivanova and Kim (2009) pointed out that it is advantageous to have small Δ
in the beginning of the trial for “fast movement” with larger Δ later in the trial. For example,
a trial with 8 cohorts and 3 subjects per cohort yielded the optimal Δ = 0.45 for the first 2
cohorts and Δ = 1.05 for the cohorts 3–8 (Ivanova and Kim, 2009). Following this
suggestion, we propose setting Δni = 3/[1+exp(3 − 0.05ni)]. Defining Δnj in such a way
makes Δ equal to about 0.5 for small ni, equal to about 1.0 when ni = 46; Δnj tends to 3.0
when ni goes to infinity. The choice of the value ϕ is guided by the optimal allocation for
estimating of the peak dose. The value of ϕ = 1 results in equal allocation (which is nearly
optimal) to the target dose and a dose level right below in the limit, therefore we set ϕ = 1 in
the adaptive strategy. This results in a simple allocation strategy for estimating a target dose
when dose-response curve is assumed to be non-decreasing: increase the dose if Ti ≤ −Δni,
where ni is the number of subjects assigned to dose di so far; otherwise decrease the dose.

3.2 Covariate adjusted randomization
In a dose-ranging study subjects are usually assigned in cohorts. In a trial estimating the
MED, at each step a dose is adaptively chosen from {d1,…,dK} and some subjects in a
cohort are randomized to placebo d0. In a trial estimating the peak dose some subjects in
each cohort are randomized to dK and some to one of {d1,…, dK−1}. To ensure balanced
allocation between d0 (or dK) and the estimated target dose we propose to keep the
allocation to d0 approximately equal to the allocation to a dose with the most assignments.
In the remainder of this section we will use the estimation of the MED as an example. In
order to achieve balance in assignments with respect to covariates between d0 and the
current dose recommended by the adaptive strategy based on the data available so far, we
propose to use a method similar to minimization (Taves 1974; Pocock and Simon 1975). For
ease of presentation, we describe the method for a single covariate with two levels x = 0 and
x = 1. Let nix (t) be the number of subjects assigned to dose di, i = 0,…,K, with the covariate
level x, x = 0, 1, right after subject t has been assigned, and let ni (t) = ni0 (t) + ni1 (t), that is,

. Let dose di be the current dose. A new subject, subject t + 1,
entering the study will be assigned to either di or to placebo d0. Define the measure of
discrepancy (MD) as follows
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Here W is the weight similar to the weight used in minimization; we used W = 0.5 in the
simulation study. The value of MD is computed assuming that subject t + 1 is assigned to di,
and then computed assuming that subject t + 1 is assigned to d0. The subject is assigned to
the dose with the smaller value of MD. In the case when the values of MD are the same, the
subject is randomized to one of the doses with equal probability. When there are no
covariates, this strategy is still useful as it helps to keep the number of subjects assigned to
placebo approximately equal to the number of subjects assigned to the estimated target
MED.

4. Simulation study
Our simulation study investigates the effect of balancing assignments to doses with respect
to covariates, adjusting for covariates, doing both or neither. Also, we are comparing
adaptive strategies with equal allocation. Simulation results are based on 5000 simulation
runs. Table 1 displays seven scenarios from Bretz et al. (2005) that we considered. A two-
level covariate, in-patient with x = 0, Pr(x = 0) = 0.4, and out-patient with x = 1, with
covariate effect β = 0.5 was considered. To estimate the MED defined as the dose with the
mean response equal to μ0 + 0.35 we used the adaptive strategy described in Section 3.1; to
balance with respect to covariates we used the algorithm described in Section 3.2. Unless
specified otherwise the simulations were performed with balancing with respect to
covariates and adjusting for covariates in the analysis.

It is useful to have a lead-in phase with equal number of assignments to all doses. Such lead-
in phase ensures that all doses are tested and provides data for initial estimation of the MED.
The estimated MED after the lead-in is used as a starting dose for the adaptive design. Forty
two subjects, 26% of the total sample size of 162, were assigned in the lead-in phase, 6
subjects to each dose. We have investigated various choices of the size of lead-in and lead-
ins with 25%–50% of the total sample size performed well as far as estimation of the target
dose. We used 26% because we wanted to explore the impact of the number of cohorts on
adaptive design performance.

It is always desirable to stop the trial for futility if a drug is not beneficial, that is, if the null
hypothesis H0: μK= μ0 + η, η = 0.35, is rejected in favor of one-sided alternative μK < μ0 +
η. Looks for futility were performed at each interim and at the final analysis. Given the
goals of a Phase II trial, we suggest setting the probability of rejecting an efficacious drug at
0.05 or lower. The Pocock stopping boundary was used in sequential monitoring to
minimize the expected sample size if the treatment is not effective. If the trial was stopped
early for futility or futility was established during the final analysis none of the doses was
selected as the estimated MED.

Table 2 displays the proportion of trials in which the true MED was selected as the
estimated MED. In adaptive design, after lead-in subjects were assigned in 5 cohorts, 24
subjects per cohort. That is, there were 5 interim and one final analysis. Data were generated
from scenarios in Table 1 with σ = 0.25. We report results when balancing with respect to
covariates, adjusting for covariates, neither or both were performed. The results where the
allocation was balanced with respect to covariates but covariates were ignored in the
analysis, and where the allocation was not balanced but covariates were used in the analysis
were only slightly worse than those for adaptive design with balancing and adjusting. These
findings were consistent across various numbers of analyses and for both the MED and the
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peak dose estimation. Thus, one needs to least balance assignments with respect to
covariates or adjust for covariates in the analysis. It is interesting to note that balancing with
respect to and adjusting for covariates when β ≠ 0 yielded very similar quality of estimation
to the case where covariate effect was 0. On the other hand, it is clear from the comparison
of the adaptive adjusted design and adaptive design with no balancing or adjustment, that
disregarding covariates that are associated with the outcome in design and analysis have
negative effect on quality of estimation of the target dose. Compared with equal allocation,
adaptive design yields much higher probability of selecting the correct MED.

Table 3 displays results for the average sample size at the estimated target dose. Adaptive
design assigns more subjects on average to the estimated target dose, which increases the
power of comparisons that involve the estimated target dose. Adaptive design assigns about
twice as many subjects to the estimated target dose on average compared to equal allocation
in all non-null scenarios. As far as futility stopping, all trials were stopped for futility in the
null scenario, scenario 1, and the average sample size in scenario 1 was 63. For the equal
allocation, in the null scenario futility was declared at the end of every trial after 160
patients were treated. None of trials was stopped early for futility in scenarios 2–7.

To study the effect of the number of interim analyses on the design performance we
performed simulations with the total of 2 analyses where two doses were selected in stage 2,
and adaptive design with 3 analyses (2 cohorts of size 60), 4 analyses (3 cohorts of size 40),
6 analyses (5 cohorts of size 24), 9 analyses (8 cohorts of size 15) and 13 analyses (12
cohorts of size 10). Each trial had a lead-in phase with a total of 42 subjects equally
allocated to 7 doses. The average (over non-null scenarios) percent selection of the target
dose was 0.84, 0.87, 0.88, 0.88, 0.88 and 0.89, respectively. The average sample size at the
estimated target dose (averaged over non-null scenarios) was 38, 39, 44, 44, 43 and 43.
Regardless of the number of analysis, the probability of stopping early for futility was 1 in
the null scenario, the average sample size was 117, 84, 72, 62, 58 and 58 for 2, 3, 4, 6, 9, and
13 analysis correspondingly. None of the trials was stopped early for futility in scenarios 2–
7.

We also repeated simulations with different values of σ. The probabilities of correct
selection of the MED in non-null scenarios were 0.49, 0.37, 0.38, 0.67, 0.65, 0.76 for σ =
0.65 (Table 4). These numbers are to be compared with selection probabilities for equal
allocation, 0.39, 0.30, 0.33, 0.58, 0.61, 0.69. Average sample sizes at the estimated MED
were 37, 36, 36, 39, 42, 41 for σ = 0.65. The probability of stopping early for futility was 0.6
in scenario 1, with the average sample size of 142. For equal allocation futility was declared
in 0.23 of the trials. None of trials was stopped early for futility in scenarios 2–7 when
adaptive design was used. When the variability of the outcome was large (σ = 1.3 and
larger) while keeping the sample size the same, selection probabilities were low and
adaptive design did not bring much benefit compared to equal allocation.

Often patient response is not known prior to assignment of the next cohort. We repeated the
simulations under the following staggered entry model: the outcome was available 5 weeks
from the start of treatment; the accrual rate was 1, 5, 20, and 40 subjects per week. The
adaptation was performed every time when a new cohort was initiated based on all response
data available at that point. If no data were available for an adaptation, subjects were
randomized equally among all doses including placebo. With total sample size of 162, trials
with accrual rate of 40 subjects did not allow any adaptations resulting in equal allocation,
and therefore selection probability of the target dose was the same as for equal allocation.
As accrual rate increased from 1 to 40, selection probability decreased from that of adaptive
design to that of equal allocation. For example, in scenario 2, the correct MED was selected
in 0.88, 0.84, 0.82, and 0.76 of the trials with accrual of 1, 5, 20, and 40 subjects per week
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respectively. Here and in other scenarios only half of the advantage of adaptive design
compared to equal allocation was preserved in trials with accrual rate of 20 subjects per
week.

We also performed simulations to estimate the peak dose defined as the lowest dose with the
mean response of μK − γ, where γ = 0.06. The conclusions were similar to those of the
MED. With lead-in phase allocating 6 subjects per dose and four cohorts with 30 patients
each, the probabilities of correct selection of the peak dose in non-null scenarios were 0.46,
0.70, 0.55, 0.73, 0.88, 0.95 (Table 4). These results should be compared to 0.38, 0.55, 0.47,
0.66, 0.81, 0.88 for equal allocation. There was almost no additional benefit in estimation
when the number of analyses was increased and slight benefit as far as the average sample
size at the target dose. For σ = 0.65, the probabilities of correct selection of the peak dose
were 0.27, 0.35, 0.40, 0.51, 0.56, 0.67 for adaptive design (Table 4), and 0.22, 0.31, 0.34,
0.43, 0.50, 0.55 for equal allocation. Simulation study for the peak dose did not include a
stopping rule. Estimated peak dose will be normally compared to placebo, therefore
requiring increased allocation to both placebo, to stop early for futility, and to the highest
dose, to estimate the peak dose better.

We compared our methods to the Normal Dynamic Linear Model (NDLM) (Berry et al.,
2001). The NDLM method was simulated using Compass® software (Compass®, Cytel
Inc.) based on 5000 trials for each set-up. Though the NDLM allows covariates, we
simulated the NDLM without covariates as Compass® does not accommodate covariates.
We used allocation rule that minimized the variance of the estimated mean response, the
NDLM default values were used to specify the prior. The NDLM was simulated with the
same number of cohorts and cohort size as corresponding isotonic designs. Instead of the
peak dose defined as the lowest dose with the mean response of μK − 0.06, we estimated
ED90, as the two doses coincide for all scenarios we considered. In our designs placebo/
drug ratio was not fixed, but rather adaptively chosen so that allocation to placebo is
approximately equal to allocation to the dose with maximum number of patients. For the
NDLM, we performed simulations for various placebo/drug ratios and report results
corresponding to the ratio that yielded the best selection probabilities for the NDLM over
seven scenarios we considered. Results are presented in Table 4. Results for placebo/drug
ratio of 1:2 are reported for the MED estimation and 1:4 ratio for ED90 estimation. As far as
allocation to doses the NDLM tends to spread allocation across the dose range and the
isotonic designs tend to concentrate assignments near the target dose. Estimation results are
presented in Table 4. The NDLM provides similar estimation of the MED compared to
isotonic designs, percent selection of the target dose is only by 2% lower on average for the
NDLM. For the peak dose estimation, the NDLM is inferior by 14% on average compared to
the isotonic design. This can be due to a different definition of the target dose or due to the
fact that the NDLM does not rely on isotonic assumption.

5. Conclusions
We investigated various strategies for dose-finding trials with covariates. Our conclusion is
that one needs to least balance assignments with respect to covariates or adjust for covariates
in the analysis. We propose an algorithm, similar to the method of minimization, to balance
allocation with respect to covariates in a dose-finding trial.

We examined sequential strategies to estimate the MED and the peak dose that use the
knowledge of the allocation that maximizes the probability of correctly selecting the target
dose. In many trials, it is desirable to test the mean response at the target dose against
placebo mean response. In this case the optimality criterion for the design can be set as a
function of the probability of correct selection of the target dose and the number of subjects
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allocated to target. Another possibility is to fix the probability of correct selection at, say,
95% of the optimal and maximize the number of subjects allocated to the target dose.
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Appendix. Proof of the Proposition

The vector of unconstrained MLEs obtained from model (1), , has
multivariate normal distribution with mean vector μ= (μ0, … μK) and variance covariance
matrix Σ with (σ2/n0,…, σ2/nK) on the diagonal. Let wi = ni/n, 0 < wi < 1, w0 + … + wK = 1.
First we wish to show that when μs = 0 and it is known, the probability of correctly selecting
the target dose by applying the closes dose or the lowest dose estimator to the weighted

average of components of μ̂U depends only on vectors {wi},  and matrix (n/σ2)Σ.
We note that the probability of selecting the correct target dose can be expressed as:

(A.1)

where the regions Aj, j = 1,…, J, are disjoint sets in the sample space each defined by a set
of inequalities where the algorithm chooses the correct target dose. For example, when

, the two rejoins are shown in formula (2). We note that each of these
regions may be expressed as an intersection of solution sets of inequalities where each side
of the inequality is a linear combination of the components of μ̂U or the absolute value of
such a combination, and the coefficients are functions of the {wi}. Thus, the regions Aj of
the sample space where the closest dose is chosen are given by inequalities of the form

described above. We rewrite (A.1) after making the substitution , i = 0,…, K.

where Λ = (n/σ2)Σ is the covariance matrix for the yi. This substitution does not change the
regions Aj because substituting  for xi in the original inequalities that define the Aj
and dividing through by the positive constant  does not change solution set for the
inequalities, which now depend only on the wi and the yi. Because the yi will be integrated

out, the integral in (3) depends only on the {wi},  and (n/σ2)Σ. If μs in the
definition of the target dose is not known and is being estimated, the result is obtained

similarly to the above by considering . This is because the density is
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from a location-scale family, and the regions of correct selection do not depend on the
location. Location is irrelevant to the regions of correct selection because the inequalities
that define them are comparisons of isotonic estimates where the coefficients for each
observation sum to 1, so shifting all means up by a constant does not change their solution
sets.
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Figure 1.
Optimal allocation to estimate the peak dose. The solid line is the proportion assigned to the
true peak dose, dτ, the dotted line proportion assigned to dK and the dashed line proportion
assigned to dτ−1.
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Figure 2.
Optimal allocation to estimate the MED. The solid line is the proportion assigned to the true
MED, dτ, the dotted line proportion assigned to placebo d0, the dashed line proportion
assigned to dτ−1 and the dotted-dashed line to dτ+1
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Table 1

Data generating dose response curves, d = (0,0.05,0.2,0.4,0.6,0.8,1)

Scenario Model Mean Response

1 Constant = 0.2 (0.20,0.20,0.20,0.20,0.20,0.20,0.20)

2 Emax = 0.2+0.7d/(0.2+d) (0.20,0.34,0.55,0.67,0.72,0.76,0.78)

3 Linear in log-dose = 0.2+0.6log(5d+1)/log(6) (0.20,0.27,0.43,0.57,0.66,0.74,0.80)

4 Linear = 0.2+0.6d (0.20,0.23,0.32,0.44,0.56,0.68,0.80)

5 Logistic = 0.193+0.607/{1+exp[10log(3)(0.4−d)]} (0.20,0.21,0.25,0.50,0.74,0.79,0.80)

6 Step 1 = 0.2+0.6I(d≥0.2) (0.20,0.20,0.80,0.80,0.80,0.80,0.80)

7 Step 2 = 0.2+0.3I(d≥0.4)+0.3I(d≥0.6) (0.20,0.20,0.20,0.50,0.80,0.80,0.80)
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