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Abstract

Toxicologists and pharmacologists often describe toxicity of a chemical using parameters of a
nonlinear regression model. Thus estimation of parameters of a nonlinear regression model is an
important problem. The estimates of the parameters and their uncertainty estimates depend upon
the underlying error variance structure in the model. Typically, a priori the researcher would know
if the error variances are homoscedastic (i.e., constant across dose) or if they are heteroscedastic
(i.e., the variance is a function of dose). Motivated by this concern, in this article we introduce an
estimation procedure based on preliminary test which selects an appropriate estimation procedure
accounting for the underlying error variance structure. Since outliers and influential observations
are common in toxicological data, the proposed methodology uses M-estimators. The asymptotic
properties of the preliminary test estimator are investigated; in particular its asymptotic covariance
matrix is derived. The performance of the proposed estimator is compared with several standard
estimators using simulation studies. The proposed methodology is also illustrated using a data set
obtained from the National Toxicology Program.
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1 Introduction

Often toxicologists are interested in investigating the dose-response relationship when
animals are exposed to varying doses of a chemical. Usually a nonlinear regression model
such as a Hill model is used to describe the relationship (Gaylor and Aylward, 2004; Sand et
al., 2004; Crofton et al., 2007). There may be several problems when fitting nonlinear
models. Among them, one important concern is the error variance structure. Depending
upon various factors, including the bioassay, dose-spacing and the endpoint of interest etc.,
the variability in response may not be constant across dose groups (heteroscedasticity). The
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standard asymptotic confidence intervals and test procedures based on the ordinary least
squares (OLS) methodology may not be robust to heteroscedasticity and consequently may
produce inaccurate coverage probabilities and Type | error rates. On the other hand, the
standard iterated weighted least squares (IWLS) based methodology may not be efficient
when the variances are approximately equal across dose groups (homoscedasticity).
However, in practice one generally does not know if the data are homoscedastic or
heteroscedastic.

The problem of heteroscedasticity has been extensively discussed in the literature in a wide
range of contexts involving linear and nonlinear models. For instance, Hoferkamp and
Peddada (2002) considered the problem of heteroscedasticity in the context of groups of
experiments, as in fertilizer trials, where the error variances are ordered. Cysneiros et al.
(2007) derived a joint iterative process for estimating the location and dispersion parameters
in heteroscedastic linear models with symmetrical errors. Guo and Koul (2008) developed
asymptotic theory for long memory time series based on heteroscedastic linear models.
Recently, the problem of heteroscedasticity has also been addressed in the context of semi-
parametric partially linear models (Ma et al., 2006; You et al., 2007; Lu, 2009). A Bayesian
method for testing for equality of regression parameters in a heteroscedastic linear model
has also been considered in the literature (Moreno et al., 2005).

Several authors modeled error variance as a function of dose in dose-response models (cf.
Davidian and Carroll, 1987). Wang and Zhou (2007) even developed a honparametric test
for checking the adequacy of a given variance function. Bellio et al. (2000) proposed the use
of higher order likelihood based methods for inference in heteroscedastic nonlinear models
with application to dose-response models in herbicide bioassays.

Although IWLS based methods perform well under heteroscedasticity, they may lose
efficiency relative to other methods when the data are homoscedastic. To illustrate this,
consider the simulated data presented in Fig. 1 which is based on homoscedastic errors. The

data were generated using the Hill model (Hill, 1910), y=6y+6, XH:/(H?H' )+¢, which is
usually used to study in vivo concentration response relationships, where y is the response at
dose x, 6 is the intercept parameter, 64 is the difference between the maximum effect of a
drug (Emax) and the intercept, 65 is the slope parameter that reflects the steepness of the
effect-concentration curve, and 03 is the sensitivity parameter, the drug concentration
producing 50% of Epmax (EDsg).

0,

In Fig. 1, the point estimate (with standard error in parentheses) for the ED5q (whose true
value is 120) based on the OLS estimator (OLSE) is 149.7 (31.90). The IWLS estimator
using the sample variances, denoted as IWLSEy,, is 226.4 (65.37), and the IWLS estimator
using a variance model, denoted as IWLSE)y, is 233.0 (64.77). This example illustrates that
a method designed for heteroscedastic data may not perform well when the data are
homoscedastic.

Because the performance of a method relies on whether the data are homoscedastic or
heteroscedastic, it is important to develop an estimation procedure which is robust to
whether the error variance is homoscedastic or heteroscedastic. To make the procedure
robust to the structure of the error variance, a preliminary test estimation (PTE) based
methodology is developed in this paper. PTE has been well studied in the literature in a
variety of contexts (Judge and Bock, 1978). For instance, Sen (1986) studied the asymptotic
distributional risks for the preliminary test version of a maximum likelihood estimator.
Recently, Ahmed et al. (2007) investigated the asymptotic properties of a pretest
semiparametric estimator under quadratic loss and examined its performance using
asymptotic analysis of quadratic risk functions in a partially linear model. Hoque et al.
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(2009) studied the performance of the PTE of the slope parameter of a simple linear
regression model under a linex loss function and derived the risk function and the moment
generating function of the PTE.

Outliers and influential observations are common in toxicological data. To make the
proposed procedure robust against outliers, we use the principle of M-estimation. Thus in
this paper the PTE is either the ordinary M-estimator (OME) or the weighted M-estimator
(WME) depending upon the outcome of a preliminary test for heteroscedasticity.

The PTE methodology based on OME and WME is proposed in Section 2. Results of a
sample of simulation studies are provided in Section 3 and the proposed methodology is
illustrated using a data set from the National Toxicology Program (NTP) in Section 4.
Proofs of the main results are provided in Appendix while the theorems needed for proving
these main results are provided in the online supplementary material.

2 The proposed methodology
2.1 Weighted M-estimation

Let y; denote an n; x 1 response vector corresponding to an m x 1 vector of covariates x; in
the ith sample,i=1, 2, ..., k. Let

vi=f(xi, O+0ie,  i=1,...k,

denote the nonlinear regression model, where f(x;, 8) is some pre-specified nonlinear
function of a p x 1 parameter vector 6 = (64, 65, ..., Gp)T and ¢j are independent nj x 1

k
vectors that are identically distributed as N(O, I). The total sample size n is given by Zi:]”i.
The components of y; are denoted by yj;, j=1, 2, ..., n;.

It is assumed that i = o(zj, 7), where o(:, -) is a known function of a known q x 1 covariate
vector z; and an unknown g x 1 parameter vector z. Such models are commonly used in
practice. For example, in some studies it may be reasonable to assume that the error variance

o'iz is a linear function of dose. For more examples one may refer to Carroll and Ruppert
(1988).

The definition of an M-estimator depends upon the Huber score function which is defined as
follows. For a pre-specified positive constant kg, the Huber score function h(u) is given by:

h(u)_ u/ —\/ia lﬂul <k()
 {ko(lul — ko/2)}'/%,  otherwise.

Throughout this paper we took kg to be 1.5. Then the ordinary M-estimator for ¢ is obtained
by solving the following minimization problem:

SoO)= ) 1 vij = f(xi,0)).

ij

If we take h(u) = u then we obtain the classical OLSE. Note that the OME does not account
for heteroscedasticity in the data. The estimating equations for solving the above
optimization problem are given by (Sanhueza and Sen, 2001):
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ij

where
Ao(xi, yij, O)=U(yij — [(xi, ) folxi, ),

fo(xi, 6) = (810)f(x;, 0), and w(u) = (3 au)h2(u).

To deal with heteroscedasticity, one may define a weighted M-estimation procedure similar
in spirit to the popular IWLSE methodology using a variance function. Thus the WME is
obtained by solving the following minimization problem:

6, \_ . > (Yij = f(xi, 6) NG » p
( = )—Argmm lz {h (—O'(Zi, D +logo(zi, 1)t :0 € R, T € RY|,

n —
i,j

where log o(zj, 7) is added within the sum, which is analogous to maximum likelihood
estimation when the errors are normally distributed. The above minimization problem can be
solved using the following estimating equations:

D A ijs 0,,T)=0, "

ij

where

k(zi, T (&:5) fo(xi, 6)

k(zi, DY (&ip) &ij — l}o(zi, 1) )’ @

/l(x,', _\‘,‘j, (9, T)= (

o, (zj, 7) = (9 9)o(zj, 1), and k(zj, 7) = Ua(z;, 7).

We now derive the asymptotic normality of the WME. It is important to note that all the
asymptotic results discussed in this paper are valid as long as n, the total sample size, goes to
infinity. Two types of asymptotics often discussed in the literature are (a) the nj is finite
(e.g., nj = 1) for all i and the number of doses becomes large (c.f., Wu, 1986), and (b) n;j goes
to infinity fori =1, ..., k (c.f., Peddada and Smith, 1997). Although our asymptotic results
are valid under both situations, in the following theorem we provide the proofs for (a). The
proof for (b) can be obtained similarly and hence omitted. Essentially, all the asymptotic
results obtained in this paper are valid as long as the total sample size goes to infinity.

We require the following sets of regularity conditions concerning (A) the score function y,
(B) the function f and (C) the function o.

[Al] Lete={y—f(x, O)}o(z, 7). Then y1 = E{y(e)e}(# 0); Ey/'(e) =12 (# 0); E{y/
(€)%} = y3 (# 0); E¥’(e)=07, <covar(y()s) =0y, <oo,
[B1] i, limy_eon 11n(6, 7) = T1(6, 1), where
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T1n(6, T)=y2 ) K@i 7)ol )7 (x:, ).
i=1

ii. |imn_>oon_11—‘31n(0, 7) = I'31(6, 7), where

Tain(6, )= mZ/»( O folxi, 017 (5,60,

and I'31(0, 7) is a positive definite matrix.

W a2 (i, 1) £T (i O3, (6, 7) foxi 6)) — 0, 35 1 — 00

[C] i, limp_oon™9n(6, 7) = Ta(6, 7), where
I2.(0,7)= Z{zy';zf U'r(ZisT)U_I(ZisT)"' e Z (M,T)}

and 2(z;, 7) = (848 (i, 7).

ii. im0 1300(6, 7) = ['32(6, 7), Where

Taa(6, 7)= %Zk (@, D)< (2, T (@ T),

and I'3p(0, 7) is a positive definite matrix.
W ax, (k22 10N 2 1T (6, 1)o7z, 7)) — 0, as n — oo
The asymptotic normality of the WME is established in Theorem 1 under the above
regularity conditions.

Theorem 1—Under the conditions [Al], [B1] and [C]; [S1] — [S9] in the supplementary

material,
1 6, — 0
r \/n( =T —vp(0,7) )—>N,,+q(0, Tp+a); ®
where
_] _ n
va(0, T)=(1T0,(0.7)) B k(2 D)@, 7,
— - = — -l
r:(’l—zr_;n(()m Tn)) (%1—‘311(6)19 Tn)) (},FSM(Hns Tn)) )
[ T30, 7) 0
Fsa(6, T)‘( 0 Ta®.1)
and
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rln(99 T) O

rsn(ga T): O Iﬂq (9 T) .

Note that the above theorem also provides the asymptotic covariance matrix of the WME.

2.2 Preliminary test estimation

We now describe the PTE procedure in the context of dose-response studies. Based on our
experience with dose-response studies in toxicology, it is reasonable to assume that log-
variance is a linear function of dose. Thus we assume log aj = 79 + 71%j. Then 7y =0
corresponds to homoscedasticity, while 71 not equal to 0 corresponds to heteroscedasticity.
Without loss of generality, in this article we consider assays where the response increases
with dose. Accordingly, under heteroscedasticity, we assume that potentially the variance
increases with dose (i.e., 71 > 0). Thus we determine if the data are heteroscedastic by testing
the hypotheses Hp: 71 = 0 vs. Hy: 71 > 0. Depending upon the researcher’s belief, one could
test for 7; # 0 or 71 < 0. Let rjj denote the residual based on the OME. Then under suitable
conditions 7 = (Z'Z)"1Zu is asymptotically normally distributed (Sen et al., 2009), where Z
= (241, 242, -+ Zangs -» Zkny) | IS @N N x 2 matrix and u = (Uyg, Ugp, ..., Uzng, -, Ugpy) T IS an

k
n x 1 vector, with zj; = (1, xj)" and uj=logfrij, i=1, ...k j=1,...,n, Z,.:In,:n. Hence
we may test the above hypotheses using T, = z1,/WVar(z1,), where 7y, is the least squares
estimator of z1. One can use a variety of test statistics for testing for z1, but here we use a
simple statistic which can be derived directly from residuals based on the OME.

Then, the PTE is defined as

n - 0

PT_ O ian < lapn-2
9}1 if Tn>t¢r,n—23

where t, - is the critical value of the t-distribution with n — 2 degrees of freedom having
probability 1 — « and « is the significance level of the preliminary test.

In order to derive asymptotic results regarding PTE, we require the following sets of
regularity conditions.
[A2] Lete={y—f(x, O)}Ho(z, 7). Then, Ey'(c(z, 7) €) = y4 (# 0),
Ey(o(z T)e)=0§3w1 (x)<oo and E{Y (e (o(z, T)s)}=(ri4wz(x)<°<>.
[B2] i, limy_con 1an(6) = T4(6), where

k

Can(@)=ys ) nifulxis O)f; (xi,6).

i=1

ii.  limp_con 133,(0) = I'33(6), where
k

Tasa(O)=cg ) miw1 () falxi, O)fy (x;, 0),

i=1

and I'33(0) is a positive definite matrix.
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iii. limy_con 134n(0, 7) = T'34(6, 7), Where

T,

k
Lan@,1)=02, > 225 £ )70,
i=1 !

iv. limp_eon™1Gon(6, 7) = Go(6, 7), where

[314(6,7)  T'34,(6,7) 0

Gon(0.7)=| T340 ® ) T3306) 0 :
0 0 2n? >, n,-wiz17
=

Page 7

W12 is the second element of wi; = (Z72)71zj1, and G,(0, 7) is a positive

definite matrix.

v.  max; chi{G1(x;, 0, 7) Gon(6, 7)) "1} — 0, as n — oo, where

O'il()'i_zH,‘ 0'5141472()6,‘)0'[_]1‘1; 0
Gi(x;,6,7)= 0'5,4W2(xi)0',-_] H; (Tigwl (xi)H; 0
0 0 2n2w?

i12

and Hi=fy(xi, 0)f7 (x:, 6).

We begin by proving the asymptotic joint normality of OME and WME which is then used

for deriving the asymptotic covariance matrix of the PTE. The proof, provided in the
appendix, follows arguments similar to that of Theorem 1.

— T T
Theorem 2—Let p= (87, 67, 1) T and Bn=@, B, Tm) . Then, under the conditions [A1],

[A2], [B1], [B2] and [C]; [S1] - [S9] in the supplementary material,

VA (Ba ~ B) = N2pu1(0.G(6.7) as n — o,
where
G(6,7)=G3'(6,7)G2(6,7)G3 (6, ),
ri@r 0 0 J

G3(6,7)= [ 0 Ir,© o
0 0o 2

From the above theorem we deduce the asymptotic covariance matrix of PTE in the
following theorem.

Theorem 3—Under the conditions [A1], [A2], [B1], [B2] and [C]; [S1] - [S9] in the
supplementary material,
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E[n(@ ) @ o) |
=1 o~ s 0.~ )(én—eﬂ

+ {] -F, (tar.n— \/V&l(Tlu) )} [n b ) ]

=F (tan-2 ~ g ) (1) ( rm(@))( r4n(0>)
+{1= F(tan2 = gt )} (4T0a@) ' (3Ts000,0) (T100)

where Fy is the cdf of the t-distribution with n — 2 degrees of freedom.

As we see from the above theorem, the asymptotic covariance matrix of PTE is a weighted
average of those of OME and WME. The weights are directly related to z;. In particular, the
weight corresponding to the covariance of OME is monotonically decreasing in z;. It equals
1—awhenzy=0.

3 Simulation studies

3.1 Study design

We simulated data using the following Hill model under three different error variance
structures. In each case the errors are normally distributed with mean 0.

0>
1X; . .
_V[jZf(x,‘,9)+8ij:90+ﬁ+8ij, l=],...,8, j=1,...,5.
Xy +X. 7
3 i

The values of x; were set to be 0, 1, 3, 10, 30, 100, 400, 600, and (&g, 61, 62, 03) = (1, 4, 1. 5,
120). In Data 1 the errors are homoscedastic with variance e=3. In Data 2 the variances were
chosen to follow the log-linear model in dose as in the previous section. Thus the generated
data are heteroscedastic with variance e 6*0-01xi_ | astly, to evaluate the performance of the
proposed method when the variance model is mis-specified, in Data 3 we generated data
according to the variance model, 0. 01f2(x;; 6). We also investigated the performance of the
proposed methodology in the presence of outliers. Typically, in toxicological studies outliers
are observed in the high dose group where the observed response may drop below the
expected response because of deaths due to treatment toxicity. For this reason, we generated
data with outliers in the two highest dose groups using a shifted normal error with mean
centered at —3 rather than 0.

There are two parts to the simulation study. Firstly, for illustration purposes, we generated
one data set of each type (i.e., Data 1, Data 2 and Data 3) and the parameters were estimated
using OLSE, IWLSEy, IWLSEy,, OME, WME, and PTE methods. We used 0.05 as the
significance level for the preliminary test in the PTE methodology.

Secondly, using 1,000 simulation runs, we compared the performance of the estimators in
terms of three standard criteria: (i) mean squared error (MSE) of individual parameters as
well as total MSE, (ii) the coverage probabilities of the 95% confidence intervals (Cls) of
individual parameters as well as the simultaneous confidence ellipsoid defined below, and
(iii) the length of the 95% CI of individual parameters as well as the volume of 95%
confidence ellipsoid for each estimator. The 100(1 — «)% confidence ellipsoid centered at an
estimator 4 is defined as
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— T _ —~ -1~
O—06) [var(®)] (0-6)<pF,, (),

where p is the number of parameters and var(g) is the appropriate variance estimator. Note
that for simplicity we are using the critical values based on WME for the critical values for
PTE because the exact critical values for PTE are not available. This is because the
asymptotic distribution of PTE is not normal but a mixture of two normals.

The results of various estimates (and their standard errors) for the three simulated data sets
without outliers are summarized in Table 1. As described in the introduction, for
homoscedastic data (Data 1), although the fitted curves using IWLSEy, IWLSEy,, and WME
methods may seem reasonable based on the data (Fig. 2(a)), their estimated values of 63
(EDsp) differed from the true value (120) much more than those of the other methods and
also they had very large standard errors. However, PTE automatically selected OME and the
standard errors of PTE were much less than those of WME. Similarly, as expected, the
converse was true in the case of heteroscedastic data (Data 2 and 3).

Note that if the data are homoscedastic (Data 1), then the “correct” choice of estimator is
OME (OLSE when there are no outliers), whereas for heteroscedastic data (Data 2), the
“correct” choice is WME (IWLSEy, when there are no outliers). However, in a practical
setting, for a given data set one does not know a priori whether the data are homoscedastic
or heteroscedastic. In all three data sets, PTE automatically chose the “correct” estimation
procedure (either OME or WME) while keeping the standard error nearly as small as that of
the “correct” estimation procedure.

The results of various estimates (and their standard errors) for the three data sets with
outliers are summarized in Table 2. Because there were outliers in the data, 1 (Emax) and 63
(EDsgp) were severely underestimated using the least square estimators (true values of 6; and
03 are 4 and 120, respectively), while OME and WME were closer to the true values. Figure
3 also reflects this result. It is noted that because of the outliers the preliminary test rejected
the null hypothesis of homoscedasticity and PTE selected WME, which was closer to the
true value than OME, even though the data were homogeneous.

Table 3 shows the results of the 1,000 simulations using data without outliers. When data
were generated from homoscedastic model (Data 1), as expected, the estimated mean
squared errors of OLSE and OME were smaller than those of the other estimators (except
6o, the intercept) and the estimated MSEs of PTE were slightly larger than those of OME
and much smaller than those of IWLSEy and IWLSE),, especially for 3 (ED5g). Relative to
OME, the loss in efficiency (in terms of total MSE) due to PTE was less than 0.1%.
However, the PTE gained substantially relative to all the weighted estimators. For example,
there was a 44% gain in efficiency relative to IWLSEy;, an 18% gain relative to IWLSE
and a 22% gain in efficiency relative to WME. Furthermore, the coverage probability of
PTE was closer to the nominal level (0.95) than that of IWLSEy and IWLSE), for 63 with
similar length of CI.

In the case of heteroscedastic data (Table 3) we observe that OLSE and OME could
potentially perform extremely poorly. This is because when there is a large variation in the
higher dose groups the observed data may fail to “plateau” at higher dose groups.
Consequently, estimators such as the OLSE and OME would tend to overestimate 1 (Eqax)
and 63 (EDsp). For this reason, for some random samples, the estimates of EDgg became
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arbitrarily large. As a consequence the estimated MSEs of OLSE and OME became
extremely large! However, as one would expect, estimators such as IWLSE and WME
performed well for such data with smaller MSE, and approximately correct coverage
probability. The PTE performed as well as IWLSE and WME in terms of MSE and coverage
probability. It competed very well in terms of efficiency relative to the weighted estimators
(in terms of total MSE). For example, in the case of Data 2, it was 23% more efficient than
IWLSEy, about 4% less efficient than IWLSE), and was just as efficient as WME. We see
similar relative efficiencies in the case of Data 3, but the striking result here is that PTE was
almost 270% more efficient than IWLSEy. The PTE performed well in attaining the true
coverage probability (0.95) although it had slightly wider confidence region than the
weighted estimators since for some samples it used the unweighted estimator, OME. As
expected, PTE performed substantially better than the unweighted estimators such as OLSE
and OME in terms of all criteria. The reduction in total MSE was substantial.

Table 4 shows the results of the 1,000 simulations using data with outliers. As expected, the
least squares based methods performed very poorly in terms of MSE and coverage
probability in the presence of outliers, while the M-estimation based methods performed
much better. In some cases the coverage probability of Cls centered at the least squares
estimators were substantially smaller than the nominal level. For example, in the case of
Data 2, the coverage probability of Cls centered at IWLSEy, for parameter 61 was as low as
18%.

In all the cases, the gains in efficiency (in terms of total MSE) of WME and PTE relative to
IWLSEy and IWLSEy, was almost 100% whether the data were homoscedastic or
heteroscedastic. Because the PTE was developed using the M-estimators (OME and WME),
the PTE also performed much better than the least squares methods. It is also noted that the
MSE of PTE was exactly same as that of WME because the preliminary test rejected the null
hypothesis of homoscedasticity for all 1,000 data sets. As explained earlier, in the presence
of outliers, the test for heteroscedasticity can potentially have a higher Type I error rate. In
the present context that is not an undesirable feature.

Our simulation studies made a strong case for the use of the proposed methodology. The
gains in terms of MSE were generally substantial.

As commonly understood, the performance of an estimator may be affected much by dose
placement. To illustrate this point, we generated a data set from the Hill model with
homoscedastic error. The true values of the parameters are (6g, 61, 02, 03) = (2, 4, 2, 30) and
the values of the dose are x =0, 1, 3, 10, 30, 100, 300. Because all estimators considered in
this paper are affected, the OLSE was used to fit the curve for simplicity. The fitted curve
and the estimation result are presented in Fig. 4(a) and Table 5, respectively. Even though
the fitted curve is visually reasonable based on the data, the estimate of the parameter 9,
(slope), its standard error and the standard error of the estimate of 3 (EDsgq) are extremely
large. We then chose additional dose arbitrarily, that is, x = 70, to generate observations at
the dose and estimate the parameters and their standard errors based on the new data set. The
fitted curve and the estimation result are presented in Fig. 4(b) and Table 5, respectively.
Now the estimate of 6, its standard error and the standard error of the estimate of 95 are all
reasonably small. This illustration suggests the same argument presented in Lim et al. (2011)
that “dose-spacing plays a major role when estimating parameters of nonlinear models,
especially the EDsgg and the slope parameters of a Hill model”.
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4 Application to hexavalent chromium data

In this section the proposed PTE methodology is applied to a data set from a toxicological
study that was designed to examine the relationship between concentrations of Hexavalent
Chromium (CrV1), as sodium dichromate dihydrate, in drinking water and accumulation of
total chromium in tissue for three species (rats, mice, and guinea pigs) (NTP, 2007).

As commonly done in toxicology, we use the Hill model (8) to describe the dose-response
relationship. In our model, x denotes the dose (in mg/L), ranging from 0 to 300, and y
denotes the total chromium concentration (in mg/L) in the tissues. The proposed
methodology is illustrated using rat kidney and blood data sets where chromium
concentration (y) is modeled. There were 7 dose levels and 4 observations at each dose level
except x = 0 (3 observation). Thus, total sample size is 27. Based on each of the data sets the
parameters (and their standard errors) are estimated using OLSE, IWLSEy, IWLSE);, OME,
WME, and PTE methods. Estimates of parameters and their standard errors are summarized
in Table 6. The corresponding fitted curves are plotted in Fig. 5.

Visually the scatter plot in Fig. 5(a) seems to suggest that there is some amount of
heteroscedasticity in the data. The sample variances of kidney chromium for the seven dose
groups were 0.0012, 0.0046, 0.0006, 0.054, 0.720, 0.213, and 6.507, respectively. Thus they
ranged from about 0.0006 to 6.507, which indicates potential heteroscedasticity in the data.
When the log-linear model for the absolute residual based on the OME was fitted against
doses, the estimated value of 7, was 0.005 with a standard error of 0.002. The slope was
significant at the 5% level (p = 0. 009). Thus the data appears to be heteroscedastic.

The data in Fig. 5(a) appear to be heteroscedastic and hence it is not surprising that the point
estimates and their standard errors are quite different between ordinary estimates (OLSE and
OME) and weighted estimates (IWLSEy, IWLSE)y; and WME) (see Table 6). Since the
preliminary test rejected the null hypothesis, PTE is the same as WME and both estimators
had similar standard errors.

On the other hand, Fig. 5(b) shows that the data might be homoscedastic. The sample
variances of blood chromium were 0.0006, 0.0002, 0.0003, 0.0001, 0.0007, 0.0016, and
0.0013, respectively. Thus they ranged from about 0.0001 to 0.0016. The result of the
preliminary test using the absolute residuals based on the OME revealed that the slope (z7)
was not significantly greater than zero at the 5% level (p = 0. 531). Thus the data appear
homoscedastic.

Visually the fitted curves are almost identical except IWLSEy. However, Table 6 shows that
point estimates and their standard errors are not similar, although OLSE and OME are
exactly the same. Again, point estimates of 3 (EDsg) and their standard errors using OLSE
(OME) and WME are quite different from each other. For this data set, the preliminary test
could not reject the null hypothesis, and hence PTE is same as OME, although standard error
for OME is larger than that for WME.

5 Concluding remarks

In this paper, PTE based methodology has been developed for analyzing nonlinear models
that are possibly subject to heteroscedastic variance structure. The methodology proposed
here allows researchers to use estimation procedures that are robust to the error variance
structure in nonlinear models. We demonstrated its utility using simulation studies and a real
data set obtained by the NTP on chromium V1.
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The proposed methodology depends on the model used for describing the heteroscedasticity.
In our experience, a log-linear model for variance is plausible for data observed in these
toxicological experiments because of the underlying sigmoidal shaped dose-response curve
and variance being monotonic with mean response. Also, the log-linear model offers a
simple interpretation of variability with fewer parameters. If, however, an experimenter is
interested in using a different parametric model to describe the variance, then the proposed
methodology can be modified easily. For example, Lim et al. (2011a) have studied WME
using a different variance model, where the error standard deviation was assumed to be a
nonlinear function of three unknown parameters.

According to their document “Benchmark Dose Technical Guidance Document” (USEPA,
2000), for independent continuous outcome variables, the EPA determines BMD using
nonlinear least squares methodology. They typically estimate various parameters of the
model, including BMD, using the ordinary least squares estimator (OLSE) for
homoscedastic data and the weighted least squares estimator (WLSE) for heteroscedastic
data. According to the above document, they determine whether the data are homoscedastic
or heteroscedastic by visual judgment using a scatter plot of the data. After making decisions
regarding the error variance on the basis of the observed data, the EPA either uses the OLSE
or the WLSE. However, since the choice of WLSE and OLSE depends upon the observed
data, the standard errors of the estimators of various parameters (including BMD) should
account for the uncertainty in decision made regarding the error variance. This is not done
by the EPA’s methodology, which is the point of our paper where we account for the
uncertainty induced by the preliminary evaluation of data regarding the error variance.
Hence we believe that the methodology developed in this paper can be extended to estimate
the BMD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A. Proofs of the main results

Proof of Theorem 1

The proof relies on the asymptotic linearity of the WME (Lim et al., 2011b) and the
existence of a solution to (1) which yields a vh-consistent estimator of (47, z)T (Theorem 4
in the supplementary material).
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From Theorem 5 in the supplementary material we have that:

Th — T

’én _0 1 -1 1 n .
\/n( b ):(;F5,,(9, T)) %;A(,\‘;,y;,ﬁ, T)+0,(1).

Then from Theorem 6 in the supplementary material and the Slutsky Theorem we have the
expression in (3).

Proof of Theorem 2
From the estimating equation (1) for the WME, we let

- f(x;,6)
=

1 Vii
(X2, yij, ) =— ( J )fg(xi, 6).
a;

il

Then, from (13) in Theorem 5 in the supplementary material, the following asymptotic
representation of 4, is obtained:

— 1 1
\/n((')n - H)z(zrln(e’ T)) Wizj/lw(xis Yijs 8)+017(1)~ 9)

Now, similarly as in Theorem 4 and 5 in the supplementary material, the uniform asymptotic
linearity on the OME can be shown as:

1 1 1
sup |I—Z {Ao(,\'i,yij, O+n"21) — A, (xi, yij, 6’)} +;F4,,(6))t||=0p(l),

lldlsc V5

and hence the following asymptotic representation of én is obtained:

1

- 1 -1
Vn(6, - 0)2(;r4n(0)) %Z/lo(xis,\'ij, 6,)+op(1). (10)

ij

Then, from (9), (10) and (16) in the supplementary material,

— 1
Vn (B, - B) =G5 0. T)\/—Z/l*(x,', yij, O0)+0,(1),
i.j

ne

where

n_lrln(ga T) 0 0
G3,(6,7)= 0 n'T4,(8) 0 |.
0 0 2
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Then from Theorem 7 in the supplementary material and the Slutsky Theorem the
expression in (5) is shown.

Proof of Theorem 3

From (4), for arbitrary x € RP,

P {\/n (Z}ET - 9) < x} :P{\/n (é,, - 9) <x,T, < tm,,_z} +P {\/n (5,, - 9) < x, T,,>t(,,,,_2}
=P {Vn (8, = 6) < x| P{T, < tan2}+P{Nn (6 — 0) < x} PIT,> 1002}

-F, (z(,,,,_z - \/\—,;GT))P{\/n (B, —6) <)+ {1 _F, (t(,.,,_g - \/—}ﬁ)} {Vn (G, - 6) < .

The second equality above holds because of the asymptotic independence of én and T, as
well as the asymptotic independence of 8, and T,, proved in Theorem 2. Then from (6),

E|n(@" - 0) (@ -7)'|
=F(ten-2 ~ gty ) E | n (B —9)(9,,—9)]

T
+{1 _Ft(rrn— \/VﬂY(Tln))} [ n _9) ]s

and since from (6),

-1

E [n (6, - 0) (8, - e)T] :(%mnw))_] ( : rm(e))( r4,,(9))

and

-1

-1
E|n(@-6)(@-0) | =(%rm(9, r)) (%rm(e, r)) (%rmw, r)) ,

the expression in (7) is proved.

Appendix B. Supplementary material

Supplementary material associated with this article can be found in the online version.
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Figure 1.
Example of model predictions by OLSE (solid), IWLSEy, (dot), IWLSEy, (dashes) methods
for homoscedastic data.
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Figure 2.

Model predictions by OLSE (solid), IWLSEy, (dot), IWLSE, (dashes), OME (long dashes),
WME (dot-dash) methods when there are no outliers for: (a) homoscedastic data (Data 1),
(b) heteroscedastic data (Data 2), and (c) mismodeled heteroscedastic data (Data 3).
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Figure 3.

Model predictions by OLSE (solid), IWLSEy, (dot), IWLSE), (dashes), OME (long dashes),
WME (dot-dash) methods when there are outliers for: (a) homoscedastic data (Data 1), (b)
heteroscedastic data (Data 2), and (c) mismodeled heteroscedastic data (Data 3).
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Figure 4.

Data generated from the Hill model and the fitted curve (a) without x = 70 and (b) with x =
70 using OLSE.

J Stat Plan Inference. Author manuscript; available in PMC 2013 May 1.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnue\ Joyiny Vd-HIN

Limetal.

Page 23

ood o

0 50 100 150
X

J Stat Plan Inference. Author manuscript; available in PMC 2013 May 1.

I

200 250 300



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnue\ Joyiny Vd-HIN

Limetal.

Page 24

6

i

g

o ap
00b 0

w -
O
g
> o<t ¢
ca D
o -
00
), g o
Q
Q
s
0 50 100 150 200 250 300
X
Figure 5.

Chromium concentration in (a) rat kidney and (b) rat blood using OLSE (solid), IWLSEy
(dot-dash), IWLSEy, (long dashes), OME (dot), WME (dashes) methods.

J Stat Plan Inference. Author manuscript; available in PMC 2013 May 1.



Page 25

Limetal.

umumEEQO

0TO'LY 9¢LvLT  8IT'TE E9V'GYT  8IGEE  869°6YT Jld
05697 9¢L'vLT  C1S'6T €9Y'GYT 82095  887°90¢ AAM
vZL'TEC 6ESESE  ECT'EBT  CE8CIC L68'TE  869'6YT INO .
GTT'99 8719¢0¢ 0T€'TC €68'€ST €L.79 €T0'€€c  asml ocr b
8LV'vL L90°€TC  LLT'€C €ET'6ST  99€'G9 6079z  MNISIMI
V2L TEC  6EGESE  60CYST 9GL'8€C  L68'TE  869'6VT 3S70
wTo EVT'T ¥60°0 or'T G0C'0 ¢St 31d
w10 EvT'T €800 cor'T €9T°0 6v0'T JAM
1810 ¢¢6°0 6€€°0 €60'T 1020 ¢SeT JNO ] .
erAn) ¢60'T 2800 G8E'T €vT0 166°0 N3gIMI ot b
¥ZT0 680°T .00 0LE°T 6770 90T'T N3gIMI
1810 ¢¢6°0 ¥S€0 TeTT L0¢°0 ¢SeT 3S70
€9°0 855V €150 96v'y T.¥°0 9¢s'Y a1d
€90 845'v LEV'O 96v'v T99°0 6€C'S JAM
G08'T G€C9 690°C [ATA) 6570 9¢S'y JNO ;
7990 6281 89%°0 697 1690 €09'g N3gIMI ’ o
9690 §90°S 0€5°0 1 7A4 6€9°0 16¢°S N3sIMI
S08'T G€C9 9€8'T 876'G 6570 9¢s'y 3S710
€600 1660 1200 €660 €900 7560 31d
€00 166°0 €100 €66°0 6200 0¢6°0 JAM
G200 G/6°0 210 G96°0 ¢90°0 ¥56°0 ELA[e] .
T€00 §66°0 €100 ¢66°0 LL0°0 6760 N3gIMI k o
9700 Se0'T ¢100 ¥66°0 0900 €V6°0 N3sIMI
G200 §.6°0 9¢T0 ¥96°0 ¢90°0 ¥56°0 3S710
pds NEE| p3s 5153 p3s 5153 POWBIN  g3NHL  ¢dVd

€ereq cereq Tereq

‘spoylaw

31d pue JAM ‘FINO "NISTMI ‘NISTMI ‘ISTO Buisn SI81IN0 INOYNM € pue g ‘T eIeq 40} S|apoW au Jo siejeliesed 10} J01IT pIepuelS pue sjewns3

NIH-PA Author Manuscript

T alqel

NIH-PA Author Manuscript

NIH-PA Author Manuscript

J Stat Plan Inference. Author manuscript; available in PMC 2013 May 1.



Page 26

Limetal.

‘10449 plepuels

p
‘arewnss
Jeunss

‘anjeA ann
q

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

J Stat Plan Inference. Author manuscript; available in PMC 2013 May 1.



Page 27

Limetal.

umumEEQO

688'8€ €SS'ETT 906'¢T L00'60T 0Ocy'8C 8LETIT Jld
0,88 €99'€TT 8L¢'¢T L00'60T 0cv'8C 8LETIT AAM
LESYY  6VCCTT 9GL°€C  9TV'E0T L61'/¢ ¥CTC0T AN0 .
988'9¢ T68'T8 0886 9€0'8. GO¥V'6T 268'8L N3gIMI ocr b
9T89€  ¢S6'66 G/6'ST 62068 806'9¢ 816'S8 N3gIMI
GZZ'98 0€9'80T 8.9'8€ €S6'T0T 1V86'VE 8T906 3S70
0¢c0 00€'T 1770 9T 961°0 T7€T 31d
6120 00€'T 8900 9L¥'T 96T°0 TIeT JAM
09%°0 0S¢'T €SY°0 L6V'T Yy0 LOV'T JNO ) .
520 86€'T €170 S69'T ¥52°0 8€G'T N3gIMI ot b
.70 ove't 8110 7Am) €020 65€'T N3gIMI
162°0 0ST'T 0090 8€'T 8990 607'T 3S70
89/0  609°€ 8T€0  veL'e 0650  668°¢€ 31d
89.°0 609°€ €1€0 vel'e 0650 668'¢ JAM
6590 11S°€ 8070 JASISRS 0870 0cLe JNO ;
¢65°0 898'¢C 9.¢°0 068'¢C S0S°0 L0T'E N3gIMI ’ o
S0.°0 99¢'¢ 6¢v°0 68T 9€9°0 €9¢'¢ N3sIMI
SOT'T (40183 6290 LSV'E €290 00v'€ 3S710
700 ¥66°0 €200 16670 €00  ¥86°0 31d
00 ¥66°0 8000 166°0 €700 ¥86°0 JAM
¢ET0 8160 L0T°0 §66°0 T2T0 6.6°0 ELA[e] .
6€0°0 €660 8000 000'T 00 ¥86°0 N3gIMI k o
6¢0°0 §66°0 9000 6660 8200 166°0 N3sIMI
9¢¢’0 9160 9970 086°0 8T°0 116°0 3S710
p3S  olS3 pIS 1S3 pIS ,ls3 POUIBN  gINYL  giiVd

€ereg cereq Tereq

‘spoylaw

31d pue JINM ‘TINO WISTMI ‘NISTMI ‘3STO Bulsn sia1jIino yum € pue z ‘T eeq 4oy S|9po 8y} Jo sialswiesed o) J0LIT pIepuelS pue ajewnss

NIH-PA Author Manuscript

¢?olqel

NIH-PA Author Manuscript

NIH-PA Author Manuscript

J Stat Plan Inference. Author manuscript; available in PMC 2013 May 1.



Page 28

Limetal.

‘10449 plepuels

p
‘arewnss
Jeunss

‘anjeA ann
q

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

J Stat Plan Inference. Author manuscript; available in PMC 2013 May 1.



Page 29

Limetal.

"J1d pue INM ‘TNO ‘NISTMI ‘NISTMI ‘IS0 40} SIBIIN0 INOYIM € pue Z ‘T eleq W0} patesausb suonedljdal 000’ T U0 paseq S)Nsas Uoe|NWIS

NIH-PA Author Manuscript

€670 690 0809652 GT00 €SO  9860BT €820  L90  BEL6ED MISTMI 0
TIZT 60  OvZ€898 GO0'6T €0  00000T< 6260 680  625%py  3STO
958'/€ 880  /80TOL  8IE09 960  986'9YT  8YI'BE V60  9EG Y ald
88C’/€ 880  VELT69  80SYZ 960  986'9rT  T8L'BE €60 00TEYS  FAM
TIE8. 160 08L'9893 POO'OLE 880 00000T< 1268 6O 98TV ANO
08TVE 180 208899 7E67C 160  B09TT  BES9E 160 Z00SES MISIMI
Sv.'9y 160 008'G6GZ S6TTZ 680  TLB08T  OIESE T60  02G6€9  NISIMI
€/78L 160 0897898 OL60VE 880  00000T< VZ6LE V60  €LEWPY  3STO
95€0 €60 9800 0610 60 000 6050 560 1900 3ld
€560 €60 9800 €10 960 000  ¥2S0 60 0.00 EI
¥850 ¥60 6,00 €60 260  SOTO  L0S0 S60 0900 o
¥2€0 160 9800 0910 S0 900 980 ¥60 9900  MISTWI
8EE0 060  8E0'0 810 160 000  22§0 060 0600  MNISIMI
¥850 ¥60  6.00 180 260  90T0 050 S60 0900 3570
6890 S60  WTO 6690  S60 Y800 8650 960  ¥600 ald
1890 S60  EYT0 €850  §60 Y800 €090 S60  80TO INM
6980 €60  0€50 y0TZ 280  OIT'S 650 960 €600 o
290 €60 w10 50 £60 0800 TS0 v60  Sor0  MaSTWI
5690 260  9€20 9%6v0 980  90T0  §ES0 260  vZT0  NISIMI
8980 €60  0€50 €107 280  029%  ¥650 960 €600 3570
8900 860  T000 €600 860  T000>  9TT0 960 €000 ald
1900 860  T000 8200 960  T000>  0ZT0 /60 €000 INM
€10 00T  T00°0 €10 00T  T000  SITO 960 €000 o
1900 260  T00°0 %00 S0 000> ZIT0 S50 €000 MASTWI
9700 980  T000 €200 980  T000> 8600 80  ¥000  MNISIMI
€10 00T  T000 80 00T  T000  SITO 960 €000 3570
pNIT 5A00 gISW  pNIT  9A0D  @3SW pNIT  oAOD ¢3S POWON  gdVd
e era zerd TeRg

€9lgel

NIH-PA Author Manuscript

NIH-PA Author Manuscript

J Stat Plan Inference. Author manuscript; available in PMC 2013 May 1.



Page 30

Limetal.

‘|EAJBIUI B0UBPILILOD 9%4S6 JO UiBUua)

p

‘[eAIB)UI BIUBPIJUOI %S6 40 Aljigeqo.d abelanod

o]

{10119 paJsenbs uesw

q
‘1a19wWeled
e
6€5°0 06°0 89¢°10L 820'T 66°0 9/0°'/¥T  88L0 S6°0 €697y 3ld
1870 680 €T6'169 9¥0'0 160 9.0°¥T 1080 260 282°eYS JNM
LT 6.0 0v€'.898 2S8'T¢C 2L0 00000T< 6250 680 fA% 2444 JNO
veo §8°0 £86'899 €00 S6°0 S69'TVYT  Z¥9°0 T6°0 8/T'GeS  N3sml
pNIT  5A0D gISW  pNIT  5A00 ISW pNIT  HA0D IS POUYIBIN  pHVd
€ eleq zereq Teredg

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

J Stat Plan Inference. Author manuscript; available in PMC 2013 May 1.



Page 31

Limetal.

"J1d pue JNM ‘TNO ‘NISTMI ‘NISTMI ‘TS0 40} SIBIINO YIM € puke Z ‘T eled WoJy pajessush suonesljdas 000'T UO pased s)nsal Uonenwis

NIH-PA Author Manuscript

050 190  06%90T J100  YS0  OE0L90T 2IST 290 06Y6TOT  MISTMI 0
96.Ty S50  OTO6Y9T OVE'6Y €50  00L'6S6E €09EE G50  ETS668 3570
L6197 280  T.5819  Te¥'Ty 660  OvT089  90T¥S T60  E8EWIS ald
€82Gy ¢80  T.5819  866TE 660  OvI'089  ZvOYS T60  €8EWIS EI
069°9. 980  0ZG9/YT 866'66 00T  O0BE6BEE 66TT9 260  E0CZ6Y wo
BELBE 250 0B09ECT ZEBSZ €20 OOZESOT L6ELv €90 0SgLyTT MASTMI
669Gy 2,0  OETY90T 89L°9E €80  082'990T L8y €0  OT9'BIOL  NISIMI
06v'68 980  00Z8¥9T ¥LY'EST 00T  0€8'8S6€ 96TT.L €60  6EL'B68 3570
2er0  S60 LS00 820 860 6000 €990 860  00T0 ald
2Zro  S60 LS00 8810 60 6000 1990 860 0010 EI
9vTT 00T ¥.00 ¥260 G660  2E00 ovTT 00T 2800 o
p/S0 €60 0210 820 880  SE00 000 860  8ET0 s
v8y’0  S60 /800 9,20 960  0v00 6190 ¥60  O¥T0 NISIMI
999T 00T 6800 ST 660 €900 299T 00T 1600 3570
60T 680  6YED S¥80 660  2IV0 9TT €60  §/20 3ld
680T 680  6YED 6180 660  ZIV0 SOTT €60  SLZ0 INM
260T 90  98€0 860T 00T  LEVO 2860 T80  00E0 o
8860 ¥50 1060 ¥0/0 810 8080 80T T90 9880 s
€TT L0 T9LO 660  §80  2IL0 9TT 280 620 NISTIMI
882T 990  9TL0 8vST LU0 66L0 S9TT  0L0  ¥L90 3570
¥900 160  T000 S00 00T  T000>  E€IT0 €60 Y000 ald
1900 960 1000 ¥200 160  T000>  €IT0 €60 Y000 INM
1520 00T 1000 1TZ0 00T 000 /20 00T €000 o
8500 960 1000 ¥200 160  T000> 010 €60 €000 s
9700 €80  T000 2200 v80  T000> 8600 €80 Y000 NISIMI
¥SE0 00T 1000 we0 00T T000 8v€0 00T €000 3570
pNIT  oA0D ¢3S pNIT  HA00 @ISW  pNIT  HA00 IS POUIBIN  pHVd
€ eRra zerg TERg

v alqel

NIH-PA Author Manuscript

NIH-PA Author Manuscript

J Stat Plan Inference. Author manuscript; available in PMC 2013 May 1.



Page 32

Limetal.

‘|eAJBIUI BOUBPIIUOD %56 JO YiBUa)

p

‘[eAJB)UI BOUBPIJUOI %G6 40 Aljigeqold abelanod

o]

‘10119 patenbs ueaw

q
‘1919Wesed
e
€0T'T 260 8.6'8T9  0S0°T 660 195089 ¢S¢v 160 29L918 J1d
016°0 180 8.6'8T9 7500 960 T95°089 TITv 96°0 29L' V1S JAM
LITTT  ¥9°0 086'9.VT 6V9°L 780 098'68€€ 1006 TL0 885°¢6Y JNO
9¢L°0 TL0 00T'LECT 8E0'0 190 0¥0'vSO0T  ¢Z8'E 060 0e8'8yTT  NIsmi
pNIT oA0D gaSW  pNIT  HA0D @3S pNIT  5A00  gISW POUYIBN  p¥vd
geled zereq T eleq

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

J Stat Plan Inference. Author manuscript; available in PMC 2013 May 1.



Page 33

Limetal.

10448 pIepuels

p

”EmE:moo

nm:_m>w::g

ummEEQO
09.°L €99'Ty 020LC 88€'¢CE 0€ &
8¢€T 8¢t GOTSET  90¥'CT 4 %
0¢v'0  €19°€ 99%°0 §G99°¢ 14 o
9610 9¢v'e ¢1c0 Sev'e [4 %

pdS  olSs3 IS olS3  gINYL  edVd

0L =X UM 0/ = XINOYNM

‘poyra 3510 BuIsn 02 = X INOYIM/YLIA [3pOW |]IH Y WoJy palelaush eiep 1o sjapouu ay) 4o siajaeled 10) 10443 pJepuels pue ajewnsy
g 9|qel

NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript

J Stat Plan Inference. Author manuscript; available in PMC 2013 May 1.



Page 34

Limetal.

HBmE_mem
SZv1€ 7666 26T  SIT'LC 3ld
GZ6'TZ 2008 9S.C  SIT'/C IAM
LV8'TE  CL6'S6  CT9'LT  G99°TS JNO .
z€9€z  TIET8 8IST  2zeze  Wasaml v
v6T'ST [S6'/8 6G2€  6vZvz  NASTMI
Iv8TE 2.6'G6 80S'GE  28F'LS 3s10
¢LT0 186°0 80T°0 Tov'T 31d
T8T0 ¥60T 8010  TOV'T IAM
T/T0 /860 0020  T€60 o
89T0 SS0T  ¥600  6T9T  WasImI v
09T0 €6€T /800  Z6VT  N3SIMI
T.T0 /860  1/20 0S80 3s10
1170 ¢sL0 T97°0 €9¢’L 31d
0600 6890 ¥Sv'0  €SCL JAM
ZIT0  26L0  20ST  20vOT o
9600 6690 IS0  6v.9  W3SIMI v
G500 1990 0660 0202  NISIMI
ZIT0  26L0  €0LZ 26601 3s10
€700 80T0 8500  98€0 ald
7100 TITO 9500  98€0 I
€700 80T0  TIE0  /8T0 wo
TT00 60T0 0v00  ST¥0  “asImi v
9000 0ZT0 ST0O0 08€0  MN3sIMmI
€700 80T0 /870  ZITO 3s10
¢3S elS3 ¢3S elS3  POUBBIA

poo|d Raupiy

'spoylaw 31

pue JAIM ‘TFINO ‘WISTIMI ‘NISTIMI ‘IS0 Buisn erep poojq pue Asupiy| 1e4 WNIWoIyd 104 S|9PoW ay) JO Sialaweled 10y J0113 pJepuelS pue ajewnsy

NIH-PA Author Manuscript

99|qel

NIH-PA Author Manuscript

NIH-PA Author Manuscript

J Stat Plan Inference. Author manuscript; available in PMC 2013 May 1.



Page 35

Limetal.

‘10449 plepuels

q

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

J Stat Plan Inference. Author manuscript; available in PMC 2013 May 1.



