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Abstract
Toxicologists and pharmacologists often describe toxicity of a chemical using parameters of a
nonlinear regression model. Thus estimation of parameters of a nonlinear regression model is an
important problem. The estimates of the parameters and their uncertainty estimates depend upon
the underlying error variance structure in the model. Typically, a priori the researcher would know
if the error variances are homoscedastic (i.e., constant across dose) or if they are heteroscedastic
(i.e., the variance is a function of dose). Motivated by this concern, in this article we introduce an
estimation procedure based on preliminary test which selects an appropriate estimation procedure
accounting for the underlying error variance structure. Since outliers and influential observations
are common in toxicological data, the proposed methodology uses M-estimators. The asymptotic
properties of the preliminary test estimator are investigated; in particular its asymptotic covariance
matrix is derived. The performance of the proposed estimator is compared with several standard
estimators using simulation studies. The proposed methodology is also illustrated using a data set
obtained from the National Toxicology Program.
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1 Introduction
Often toxicologists are interested in investigating the dose-response relationship when
animals are exposed to varying doses of a chemical. Usually a nonlinear regression model
such as a Hill model is used to describe the relationship (Gaylor and Aylward, 2004; Sand et
al., 2004; Crofton et al., 2007). There may be several problems when fitting nonlinear
models. Among them, one important concern is the error variance structure. Depending
upon various factors, including the bioassay, dose-spacing and the endpoint of interest etc.,
the variability in response may not be constant across dose groups (heteroscedasticity). The
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standard asymptotic confidence intervals and test procedures based on the ordinary least
squares (OLS) methodology may not be robust to heteroscedasticity and consequently may
produce inaccurate coverage probabilities and Type I error rates. On the other hand, the
standard iterated weighted least squares (IWLS) based methodology may not be efficient
when the variances are approximately equal across dose groups (homoscedasticity).
However, in practice one generally does not know if the data are homoscedastic or
heteroscedastic.

The problem of heteroscedasticity has been extensively discussed in the literature in a wide
range of contexts involving linear and nonlinear models. For instance, Hoferkamp and
Peddada (2002) considered the problem of heteroscedasticity in the context of groups of
experiments, as in fertilizer trials, where the error variances are ordered. Cysneiros et al.
(2007) derived a joint iterative process for estimating the location and dispersion parameters
in heteroscedastic linear models with symmetrical errors. Guo and Koul (2008) developed
asymptotic theory for long memory time series based on heteroscedastic linear models.
Recently, the problem of heteroscedasticity has also been addressed in the context of semi-
parametric partially linear models (Ma et al., 2006; You et al., 2007; Lu, 2009). A Bayesian
method for testing for equality of regression parameters in a heteroscedastic linear model
has also been considered in the literature (Moreno et al., 2005).

Several authors modeled error variance as a function of dose in dose-response models (cf.
Davidian and Carroll, 1987). Wang and Zhou (2007) even developed a nonparametric test
for checking the adequacy of a given variance function. Bellio et al. (2000) proposed the use
of higher order likelihood based methods for inference in heteroscedastic nonlinear models
with application to dose-response models in herbicide bioassays.

Although IWLS based methods perform well under heteroscedasticity, they may lose
efficiency relative to other methods when the data are homoscedastic. To illustrate this,
consider the simulated data presented in Fig. 1 which is based on homoscedastic errors. The

data were generated using the Hill model (Hill, 1910), , which is
usually used to study in vivo concentration response relationships, where y is the response at
dose x, θ0 is the intercept parameter, θ1 is the difference between the maximum effect of a
drug (Emax) and the intercept, θ2 is the slope parameter that reflects the steepness of the
effect-concentration curve, and θ3 is the sensitivity parameter, the drug concentration
producing 50% of Emax (ED50).

In Fig. 1, the point estimate (with standard error in parentheses) for the ED50 (whose true
value is 120) based on the OLS estimator (OLSE) is 149.7 (31.90). The IWLS estimator
using the sample variances, denoted as IWLSEN, is 226.4 (65.37), and the IWLS estimator
using a variance model, denoted as IWLSEM, is 233.0 (64.77). This example illustrates that
a method designed for heteroscedastic data may not perform well when the data are
homoscedastic.

Because the performance of a method relies on whether the data are homoscedastic or
heteroscedastic, it is important to develop an estimation procedure which is robust to
whether the error variance is homoscedastic or heteroscedastic. To make the procedure
robust to the structure of the error variance, a preliminary test estimation (PTE) based
methodology is developed in this paper. PTE has been well studied in the literature in a
variety of contexts (Judge and Bock, 1978). For instance, Sen (1986) studied the asymptotic
distributional risks for the preliminary test version of a maximum likelihood estimator.
Recently, Ahmed et al. (2007) investigated the asymptotic properties of a pretest
semiparametric estimator under quadratic loss and examined its performance using
asymptotic analysis of quadratic risk functions in a partially linear model. Hoque et al.
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(2009) studied the performance of the PTE of the slope parameter of a simple linear
regression model under a linex loss function and derived the risk function and the moment
generating function of the PTE.

Outliers and influential observations are common in toxicological data. To make the
proposed procedure robust against outliers, we use the principle of M-estimation. Thus in
this paper the PTE is either the ordinary M-estimator (OME) or the weighted M-estimator
(WME) depending upon the outcome of a preliminary test for heteroscedasticity.

The PTE methodology based on OME and WME is proposed in Section 2. Results of a
sample of simulation studies are provided in Section 3 and the proposed methodology is
illustrated using a data set from the National Toxicology Program (NTP) in Section 4.
Proofs of the main results are provided in Appendix while the theorems needed for proving
these main results are provided in the online supplementary material.

2 The proposed methodology
2.1 Weighted M-estimation

Let yi denote an ni × 1 response vector corresponding to an m × 1 vector of covariates xi in
the ith sample, i = 1, 2, …, k. Let

denote the nonlinear regression model, where f(xi, θ) is some pre-specified nonlinear
function of a p × 1 parameter vector θ = (θ1, θ2, …, θp)T and εi are independent ni × 1

vectors that are identically distributed as N(0, I). The total sample size n is given by .
The components of yi are denoted by yij, j = 1, 2, …, ni.

It is assumed that σi ≡ σ(zi, τ), where σ(·, ·) is a known function of a known q × 1 covariate
vector zi and an unknown q × 1 parameter vector τ. Such models are commonly used in
practice. For example, in some studies it may be reasonable to assume that the error variance

 is a linear function of dose. For more examples one may refer to Carroll and Ruppert
(1988).

The definition of an M-estimator depends upon the Huber score function which is defined as
follows. For a pre-specified positive constant k0, the Huber score function h(u) is given by:

Throughout this paper we took k0 to be 1.5. Then the ordinary M-estimator for θ is obtained
by solving the following minimization problem:

If we take h(u) = u then we obtain the classical OLSE. Note that the OME does not account
for heteroscedasticity in the data. The estimating equations for solving the above
optimization problem are given by (Sanhueza and Sen, 2001):
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where

fθ(xi, θ) = (∂/∂θ)f(xi, θ), and ψ(u) = (∂/∂u)h2(u).

To deal with heteroscedasticity, one may define a weighted M-estimation procedure similar
in spirit to the popular IWLSE methodology using a variance function. Thus the WME is
obtained by solving the following minimization problem:

where log σ(zi, τ) is added within the sum, which is analogous to maximum likelihood
estimation when the errors are normally distributed. The above minimization problem can be
solved using the following estimating equations:

(1)

where

(2)

στ (zi, τ) = (∂/∂τ)σ(zi, τ), and k(zi, τ) = 1/σ(zi, τ).

We now derive the asymptotic normality of the WME. It is important to note that all the
asymptotic results discussed in this paper are valid as long as n, the total sample size, goes to
infinity. Two types of asymptotics often discussed in the literature are (a) the ni is finite
(e.g., ni = 1) for all i and the number of doses becomes large (c.f., Wu, 1986), and (b) ni goes
to infinity for i = 1, …, k (c.f., Peddada and Smith, 1997). Although our asymptotic results
are valid under both situations, in the following theorem we provide the proofs for (a). The
proof for (b) can be obtained similarly and hence omitted. Essentially, all the asymptotic
results obtained in this paper are valid as long as the total sample size goes to infinity.

We require the following sets of regularity conditions concerning (A) the score function ψ,
(B) the function f and (C) the function σ.

[A1] Let ε = {y − f(x, θ)}/σ(z, τ). Then γ1 = E{ψ(ε)ε}(≠ 0); Eψ′(ε) = γ2 (≠ 0); E{ψ′

(ε)ε2} = γ3 (≠ 0); .

[B1] i. limn→∞n−1Γ1n(θ, τ) = Γ1(θ, τ), where
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ii. limn→∞n−1Γ31n(θ, τ) = Γ31(θ, τ), where

and Γ31(θ, τ) is a positive definite matrix.

iii. , as n → ∞

[C] i. limn→∞n−1Γ2n(θ, τ) = Γ2(θ, τ), where

and Στ(zi, τ) = (∂2/∂τ∂τT)σ (zi, τ).

ii. limn→∞n−1Γ32n(θ, τ) = Γ32(θ, τ), where

and Γ32(θ, τ) is a positive definite matrix.

iii. , as n → ∞

The asymptotic normality of the WME is established in Theorem 1 under the above
regularity conditions.

Theorem 1—Under the conditions [A1], [B1] and [C]; [S1] – [S9] in the supplementary
material,

(3)

where

and
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Note that the above theorem also provides the asymptotic covariance matrix of the WME.

2.2 Preliminary test estimation
We now describe the PTE procedure in the context of dose-response studies. Based on our
experience with dose-response studies in toxicology, it is reasonable to assume that log-
variance is a linear function of dose. Thus we assume log σi = τ0 + τ1xi. Then τ1 = 0
corresponds to homoscedasticity, while τ1 not equal to 0 corresponds to heteroscedasticity.
Without loss of generality, in this article we consider assays where the response increases
with dose. Accordingly, under heteroscedasticity, we assume that potentially the variance
increases with dose (i.e., τ1 > 0). Thus we determine if the data are heteroscedastic by testing
the hypotheses H0: τ1 = 0 vs. H1: τ1 > 0. Depending upon the researcher’s belief, one could
test for τ1 ≠ 0 or τ1 < 0. Let rij denote the residual based on the OME. Then under suitable
conditions τ̂ = (ZTZ)−1ZTu is asymptotically normally distributed (Sen et al., 2009), where Z
= (z11, z12, …, z1n1, …, zk,nk)

T is an n × 2 matrix and u = (u11, u12, …, u1n1, …, uk,nk)
T is an

n × 1 vector, with zij = (1, xi)T and uij = log |rij|, i = 1, …, k, j = 1, …, ni, . Hence
we may test the above hypotheses using Tn = τ̂1n/√var(τ̂1n), where τ̂1n is the least squares
estimator of τ1. One can use a variety of test statistics for testing for τ1, but here we use a
simple statistic which can be derived directly from residuals based on the OME.

Then, the PTE is defined as

(4)

where tα,n−2 is the critical value of the t-distribution with n − 2 degrees of freedom having
probability 1 − α and α is the significance level of the preliminary test.

In order to derive asymptotic results regarding PTE, we require the following sets of
regularity conditions.

[A2] Let ε = {y − f(x, θ)}/σ(z, τ). Then, Eψ′(σ(z, τ) ε) = γ4 (≠ 0),

 and .

[B2] i. limn→∞n−1Γ4n(θ) = Γ4(θ), where

ii. limn→∞n−1Γ33n(θ) = Γ33(θ), where

and Γ33(θ) is a positive definite matrix.
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iii. limn→∞n−1Γ34n(θ, τ) = Γ34(θ, τ), where

iv. limn→∞n−1G2n(θ, τ) = G2(θ, τ), where

(5)

wi12 is the second element of wi1 = (ZTZ)−1zi1, and G2(θ, τ) is a positive
definite matrix.

v. maxi ch1{G1(xi, θ, τ) G2n(θ, τ))−1} → 0, as n → ∞, where

and .

We begin by proving the asymptotic joint normality of OME and WME which is then used
for deriving the asymptotic covariance matrix of the PTE. The proof, provided in the
appendix, follows arguments similar to that of Theorem 1.

Theorem 2—Let β = (θT, θT, τ1)T and . Then, under the conditions [A1],
[A2], [B1], [B2] and [C]; [S1] – [S9] in the supplementary material,

(6)

where

From the above theorem we deduce the asymptotic covariance matrix of PTE in the
following theorem.

Theorem 3—Under the conditions [A1], [A2], [B1], [B2] and [C]; [S1] – [S9] in the
supplementary material,
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(7)

where Ft is the cdf of the t-distribution with n − 2 degrees of freedom.

As we see from the above theorem, the asymptotic covariance matrix of PTE is a weighted
average of those of OME and WME. The weights are directly related to τ1. In particular, the
weight corresponding to the covariance of OME is monotonically decreasing in τ1. It equals
1 − α when τ1 = 0.

3 Simulation studies
3.1 Study design

We simulated data using the following Hill model under three different error variance
structures. In each case the errors are normally distributed with mean 0.

(8)

The values of xi were set to be 0, 1, 3, 10, 30, 100, 400, 600, and (θ0, θ1, θ2, θ3) = (1, 4, 1. 5,
120). In Data 1 the errors are homoscedastic with variance e−3. In Data 2 the variances were
chosen to follow the log-linear model in dose as in the previous section. Thus the generated
data are heteroscedastic with variance e−6+0.01xi. Lastly, to evaluate the performance of the
proposed method when the variance model is mis-specified, in Data 3 we generated data
according to the variance model, 0. 01f2(xi; θ). We also investigated the performance of the
proposed methodology in the presence of outliers. Typically, in toxicological studies outliers
are observed in the high dose group where the observed response may drop below the
expected response because of deaths due to treatment toxicity. For this reason, we generated
data with outliers in the two highest dose groups using a shifted normal error with mean
centered at −3 rather than 0.

There are two parts to the simulation study. Firstly, for illustration purposes, we generated
one data set of each type (i.e., Data 1, Data 2 and Data 3) and the parameters were estimated
using OLSE, IWLSEN, IWLSEM, OME, WME, and PTE methods. We used 0.05 as the
significance level for the preliminary test in the PTE methodology.

Secondly, using 1,000 simulation runs, we compared the performance of the estimators in
terms of three standard criteria: (i) mean squared error (MSE) of individual parameters as
well as total MSE, (ii) the coverage probabilities of the 95% confidence intervals (CIs) of
individual parameters as well as the simultaneous confidence ellipsoid defined below, and
(iii) the length of the 95% CI of individual parameters as well as the volume of 95%
confidence ellipsoid for each estimator. The 100(1 − α)% confidence ellipsoid centered at an
estimator θ ̂ is defined as
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where p is the number of parameters and  is the appropriate variance estimator. Note
that for simplicity we are using the critical values based on WME for the critical values for
PTE because the exact critical values for PTE are not available. This is because the
asymptotic distribution of PTE is not normal but a mixture of two normals.

3.2 Results
The results of various estimates (and their standard errors) for the three simulated data sets
without outliers are summarized in Table 1. As described in the introduction, for
homoscedastic data (Data 1), although the fitted curves using IWLSEN, IWLSEM, and WME
methods may seem reasonable based on the data (Fig. 2(a)), their estimated values of θ3
(ED50) differed from the true value (120) much more than those of the other methods and
also they had very large standard errors. However, PTE automatically selected OME and the
standard errors of PTE were much less than those of WME. Similarly, as expected, the
converse was true in the case of heteroscedastic data (Data 2 and 3).

Note that if the data are homoscedastic (Data 1), then the “correct” choice of estimator is
OME (OLSE when there are no outliers), whereas for heteroscedastic data (Data 2), the
“correct” choice is WME (IWLSEM when there are no outliers). However, in a practical
setting, for a given data set one does not know a priori whether the data are homoscedastic
or heteroscedastic. In all three data sets, PTE automatically chose the “correct” estimation
procedure (either OME or WME) while keeping the standard error nearly as small as that of
the “correct” estimation procedure.

The results of various estimates (and their standard errors) for the three data sets with
outliers are summarized in Table 2. Because there were outliers in the data, θ1 (Emax) and θ3
(ED50) were severely underestimated using the least square estimators (true values of θ1 and
θ3 are 4 and 120, respectively), while OME and WME were closer to the true values. Figure
3 also reflects this result. It is noted that because of the outliers the preliminary test rejected
the null hypothesis of homoscedasticity and PTE selected WME, which was closer to the
true value than OME, even though the data were homogeneous.

Table 3 shows the results of the 1,000 simulations using data without outliers. When data
were generated from homoscedastic model (Data 1), as expected, the estimated mean
squared errors of OLSE and OME were smaller than those of the other estimators (except
θ0, the intercept) and the estimated MSEs of PTE were slightly larger than those of OME
and much smaller than those of IWLSEN and IWLSEM, especially for θ3 (ED50). Relative to
OME, the loss in efficiency (in terms of total MSE) due to PTE was less than 0.1%.
However, the PTE gained substantially relative to all the weighted estimators. For example,
there was a 44% gain in efficiency relative to IWLSEN, an 18% gain relative to IWLSEM
and a 22% gain in efficiency relative to WME. Furthermore, the coverage probability of
PTE was closer to the nominal level (0.95) than that of IWLSEN and IWLSEM for θ3 with
similar length of CI.

In the case of heteroscedastic data (Table 3) we observe that OLSE and OME could
potentially perform extremely poorly. This is because when there is a large variation in the
higher dose groups the observed data may fail to “plateau” at higher dose groups.
Consequently, estimators such as the OLSE and OME would tend to overestimate θ1 (Emax)
and θ3 (ED50). For this reason, for some random samples, the estimates of ED50 became
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arbitrarily large. As a consequence the estimated MSEs of OLSE and OME became
extremely large! However, as one would expect, estimators such as IWLSE and WME
performed well for such data with smaller MSE, and approximately correct coverage
probability. The PTE performed as well as IWLSE and WME in terms of MSE and coverage
probability. It competed very well in terms of efficiency relative to the weighted estimators
(in terms of total MSE). For example, in the case of Data 2, it was 23% more efficient than
IWLSEN, about 4% less efficient than IWLSEM and was just as efficient as WME. We see
similar relative efficiencies in the case of Data 3, but the striking result here is that PTE was
almost 270% more efficient than IWLSEN. The PTE performed well in attaining the true
coverage probability (0.95) although it had slightly wider confidence region than the
weighted estimators since for some samples it used the unweighted estimator, OME. As
expected, PTE performed substantially better than the unweighted estimators such as OLSE
and OME in terms of all criteria. The reduction in total MSE was substantial.

Table 4 shows the results of the 1,000 simulations using data with outliers. As expected, the
least squares based methods performed very poorly in terms of MSE and coverage
probability in the presence of outliers, while the M-estimation based methods performed
much better. In some cases the coverage probability of CIs centered at the least squares
estimators were substantially smaller than the nominal level. For example, in the case of
Data 2, the coverage probability of CIs centered at IWLSEM for parameter θ1 was as low as
18%.

In all the cases, the gains in efficiency (in terms of total MSE) of WME and PTE relative to
IWLSEN and IWLSEM was almost 100% whether the data were homoscedastic or
heteroscedastic. Because the PTE was developed using the M-estimators (OME and WME),
the PTE also performed much better than the least squares methods. It is also noted that the
MSE of PTE was exactly same as that of WME because the preliminary test rejected the null
hypothesis of homoscedasticity for all 1,000 data sets. As explained earlier, in the presence
of outliers, the test for heteroscedasticity can potentially have a higher Type I error rate. In
the present context that is not an undesirable feature.

Our simulation studies made a strong case for the use of the proposed methodology. The
gains in terms of MSE were generally substantial.

As commonly understood, the performance of an estimator may be affected much by dose
placement. To illustrate this point, we generated a data set from the Hill model with
homoscedastic error. The true values of the parameters are (θ0, θ1, θ2, θ3) = (2, 4, 2, 30) and
the values of the dose are x = 0, 1, 3, 10, 30, 100, 300. Because all estimators considered in
this paper are affected, the OLSE was used to fit the curve for simplicity. The fitted curve
and the estimation result are presented in Fig. 4(a) and Table 5, respectively. Even though
the fitted curve is visually reasonable based on the data, the estimate of the parameter θ2
(slope), its standard error and the standard error of the estimate of θ3 (ED50) are extremely
large. We then chose additional dose arbitrarily, that is, x = 70, to generate observations at
the dose and estimate the parameters and their standard errors based on the new data set. The
fitted curve and the estimation result are presented in Fig. 4(b) and Table 5, respectively.
Now the estimate of θ2, its standard error and the standard error of the estimate of θ3 are all
reasonably small. This illustration suggests the same argument presented in Lim et al. (2011)
that “dose-spacing plays a major role when estimating parameters of nonlinear models,
especially the ED50 and the slope parameters of a Hill model”.
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4 Application to hexavalent chromium data
In this section the proposed PTE methodology is applied to a data set from a toxicological
study that was designed to examine the relationship between concentrations of Hexavalent
Chromium (CrVI), as sodium dichromate dihydrate, in drinking water and accumulation of
total chromium in tissue for three species (rats, mice, and guinea pigs) (NTP, 2007).

As commonly done in toxicology, we use the Hill model (8) to describe the dose-response
relationship. In our model, x denotes the dose (in mg/L), ranging from 0 to 300, and y
denotes the total chromium concentration (in mg/L) in the tissues. The proposed
methodology is illustrated using rat kidney and blood data sets where chromium
concentration (y) is modeled. There were 7 dose levels and 4 observations at each dose level
except x = 0 (3 observation). Thus, total sample size is 27. Based on each of the data sets the
parameters (and their standard errors) are estimated using OLSE, IWLSEN, IWLSEM, OME,
WME, and PTE methods. Estimates of parameters and their standard errors are summarized
in Table 6. The corresponding fitted curves are plotted in Fig. 5.

Visually the scatter plot in Fig. 5(a) seems to suggest that there is some amount of
heteroscedasticity in the data. The sample variances of kidney chromium for the seven dose
groups were 0.0012, 0.0046, 0.0006, 0.054, 0.720, 0.213, and 6.507, respectively. Thus they
ranged from about 0.0006 to 6.507, which indicates potential heteroscedasticity in the data.
When the log-linear model for the absolute residual based on the OME was fitted against
doses, the estimated value of τ1 was 0.005 with a standard error of 0.002. The slope was
significant at the 5% level (p = 0. 009). Thus the data appears to be heteroscedastic.

The data in Fig. 5(a) appear to be heteroscedastic and hence it is not surprising that the point
estimates and their standard errors are quite different between ordinary estimates (OLSE and
OME) and weighted estimates (IWLSEN, IWLSEM and WME) (see Table 6). Since the
preliminary test rejected the null hypothesis, PTE is the same as WME and both estimators
had similar standard errors.

On the other hand, Fig. 5(b) shows that the data might be homoscedastic. The sample
variances of blood chromium were 0.0006, 0.0002, 0.0003, 0.0001, 0.0007, 0.0016, and
0.0013, respectively. Thus they ranged from about 0.0001 to 0.0016. The result of the
preliminary test using the absolute residuals based on the OME revealed that the slope (τ1)
was not significantly greater than zero at the 5% level (p = 0. 531). Thus the data appear
homoscedastic.

Visually the fitted curves are almost identical except IWLSEN. However, Table 6 shows that
point estimates and their standard errors are not similar, although OLSE and OME are
exactly the same. Again, point estimates of θ3 (ED50) and their standard errors using OLSE
(OME) and WME are quite different from each other. For this data set, the preliminary test
could not reject the null hypothesis, and hence PTE is same as OME, although standard error
for OME is larger than that for WME.

5 Concluding remarks
In this paper, PTE based methodology has been developed for analyzing nonlinear models
that are possibly subject to heteroscedastic variance structure. The methodology proposed
here allows researchers to use estimation procedures that are robust to the error variance
structure in nonlinear models. We demonstrated its utility using simulation studies and a real
data set obtained by the NTP on chromium VI.
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The proposed methodology depends on the model used for describing the heteroscedasticity.
In our experience, a log-linear model for variance is plausible for data observed in these
toxicological experiments because of the underlying sigmoidal shaped dose-response curve
and variance being monotonic with mean response. Also, the log-linear model offers a
simple interpretation of variability with fewer parameters. If, however, an experimenter is
interested in using a different parametric model to describe the variance, then the proposed
methodology can be modified easily. For example, Lim et al. (2011a) have studied WME
using a different variance model, where the error standard deviation was assumed to be a
nonlinear function of three unknown parameters.

According to their document “Benchmark Dose Technical Guidance Document” (USEPA,
2000), for independent continuous outcome variables, the EPA determines BMD using
nonlinear least squares methodology. They typically estimate various parameters of the
model, including BMD, using the ordinary least squares estimator (OLSE) for
homoscedastic data and the weighted least squares estimator (WLSE) for heteroscedastic
data. According to the above document, they determine whether the data are homoscedastic
or heteroscedastic by visual judgment using a scatter plot of the data. After making decisions
regarding the error variance on the basis of the observed data, the EPA either uses the OLSE
or the WLSE. However, since the choice of WLSE and OLSE depends upon the observed
data, the standard errors of the estimators of various parameters (including BMD) should
account for the uncertainty in decision made regarding the error variance. This is not done
by the EPA’s methodology, which is the point of our paper where we account for the
uncertainty induced by the preliminary evaluation of data regarding the error variance.
Hence we believe that the methodology developed in this paper can be extended to estimate
the BMD.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix A. Proofs of the main results

Proof of Theorem 1
The proof relies on the asymptotic linearity of the WME (Lim et al., 2011b) and the
existence of a solution to (1) which yields a √n-consistent estimator of (θT, τT)T (Theorem 4
in the supplementary material).

Lim et al. Page 13

J Stat Plan Inference. Author manuscript; available in PMC 2013 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



From Theorem 5 in the supplementary material we have that:

Then from Theorem 6 in the supplementary material and the Slutsky Theorem we have the
expression in (3).

Proof of Theorem 2
From the estimating equation (1) for the WME, we let

Then, from (13) in Theorem 5 in the supplementary material, the following asymptotic
representation of θ ̂n is obtained:

(9)

Now, similarly as in Theorem 4 and 5 in the supplementary material, the uniform asymptotic
linearity on the OME can be shown as:

and hence the following asymptotic representation of θ̃n is obtained:

(10)

Then, from (9), (10) and (16) in the supplementary material,

where
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Then from Theorem 7 in the supplementary material and the Slutsky Theorem the
expression in (5) is shown.

Proof of Theorem 3
From (4), for arbitrary x ∈ ℜp,

The second equality above holds because of the asymptotic independence of θ̃n and Tn as
well as the asymptotic independence of θ ̂n and Tn proved in Theorem 2. Then from (6),

and since from (6),

and

the expression in (7) is proved.

Appendix B. Supplementary material
Supplementary material associated with this article can be found in the online version.
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Figure 1.
Example of model predictions by OLSE (solid), IWLSEN (dot), IWLSEM (dashes) methods
for homoscedastic data.
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Figure 2.
Model predictions by OLSE (solid), IWLSEN (dot), IWLSEM (dashes), OME (long dashes),
WME (dot-dash) methods when there are no outliers for: (a) homoscedastic data (Data 1),
(b) heteroscedastic data (Data 2), and (c) mismodeled heteroscedastic data (Data 3).
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Figure 3.
Model predictions by OLSE (solid), IWLSEN (dot), IWLSEM (dashes), OME (long dashes),
WME (dot-dash) methods when there are outliers for: (a) homoscedastic data (Data 1), (b)
heteroscedastic data (Data 2), and (c) mismodeled heteroscedastic data (Data 3).
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Figure 4.
Data generated from the Hill model and the fitted curve (a) without x = 70 and (b) with x =
70 using OLSE.
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Figure 5.
Chromium concentration in (a) rat kidney and (b) rat blood using OLSE (solid), IWLSEN
(dot-dash), IWLSEM (long dashes), OME (dot), WME (dashes) methods.
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