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Abstract
In quantitative-trait linkage studies using experimental crosses, the conventional normal location-
shift model or other parameterizations may be unnecessarily restrictive. We generalize the mapping
problem to a genuine nonparametric setup and provide a robust estimation procedure for the situation
where the underlying phenotype distributions are completely unspecified. Classical Wilcoxon-Mann-
Whitney statistics are employed for point and interval estimation of QTL positions and effects.
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1 Introduction
Genetic mapping of quantitative trait loci (QTL) has fundamental importance in revealing the
genetic basis of phenotypic differences (Belknap et al., 1997; Haston et al., 2002; Wang et
al., 2003). In plants and laboratory animals, backcross or F2 intercross populations are widely
used for mapping quantitative traits (see Lynch and Walsh 1998 for details). In QTL mapping,
the basic problems are to test the existence of one or more QTLs, and to estimate the QTL map
position and effect if there is evidence of linkage to a chromosomal region. QTL mapping
methodologies, including the single marker t-tests (Sax 1923) and likelihood interval mapping
(Lander and Botstein 1989; Haley and Knott 1992; Kruglyak and Lander 1995), have
traditionally relied on parametric assumptions. In Kruglyak and Lander (1995), a
nonparametric approach has been explored for testing linkage, but cannot produce QTL
confidence intervals or specify effect sizes. Zou et al. (2002) proposed a semiparametric model
that specifies an exponential tilt relationship between phenotype densities for different
genotypes at the QTL.

In standard parametric linkage scans, the (profile) likelihood ratio test statistic is calculated for
each position, and the maximum likelihood estimate (MLE) used as a point estimate for the
QTL position. A difficulty in the use of the MLE in this setting is that it may exhibit non-
standard asymptotic behavior, depending on the asymptotic regime used (Kong and Wright
1994). For realistic sample sizes and marker densities, the consequences are that the MLE of
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the QTL position might not be efficient and accurate confidence intervals are not readily
available from the profile likelihood in the vicinity of the MLE. However, the reporting of
plausible intervals is important (Flaherty et al. 2003). A number of approximate methods have
been described, including LOD-drop intervals (Lander and Botstein 1989), which may have
unreliable coverage (Dupuis and Siegmund, 1999), and formulae in Darvasi and Soller
(1997) for 95% confidence intervals based on their extensive simulations. Other computation-
intensive approaches include bootstrapping (Visscher et al. 1996) and the method of Mangin
et al. (1994), which requires simulation to obtain an asymptotic distribution of a test statistic.

For backcross population, Kearsey and Hyne (1994), Wu and Li (1994, 1996) proposed a
multipoint mapping by modeling the mean phenotype difference between two genotype groups
at a marker as a function of the recombination frequency between that locus and a putative
QTL. Their approach jointly uses the information of every marker on a chromosome. Instead
of working on the profile likelihood across genomic positions, they proposed several least
squares methods to estimate the QTL position and its effect simultaneously. Therefore, both
the detection of the QTL and its position (with correct confidence intervals) are done
simultaneously. Liang et al. (2001A, B) proposed a similar multipoint mapping of complex
diseases for affected sib pair studies. The method carries out a parametric inference procedure
to locate a susceptibility gene, using generalized estimating equations (GEE) to model the
expected identical by descent (IBD) allele sharing on all genotyped markers at once with the
ultimate goal of locating the susceptible gene more robustly.

The objectives of the current study are to extend the procedure of Kearsey and Hyne (1994),
Wu and Li (1994, 1996) to relax stringent model assumptions on the underlying phenotype
distributions. Our proposed method differs from the approach of Kearsey and Hyne (1994),
Wu and Li (1994, 1996) in several ways. First, they considered mean phenotype differences
at each marker while we calculate the rank difference of phenotype at each marker, which as
shown later, increases mapping efficiency dramatically. Second, we directly express the
covariance matrix analytically in terms of several meaningful parameters, while Kearsey and
Hyne (1994), Wu and Li (1994, 1996) did not. To simplify the illustration, we describe the
method for backcross populations as done in Kearsey and Hyne (1994), Wu and Li (1994,
1996).

The paper is organized as described below. Section 2 formulates the estimation procedures.
Simulation studies in Section 3 demonstrate the properties of the proposed method and its
utility. The discussion section describes extensions and suggestions for future work.

2 Methodology
Consider a backcross experiment with n genotyped individuals. For the inbred parental lines
P1 and P2, we label an allele from P1 as m and that from P2 as M. The hybrid F1 individuals
are completely heterozygous, with genotype Mm at each locus. Crossing F1 with one of the
parental lines (say P2) generates a backcross population in which a subject’s genotype has an
equal probability ½ of being either MM or Mm at every locus. For each individual i, i = 1, ···,
n where n is the total number of observations, the observed dataconsists of a quantitative trait
value yi and genotypes at K molecular markers . Details of the QTL experiments can
be found in Lynch and Walsh (1998).

Suppose there exists a putative QTL at position μ on the genome. Further assume that the
quantitative traits for individuals with QTL genotypes Qq and QQ follow distribution functions
F and G, respectively. F and G will differ, for otherwise locus μ would not be considered a
QTL. The quantity ∫ F dG is often used to measure the difference between F and G, and is
interpretable as the probability that a random value from G exceeds a random value from F. It
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is also the area under the receiver-operator characteristic curve (AUC) comparing the two
distributions, and is invariant to increasing monotone transformations. It is conceptually helpful
to use the rescaled parameter δ = 2 ∫ F dG − 1. Note that | δ | ranges from 0 (when F =G) to 1
(where F and G are completely non-overlapping with each other).

For the QTL mapping problem, we note that the QTL position μ is unknown and the only
genetic information consists of the marker genotypes, from which the genetic distances of the
markers are estimated. If the recombination frequency between a particular marker locus k ∈
{1, ···, K} and the QTL is θk, then given its kth marker genotype Mik, the conditional phenotype
distributions of individual i, will be yi | (Mik = Mm) ~ F̃k(y) = (1− θk )F (y) + θkG(y) and yi |
(Mik = MM ) ~ G ̃k(y) = θkF (y) + (1 − θk)G(y). Here θk is a function of μ, and by definition of
the conditional distributions we have

This equation drives our ability to detect linkage nonparametrically, as F̃k and G ̃k will exhibit
their greatest difference for the marker closest to the QTL, and will show no difference at
markers unlinked to the QTL (where θk = 0.5). That is, the phenotypic differences between the
two marker genotype groups will decrease as the marker and QTL distance increases.
Specifically, when marker k is the QTL itself, θk = 0 and F̃k = F, G ̃k = G (although the QTL
need not be at a marker location). At the other extreme of no linkage, θk = ½ and

.

For testing the existence of a QTL, we have the following two hypotheses:

H0: There exist no QTLs, that is, F = G for all positions on the chromosome vs.

HA: There exists a QTL, that is, F ≠ G for μ somewhere on the chromosome.

At marker k, we divide the n individuals into n1, k individuals with genotype MM and n2, k =
n − n1, k individuals with genotype Mm. Let y(1, 1), ···, y(1, n1, k) and y(2, 1), ···, y(2, n2, k) be the
corresponding trait values of those n1, k and n2, k individuals. We propose the following
approach for estimation and testing. Define the Wilcoxon-Mann-Whitney (WMW) statistic at
the kth marker as

where φ(x; y) = sign(x − y). Then

(1)

Let Un = (U1, n, …, UK, n)T so that E(Un) = [1 − 2θ]δ where 1 = (1, 1, …, 1)T and θ = (θ1, …,
θK )T. For simplicity, we consider the Euclidean norm:

(2)
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L1 is a function of μ and δ, and we define the Ordinary Least Squares Estimates (OLSE) of
μ and δ as μ̂ols and δ̂ols, which minimize L1. Recall that the elements of Un are not generally
independent. Thus these least squares estimates may not be very efficient, since the dependence
structure of Uk, n(k = 1, …, K) has not been considered. When the distance between two markers
is small, the correlation between the U statistics at the two markers tends toward 1. In linkage
studies performed at realistic marker densities, the correlation structure may be nontrivial, and
important to take into consideration. As shown below, the conditional covariance matrix Var
(Un) of Un given the marker genotypes can be expressed in terms of several unknown but
meaningful quantities. Denote Δ1 = ∫ F 2(y)dG(y) and Δ2 = ∫ G2(y)dF (y). Also define ζk = ½
+ ½ (1 − 2θk)δ, k = 1, 2, …, K.

Lemma 1
Let V ar(Un) be the covariance matrix of Un and θkl be the recombination frequency between
markers k and l. For the matrix ν = limn→∞ nV ar(Un), the k, lth element is

(3)

For additional notation and detailed derivations, the reader is referred to the Appendix. Note
that the νk, l are functions of the QTL location μ, δ, Δ1, and Δ2, where the last two parameters
can be viewed as the second moments of F and G. Let

(4)

(5)

where Σ is the diagonal matrix consisting of the diagonal elements of V ar(Un). Define the
Weighted Least Squares estimates (WLSE) of μ and δ as μ̂wls and δ̂wls, which minimize L2.
Similarly, define the Generalized Least Squares estimates (GLSE) of μ and δ as μ̂gls and δ̂gls,
which minimize L3.

Given Σ or V ar(Un), L2 or L3 can be easily minimized. In the Appendix, a simple procedure
is proposed to estimate Δ1 and Δ2, which can then be used to estimate Σ and V ar(Un). After
obtaining the estimates of Σ and V ar(Un), we minimize L2 or L3, where Σ and V ar(Un) are
substituted by their estimates. Replacing an unknown covariance matrix by its estimate is
generally accompanied by a small increase in the variability of the estimates derived from the
resulting estimating equation. This increase becomes negligible for large n. The simulation
results in the next section show that for realistic sample sizes, this increase can be safely
ignored. Specifically, we adopt the following scheme:

1. Calculate μ̂ols and δ̂ols from L1.

2. Compute the ordinary least squares (OLS) of Δ1 and Δ2,  and , as described
in Appendix.
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3. Estimate Σ̂ and  by substituting (μ, δ, Δ1, Δ2) in Σ and V ar(Un) with (μ̂ols

δ̂ols, ).

4. Minimize L2 and L3, where Σ and V ar(Un) are substituted by Σ̂ and .

The method has been implemented in a SAS macro and the source codes are available from
the authors upon request.

We now outline the general (asymptotic) properties of the estimator μ̂n of μ as well as δ̂n of
δ. We assume that μ lies in the chromosomal range considered, therefore δ is strictly positive.

Theorem 1

Conditional on the marker genotypes, as n increases,  asymptotically has a
bivariate normal distribution with null mean vector and variance-covariance matrix Ŵ ,
provided μ belongs to the range considered, where

Note that in the definition of Ŵ , V̂ = I/n for the OLSE and Ṽ = Σ̂ or  for the WLSE
and GLSE procedures, respectively with I denoting the n × n identity matrix. For definitions
of D, ν, we refer readers to Appendix.

The quantity E(Uk;n) is a function of | μk − μ |, where μk and μ are the locations of the kth marker
and the QTL. Thus L1, L2 and L3 are not differentiable if the QTL is located exactly at a marker.
A minor modification is necessary. We can fix the problem by replacing

 where ε is a prespecified small positive
number (see Liang et al. 2001A for more discussions). This strategy is commonly used in
robust regression (Huber 1964).

Theorem 1 requires that δ ≠ 0 and μ is in the chromosomal range considered. To test for H0 :
δ = 0 vs. HA : δ ≠ 0, a simple test statistic can be proposed:

Under H0 : δ = 0, Var0(Un), the variance of Un, is only a function of the relative distances of
the markers. Further, under H0, L3;0 will have an asymptotically chi-squared distribution with
K degrees of freedom.

3 Sizmulation and application
Simulations were conducted to study the properties of the proposed method in a backcross
population. For simplicity, one chromosome is simulated under different marker densities. The
total genetic length of the chromosome is 100 cM. The inter-marker distances are either 20, 10
or 5 cM, with the first marker at 0 cM. The true QTL is located at 45 cM (for marker distance
5 cM, the marker genotypes at 45cM have been removed). Two sets of error distributions of
F and G are simulated, which are (1) F ~ N(−1; 1) and G ~ N(0; 1) and (2) F ~ exp(2) and G
~ exp(1), respectively. The total sample sizes are either 100 or 200. 1000 simulations were
performed for each combination of distribution and sample size. The sample means and
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standard deviations from the 1000 simulated data sets were calculated and the results are
presented in Tables 1 to 3.

The averages of the estimated standard deviations based on Theorem 1 are also listed in the
tables and they are close to the sample standard deviations, indicating that the asymptotically-
derived estimates work quite well at sample sizes of 100 or larger. Further, the coverage of the
constructed 95% confidence interval of the QTL position based on L3 are close to the nominal
95%. The improved efficiency of the GLSE procedure over weighted or ordinary least squares
is apparent in reduced standard deviations of the estimates, especially for estimating the QTL
position μ.

For comparison, the normal likelihood-based interval mapping results are also presented in
Tables 1–3. It is very interesting to see that even for truly normally distributed data, the
proposed method (based on L3) is more efficient in estimating the QTL position than the
traditional MLE interval mapping procedure. To illustrate that this result does not reflect mere
bias in the proposed procedures (e.g., a tendency to favor the middle of a chromosome), we
also performed simulations with the first (normal) error distribution as described above and
with 6 markers (20 cM spacing), but with the QTL at μ =25 cM. For n = 100, we obtained
estimates with mean ± SD of 24.93 ± 8.78 (interval mapping) and 25.21 cM ± 5.99 (GLS
procedure). For n = 200, the results were 24.13 cM ± 5.69 (interval mapping) and 24.63 cM ±
4.27 (GLS procedure). The results of Kong and Wright (1994) indicate that nonstandard
asymptotic results apply if the number of markers is large in comparison to the sample size,
while standard maximum likelihood efficiency results apply if the markers are held fixed while
n increases. However, for the (realistic) sample sizes and marker densities considered, there is
no guarantee that the maximum likelihood estimate has the lowest mean-squared error among
point estimates. Accordingly, the difference in efficiency between interval mapping and the
GLS procedure (as measured by ratios of standard errors) should become less extreme as (i)
sample size increases; (ii) the marker density decreases. Both of these observations are borne
out in Tables 1–3, noting also that Table 3 has the same marker density surrounding the QTL
(5cM to each side) as Table 2.

To see how our conclusions vary with the QTL positions and effect sizes, we run two additional
sets of simulations and the results are reported in Tables 4 and 5. The simulation set ups of
Table 4 are similar to those of Table 1 except that the new QTL position is located at 25 cM
instead of 45 cM. For normal traits, in Table 5, we further reduce the heritability of the QTL
in Table 4 down to 5%. These simulations assure us that the performance of the proposed
method is consistent regardless of the QTL positions and effects.

We next apply the proposed method to the breast cancer study described in Lan et al. (2001).
In this study, pure inbred female rats from the Wistar-Kyoto (WKY) strain resistant to
mammary carcinogenesis were crossed with pure inbred male rats from the Wistar-Furth (WF)
strain susceptible to cancer (Lan et al., 2001). The F1 progeny were then mated to WF animals,
producing 383 female rats which were either WF/WF or WKY/WF at each locus. These
backcross rats were scored for the number of mammary carcinomas and were genotyped at 58
markers on chromosome 5. Using several mapping strategies, Lan et al. (2001) found marker
D5Rat22 on chromosome 5 was strongly associated with low tumor counts. That is, female
rats with the WKY allele at DFRat22 had fewer carcinomas than rats without the WKY allele.
We assign the distributions F and G to tumor counts from the rats with WKY/WF and WF/WF
genotypes, respectively. In contrast to Lan et al. (2001), we test the hypotheses H0 : F = G vs
H1 : F ≠ G. The dataset provides a nice example of how nonparametric approaches provide
practical and conceptual simplicity to a mapping problem. Lan et al. (2001) applied normal
parametric interval mapping as one analysis approach to the data, although tumor counts of
zero were not uncommon in the dataset.
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The data were reanalyzed with our proposed method. Note that datasets with truncated
observations, or involving mixtures of discrete and continuous phenotype values, present no
difficulty for our proposed approach. Approximately 5% of the genotypes were missing, and
because the rate was relatively low, we simply discarded those individuals whose genotypes
were missing at the kth marker in the calculation of Uk. However, the same individuals were
not discarded at markers for which their genotypes were not missing. More sophisticated
imputation of missing genotypes would use all observations (Little and Rubin 1987). The tumor
counts in the dataset are discrete and ties occur. Conceptually we may use tied ranks (or φ (x
− y)=0), but the application of the analytic variance calculations becomes more complicated.
For these data we randomly broke ties with equal probability, which produces valid results but
may entail a small loss in power.

For these data, we computed L3;0 = 135, which is compared to a χ2 distribution with 58 degrees
of freedom. The p-value is 4 × 10−8, a highly significant result supporting the existence of QTL
(s) on chromosome 5. The estimate of the QTL location was 39.6 cM, with a 95% confidence
interval (37.6,41.6) cM. The estimate of δ was 0.539 (corresponding to ∫ F dG=0.77), with
standard error 0.018 .

In Figure 1, the profile LRT scores based on the normal-likelihood interval mapping procedure
of Lander and Botstein (1989) has been plotted. The LRT score peaks near 45 cM. This value
is not included in the 95% confidence interval of the QTL locus from the proposed method,
illustrating that the traditional approach and our approach can exhibit meaningful differences.
Samuelson et al. (2003) have since provided further evidence for the mammary carcinoma
QTL on chromosome 5 and narrowed the region modestly, but the involved gene has not yet
been characterized. For easy comparison, we have reversed and rescaled the L3 curve to the
same range of the LRT and plotted it in Figure 1.

4 Discussion
We have proposed a new nonparametric QTL mapping method without assuming the forms of
two underlying phenotype distributions. Our approach is more general than the conventional
normal location-shift model and relaxes the model assumptions of traditional interval mapping
by working with the Wilcoxon-Mann-Whitney (WMW) statistic using genotypes of all markers
simultaneously. Once the variance approximation is derived, the minimization of the objective
functions can be implemented fairly easily in an iterative procedure. Appropriate thresholds
for the test statistic and a confidence interval for the QTL locus are readily available. One
situation where our proposed methods lack power is when a QTL influences the variability of
a trait rather than its mean, and it is possible that δ = 0 even under HA. However, our methods
are general enough to cover many applications.

Instead of modeling Uk;n, Kearsey and Hyne (1994), Wu and Li (1994, 1996) used the trait

mean difference  to construct the objective functions L1, L2
and L3, from which the parameter estimates are derived. Only Kearsey and Hyne (1994)
compared their procedure with the standard interval mapping and showed that standard interval
mapping is slightly more efficient. However, their method does not take the variance-
covariance structure of Tk;n into consideration. For more fair comparison, we have also done
extensive simulations on minimizing L2 and L3 that derived from Tk;n. Our simulation results
(not shown) indicate that the efficiency of the QTL position estimate from Tk;n is comparable
to that from standard interval mapping and therefore is lower than that from Uk;n even when
F and G are normal. The reason is that, though F and G are normally distributed, y1;i and y2,j
are not normally distributed and instead follow the mixture of normals. Therefore, using rank-
based Uk,n is more efficient than using Tk,n. For the sample sizes and marker densities
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considered, our GLS procedure gives more efficient location estimates than the traditional
interval mapping in all our simulations.

The method can be readily applied to other mapping populations, such as Double Haploid,
Recombinant Inbred Lines, etc, which are widely used in plant and animal genetic studies.
Extending the method to more complicated designs, such as F2 intercrosses, requires careful
consideration. Rank-based nonparametric inference methods for stochastically ordered
distributions with more than two groups are available and can be directly applied to F2
population (Shanubhogue 1988). However, for F2 population, the covariance structure is more
complicated than that of the backcross, and approximations or empirical estimations using for
example, the jackknife procedure, may be explored to simplify the problem. We will address
this problem in a follow up paper.

We compare our work to that of Liang et al. (2001A), in that we similarly do not advocate our
approach as a replacement to existing parametric interval mapping approaches. Our procedure
is intended as a supplement to the traditional interval mapping, with the main goal of providing
robust estimates of QTL locations. As with Liang et al. (2001A), our work implicitly assumes
that there is preliminary evidence of linkage to a chromosomal region. This evidence can be
assessed via interval mapping or the test statistic proposed in this paper, followed by location
and confidence interval estimation as proposed here. The robustness of our method gives the
researcher an additional chance to discover linkages that might have been missed due to
unrealistic parametric assumptions, and any observed conflict between the two approaches will
spur the researcher to carefully investigate the data further.Chen et al. (2004) have used GEE
approach for mapping quantitative traits. However, their approach uses one marker at a time
instead of all available markers simultaneously. Further our approach assumes that there exists
only one QTL in the region considered. Liang el al. (2001B) have extended their approach to
two loci, as have Biernacka et al. (2005). Extensions of our approach to handle multiple QTLs
are currently under investigation.
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where

all are functions of μ, δ, Δ1, Δ2. Note , thus

This leads to the first equation of (3).

The conditional covariance at two marker loci k and l can be calculated similarly. Based on
the genotypes at markers k and l, observations may be grouped. Namely, there are 4 possible
marker genotypes MM=MM, MM=Mm, Mm=MM and Mm=Mm with corresponding number
of observations as m1,kl, m2,kl, m3,kl and m4,kl, respectively. Let F̃type, type = MM=MM,
MM=Mm, Mm=MM and Mm=Mm, be the corresponding distributions of phenotypes of the
above four possible marker genotype groups. In other words, F̃type = P (Qq|type)F + P (QQ|
type)G, where the conditional probabilities, P (QQ|type) and P (Qq|type), depend on the
relative orders of marker Mk, Ml, putative QTL and their relative distances (Chapter 15 of
Lynch and Walsh 1998). For ease of notation, we denote, F̃MM=MM = F̃1, kl, F̃MM=Mm =
F̃2,kl, F̃Mm=MM = F̃3,kl and F̃Mm=Mm = F̃4,kl. The covariance between Uk, n and Ul, n, Cov
(Uk,n, Ul,n), equals
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Further,  and , therefore the above covariance
can be simplified as

where

and 2na,kl = number of observations with marker genotypes MM=MM or Mm=Mm and
2nb,kl= number of observations with marker genotypes MM=Mm or Mm=MM. Let the
recombination rate between the two markers be θkl, then  and

, thus the above formula can be further simplified as

, which leads to the second equation of (3).

Estimation of Δ
Define the Z-statistics Zk,1 and Zk,2 at the kth marker as

 and

, where
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y(1,i), y(2,j), i = 1, 2 …, n1,k; j = 1, 2, …, n2,k are defined as in section 2. The mean of Zk,1 given
the kth marker genotypes is:

The following relations  and  lead to

and similarly, the expected value of Zk,2 is

Thus,

A least squares estimator of Δ1 and Δ2 can be obtained in minimizing the following two
objective functions:

(6)

(7)

where Z1 = (Z1,1, Z2,1, …, ZK,1)T and Z2 = (Z1,2, Z2,2, …, ZK,2)T. By minimizing (6) and (7),
we can get the estimates of Δ1 + Δ2 and Δ2 − Δ1 and therefore, the estimates of Δ1 and Δ2.

For more complicated designs, it may not be easy to find appropriate statistics to estimate
parameters for the variance and covariance calculations, such as Δ1 and Δ2. We thus propose
the following alternative empirical method to estimate conditional variance of Un, Var(Un).
According to the definition of Uk,n, given the kth marker genotypes, we have

,where

Zou et al. Page 12

J Stat Plan Inference. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



 and

. Consider the set

, we get

. Thus,

 estimates . Similarly,
 and  can be estimated by

 and

, respectively, where  .

When n is large,

The estimate for conditional covariance can be derived similarly and omitted for brevity of
presentation.

Proof of Theorem 1
Let β = (δ,μ)T and β0 is the true value of β. Li, i = 1, 2, 3 can be generally expressed as special
cases of the following objective functions

where g(β) = E(Un) and V = I/n, Σ, Var(Un) for L1, L2, L3, respectively. To emphasize the
dependence of the parameter estimate of β on the sample size n, let {β ̂}be a sequence of
solutions which minimizes the objective function S(β).

Further, denote g′ (β) = [δg(β/δ βT]k×2, D = g′ (β0), and for k = 1, 2,...,K,

, where gk(β) is the kth element of the vector g(β).

For general S(β), we can show that under the regularity conditions

(A)There exists a positive definite matrix Λ(β) in a neighborhood of β0 such that

Let Λ0 = Λ(β0)= limn→∞n−1DTV−1D and Λ(β)→ Λ0 as β → β0

(B) There exists a positive definite matrix such that
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where V0 = Var(Un) is the true variance-covariance of Un given β = β0.

(C) limn→∞n−1,V−1, limn→∞n−1g′ (β)T V −1V0 V −1g′ (β), g′ (β)T g′ (β), and , k =
1,...,K, are all bounded in a neighborhood of β0

then,  will be asymptotically normal.

Due to the special set up of our proposed model, we can show that g(β), g′(β) and  are
actually bounded for all β. Further, under the alternative hypothesis where there exists a QTL,
it can be shown that (nV)−1 is bounded and conditions A), B) and C) hold. Thus the asymptotical
normality of our estimate β ̂n follows.

Proof
By the regularity assumptions, it follows by standard methods (Sen and Singer 1993, pp 206
– 207) that for every (3xed) C(< ∞),

This implies that β ̂ lies in the O(n−1/2)-ball around β0 with probability going to 1 (as n → ∞),
and hence,

Thus  is asymptotically equivalent to [S″(β0)/n]−1 n−1/2S′(β0). Further it can be

shown that  and limn→∞ S′′ (β0)/n = 2
Λ0 a.e. Using the Slutsky theorem, it follows that

By replacing unknown Λ0 or Λ* with their consistent estimates yields Theorem 1 using Slutsky
theorem again.
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Figure 1.
Comparison of the profile likelihood ratio test LRT and the objective function L3.
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