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Abstract

Protein-protein interactions defined by affinity purification and mass spectrometry (APMS) 

approaches suffer from high false discovery rates. Consequently, the candidate interaction lists 

must be pruned of contaminants before network construction and interpretation, historically an 

expensive and time-intensive task. In recent years, numerous computational methods have been 

developed to identify genuine interactions from hundreds revealed by APMS experiments. Here, 

comparative analysis of several popular algorithms revealed complementarity in their 

classification accuracies, which is supported by their divergent scoring strategies. As such, we 

used two accurate and computationally efficient methods as features for machine learning using 

the Random Forest algorithm. Additionally, we developed novel mathematical models to include a 

variety of indirect data, such as mRNA co-expression, gene ontologies and homologous protein 

interactions as features within the classification problem. We show that our method, which we call 

Spotlite, outperforms existing methods on four diverse and public APMS datasets. Because 

implementation of existing APMS scoring methods requires computational expertise beyond many 

laboratories, we created a user-friendly and fast web application for APMS data scoring, analysis, 

annotation and network visualization, for use on new and existing data (http://152.19.87.94:8080/

spotlite). The utility of Spotlite and its visualization platform for revealing physical, functional and 

disease-relevant characteristics within APMS data is established through a focused analysis of the 

KEAP1 E3 ubiquitin ligase.

INTRODUCTION

Mapping the global protein-protein interaction network and defining its dynamic 

reorganization during specific cell state changes will provide an invaluable and 

transformative knowledgebase for many scientific disciplines. Recent advancements in two-

hybrid technologies and affinity purification – mass spectrometry (APMS) have 

Author for correspondence: Michael B. Major, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill 
Box#7295, Chapel Hill, NC 27599, benmajor@med.unc.edu, Phone: 919-966-9258, Fax: 919-966-8212. 

HHS Public Access
Author manuscript
J Proteome Res. Author manuscript; available in PMC 2015 December 05.

Published in final edited form as:
J Proteome Res. 2014 December 5; 13(12): 5944–5955. doi:10.1021/pr5008416.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://152.19.87.94:8080/spotlite
http://152.19.87.94:8080/spotlite


dramatically increased protein connectivity information, and therefore a proteome-wide 

interaction map may be realized in the not-so-distant future. Specifically, technological and 

computational advancements in mass spectrometry-based proteomics have increased sample 

throughput, detection sensitivity and mass accuracy, all with decreasing instrumentation 

costs. Consequently, to date over 2,200 human proteins have been analyzed by APMS, as 

estimated through BioGRID and data presented herein (1). Similarly, the generation of 

arrayed human clone sets has revealed binary interactions among approximately 13,000 

proteins (HI-2012 Human Interactome, Center for Cancer Systems Biology). While both 

approaches detect direct protein interactions, only APMS can detect indirect interactions – 

though with limited ability to distinguish between the two types.

In general, APMS-based protein interaction experiments are performed by selectively 

purifying a specific protein, termed the bait, along with its associated proteins from a cell or 

tissue lysate. Mass spectrometry is then used to identify and more recently quantify the bait 

and all associated proteins within the affinity purified protein complex, collectively termed 

the prey. Though a prey’s presence supports its existence within a complex, high numbers of 

non-specific contaminants—owing largely to technical artifacts during the biochemical 

purification—lead to false protein complex identifications and therefore significantly 

hamper data interpretation. As such, numerous computational methods have been developed 

to differentiate between genuine APMS protein complex interactions and false-positive 

discoveries.

These algorithms can be broadly categorized based on which features of the APMS data are 

included and how the resulting network is mapped. Methods such as SAI, Hart, Purification 

Enrichment scores and Dice Coefficients use the binary presence of the protein as evidence 

for an interaction (2–8). More recently, computational approaches employed by SAINT (9), 

MiST (10), CompPASS (11) and the HGSCore (12) achieved improved scoring accuracy by 

taking advantage of label free quantification using spectral counts, a reflection of the 

abundance of a protein after purification. Additionally, these algorithms can also be 

categorized by whether they use a spoke or matrix model to represent protein connectivity 

(4). The spoke model represents only bait-prey interactions, while the matrix model – used 

by the Hart (7) and HGSCore methods – additionally represents all prey-prey interactions, 

resulting in a quadratic number of potential interactions per experiment instead of linear, and 

therefore contain an order of magnitude more interactions to test. Though the matrix model 

can detect more true complex co-memberships, it has the added difficulty of filtering prey 

pairs that form distinct complexes with the bait. Each method has its merits and has been 

successfully applied to APMS data; however, their widespread utilization has been limited.

In addition to using direct features from APMS experiments to predict the validity of 

putative protein-protein interactions, success in the de novo prediction of protein interactions 

has been achieved through the analysis of indirect data (13–16). Specifically, mRNA co-

expression has been shown to positively correlate with co-complexed proteins, and the Gene 

Ontology’s (GO) biological process and cellular component annotations have proven to be 

useful for interaction prediction by utilizing semantic similarity (17–19). Both co-expression 

and GO co-annotation are also commonly used metrics for evaluating predicted interactions. 

Sequence and structural homology at the domain and whole-protein level have established 

Goldfarb et al. Page 2

J Proteome Res. Author manuscript; available in PMC 2015 December 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



themselves as powerful predictors as well (20, 21). Though individually useful, integration 

of these indirect sources using machine learning techniques such as Support Vector 

Machines (22), Random Forests (23), Naïve Bayes (24), and Logistic Regression (25) have 

further increased prediction accuracy. APMS data has also been used as a discriminative 

feature, however it was encoded as a binary value representing an interaction’s presence – 

far less powerful than the sophisticated APMS scoring methods now available (16).

Among the label free methods, only SAINT’s software is available for public use and 

requires compilation and command line execution – limiting its use for research groups 

lacking computational expertise (9). CompPASS provides a public web interface to search 

its data, but no option to employ the algorithm on private datasets (11). Aside from APMS 

scoring methods, numerous web applications are available for de novo protein-protein 

interaction prediction (26, 27). These methods do not incorporate new APMS data, and 

therefore provide an insufficient resource for researchers wishing to integrate their own 

experiments into the predictions.

Given the independent successes of using direct and indirect data to predict and score 

protein-protein interactions, we created Spotlite, a Random Forest-based (28) classifier to 

identify genuine interactions from human APMS experiments, one which utilizes features 

taken from APMS data and a variety of indirect data. To foster its use within the proteomic 

community, we developed and speed-optimized a web application for Spotlite execution on 

existing and novel datasets. In addition to providing an integrated network visualization tool, 

because all features employed within the machine learning algorithm are provided, the 

resulting protein interactions are annotated for function, model organism phenotype and 

human disease relevance.

EXPERIMENTAL PROCEDURES

Data Collection

To develop a classification strategy capable of efficiently segregating false positive protein 

interactions from true interactions within APMS-derived data, we collected four publically 

available and well-diversified APMS datasets. These data were received directly from the 

authors of the respective publications and searched and filtered using the criteria described 

in their methods. The data contained spectral counts, baits, and preys for each experiment. 

For the purposes of establishing a classifier, we defined protein-protein interactions taken 

from the Human Interactome and BioGRID as known interactions. More specifically, 

protein-protein interactions were downloaded from BioGRID (1)(http://thebiogrid.org/ 

Release 3.1.89) and appended with the Human Interactome project’s two-hybrid data from 

The Center for Cancer Systems Biology at the Dana-Farber Cancer Institute (http://

interactome.dfci.harvard.edu/). Protein sequences and cross database accession mappings 

were downloaded from IPI (29)(http://www.ebi.ac.uk/IPI/ final releases) and UniProt/

SwissProt (30)(http://www.uniprot.org/ Release 05/2012). Protein domains were determined 

with PfamScan (31)(http://pfam.sanger.ac.uk/ Release 26.0) using an e-value threshold of 

0.05. Entrez Gene IDs, official symbols, aliases, and gene types were extracted from NCBI 

Gene’s FTP site, http://www.ncbi.nlm.nih.gov/gene (gene_history.gz and gene_info.gz - 

downloaded 05/26/12). Gene homolog data was downloaded from NCBI’s Homologene 
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(http://www.ncbi.nlm.nih.gov/homologeneBuild66). Pearson correlation coefficients for co-

expression data were downloaded from COXPRESdb (32) (http://coxpresdb.jp/) for Homo 

sapiens (version c3.1), Mus musculus (version c2.1), Drosophila melanogaster (version 

c1.0), Caenorhabditis elegans (version c1.0), Danio rerio (version c1.0), Gallus gallus 

(version c1.0), and Rattus norvegicus (version c2.0). Ontology hierarchies and annotations 

were downloaded on 05/26/12. The Gene Ontology supplied the biological process and 

cellular component ontology hierarchies, where the annotations were downloaded from 

NCBI Gene’s FTP site (33). The Mammalian Phenotype Ontology (relevant organism: Mus 

Musculus) hierarchy and annotations were downloaded from Mouse Genome Informatics 

(34)(http://www.informatics.jax.org/). The Human Phenotype Ontology’s hierarchy and 

annotations were downloaded from www.human-phenotype-ontology.org (35). The Disease 

Ontology annotations were taken from its associated publication’s supplemental data (http://

projects.bioinformatics.northwestern.edu/do_rif/) and the hierarchy from the OBO Foundry 

(36)(http://obofoundry.org/).

ID Mapping

IPI and UniProt accessions were directly mapped to Entrez Gene IDs using cross database 

accession mappings. If a direct mapping did not exist, indirect mappings were checked by 

finding accession to accession mappings (e.g. IPI to UniProt) and testing them for direct 

mappings. If multiple Gene IDs were identified as candidates, an arbitrary one was chosen. 

Similarly, Gene Symbols were directly mapped to Gene IDs. For Gene Symbols that did not 

match an Official Gene Symbol, gene aliases were queried and if multiple candidate IDs 

were found, one was chosen arbitrarily.

Machine Learning

We approached the probabilistic scoring of APMS protein-protein interactions as a binary 

classification problem in which the two classes are: 1) pairs of proteins that directly or 

indirectly form a complex together (positive class), and 2) pairs of proteins that are never 

members of the same complex (negative class). The classifier chosen was a Random Forest 

(28)(Weka v3.6.7 implementation, (37)), which was previously shown to demonstrate high 

classification accuracy for protein-protein interaction prediction (16). The features used to 

characterize a pair of putative co-complexed proteins were gene co-expression patterns in 

humans and their homologs in six different species, as well as semantic similarity scores for 

the pair’s ontological annotations for biological processes, cellular components, diseases, 

mutant phenotypes, and mouse homologs’ mutant phenotypes. Additionally, domain-domain 

binding affinities, homologous interactions, and label-free APMS scoring methods 

CompPASS and the HGSCore were used. Only spoke model interactions were tested, 

because CompPASS was not designed for the matrix model, as well as for computational 

efficiency. The classifier was trained specifically for human data, using a training set 

comprised of four published APMS datasets (Table 1). Ultimately, the Random Forest 

classifier outputs the probability a candidate APMS protein-protein interaction belongs to 

the positive or negative class of co-complexed proteins.
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Feature Calculation for Random Forest

For classification, all putative APMS-derived protein-protein interactions were characterized 

by direct and indirect features. Direct features, which are derived from the output of the 

APMS experiment, included the HGSCore score and a modified CompPASS WD-score. The 

HGSCore is capable of testing matrix model interactions, however, for implementation 

within Spotlite, we restricted it to spoke model interactions. The HGSCore first converts 

spectral counts to normalized spectral abundance factors (NSAF (38)), then scales them by 

setting the smallest value to 1, and finally taking the integer value of the square root – 

resulting in a Tn value for each protein in an experiment. The HGSCore is then defined as:

We computed a modified CompPASS score to account for increased variability within 

biological replicates. The original CompPASS WD-score equation was designed such that 

each bait protein would be analyzed by APMS two independent times. The equation was 

defined as:

To permit greater variability within the number of duplicate biological replicate 

experiments, as is required when analyzing disparate datasets originating from many 

independent laboratories, we modified the exponent to have a smaller effect on 

reproducibility:

Where n is the total number of replicates for bait i. Figure S1 shows the modification’s 

improvement over the original WD-score for each of the four analyzed datasets. In cases 
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where both proteins of an interaction are tested as baits, the larger CompPASS score was 

taken.

In addition to these direct APMS-dependent features, indirect characteristics of a putative 

protein-protein interaction were also employed within the Random Forest classification. The 

correlation between mRNA expression patterns of two genes was quantified using the 

Pearson correlation coefficient (PCC). In total, seven co-expression features – one for each 

species mentioned in Data Collection – were added to the classification model. The human 

feature is the PCC for the pair of human genes to be classified. There often exist multiple 

homologs of a gene within a different species; therefore the co-expression features for genes 

i and j, in non-human species k, were defined as the maximum PCC among the set of 

homolog pairs for that species, Hijk:

A separate feature was used for each of the five ontologies: biological process, cellular 

component, human phenotype, mouse phenotype, and human disease. Semantic similarity 

scores were utilized to determine how similar two gene’s sets of annotations, A and B, were 

to each other, and used as the feature value. We computed semantic similarity scores using 

Resnik’s MAX method (17). This method searches for the set of nearest common ancestors, 

C, among all pairs of annotations between two genes and returns the maximum information 

content.

We used the Maximum Likelihood Estimation (20) method to calculate the probability of 

each potential domain-domain interaction, λmn. This required all two-hybrid interactions for 

Saccharomyces cerevisiae from BioGRID. S. cerevisiae was chosen for its high interactome 

coverage, leading to a more accurate estimation of domain-domain interaction probabilities. 

A single protein sequence was used for each gene, with preference given to the longest 

UniProt/SwissProt sequence, followed by the longest IPI sequence. A false positive rate of 

0.005 and a false negative rate of 0.37 were used, which are required parameters of the 

method. Our feature – The probability that two proteins interact via their domains – was 

calculated using the set of potentially interacting domains, Dij, present within the proteins:

The final feature used was the number of known distinct interactions among the homologs 

of the two proteins:

Goldfarb et al. Page 6

J Proteome Res. Author manuscript; available in PMC 2015 December 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Co-expression and ontologies features are subject to missing values due to lack of 

microarray probes and lack of annotations, respectively, and were treated as null. The 

Random Forest algorithm is designed to handle these during training and classification. Null 

values for ontology features were assigned to candidate interactions where at least one of the 

proteins has no annotations aside from the root of the ontology. Null values for co-

expression features were assigned when COXPRESdb did not have data for the feature.

Training Set Construction

To segregate false positive protein interactions from true interactions, we trained and tested 

candidate classifiers using a supervised learning approach on four published human APMS 

datasets. Specifically, the four datasets analyzed described protein complexes associated 

with unique biological functions — deubiquitination (DUB)(11), autophagy (AIN)(39), 

chromatin remodeling (40)(TIP49), and transcriptional regulation (Complexome)(41) (Table 

I). These datasets range extensively in their number of experiments, interaction network 

connectivity and purification technique, resulting in a diverse training set capable of testing 

the generalizability of our method. All bait and prey identifiers were mapped to Entrez Gene 

IDs using the method described in the ID Mapping section. Interactions tested in both 

directions in a dataset were included only once. Within each APMS dataset, the CompPASS 

and HGSCore feature was normalized to have a mean of zero and a standard deviation of 

one. Candidate interactions annotated as physical interactions in BioGRID were used the 

positive class, excluding interactions represented by a single publication employing 

CompPASS or the HGSCore, as this would create a bias towards one of the methods. To 

avoid an extremely unbalanced training set, the negative set was created by uniformly 

sampling the unknown interactions from each dataset to contain 10 times the number of the 

dataset’s known interactions.

Model Training and Evaluation

The Random Forest classifier was trained by creating 100 decision trees and splitting from a 

subset of 4 randomly selected features at each node. The positive class was given a weight 

of 10, while the negative class received a weight of 1. For cross-validation, each full dataset 

was tested with a classifier trained on the three remaining sampled datasets. Some overlaps 

were present among datasets; therefore interactions present in the dataset being tested were 

removed from the training set, avoiding the mistake of testing on trained data. In the case 

where an interaction was in multiple training datasets, one of the instances was selected at 

random. The metric for success was the receiver operating characteristic (ROC) curve. We 

treat all unknown interactions as the negative set. Though real interactions exist in this set, 

the number of false interactions is expected to greatly exceed the number of false negatives, 

making the ROC curve an appropriate metric.
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False Discovery Rate Calculation

We used the probabilistic method employed by ProteinProphet to compute false discovery 

rates (FDR). First, interaction probabilities calculated by the Random Forest are sorted in 

descending order. Next, the FDR is calculated for the top x interactions using the equation:

Finally, the user selects a FDR threshold, and the corresponding minimum interaction 

probability to accept is outputted.

FLAG Affinity Purification and Western Blot Analyses

For FLAG affinity purification, HEK293T cells were lysed in 0.1% NP-40 lysis buffer (10% 

glycerol, 50mM HEPES, 150 mM NaCl, 2mM EDTA, 0.1% NP-40) containing protease 

inhibitor mixture (1861278, Thermo Scientific, Waltham, MA) and phosphatase inhibitor 

(78427, Thermo Scientific, Waltham, MA). Cell lysates were cleared by centrifugation and 

incubated with FLAG resin (F2426, Sigma-Aldrich Corporation, St. Louis, MO) before 

washing with lysis buffer and eluting with NuPAGE loading buffer (Life Technologies, 

Carlsbad, CA). Detection of proteins by Western blot was performed using the following 

antibodies: anti-FLAG M2 monoclonal (Sigma-Aldrich Corporation, St. Louis, MO), anti-

FAM117b (21768, ProteinTech, Chicago, IL), anti-MAD2L1 (A300-301A, Bethyl Labs, 

Montgomery, TX), anti-MCM3 (A300-192A, Bethyl Labs, Montgomery, TX), anti-SLK 

(A300-499A, Bethyl Labs, Montgomery, TX), anti-βactin polyclonal (A2066, Sigma-

Aldrich Corporation, St. Louis, MO), anti-KEAP1 polyclonal (ProteinTech. Chicago, IL), 

anti-DPP3 polyclonal (97437, Abcam, Cambridge, MA), and anti-VSV polyclonal 

(A190-131A, Bethyl Labs, Montgomery, TX).

Mass Spectrometry

For FLAG affinity purification of KEAP1, HEK293T cells stably expressing FLAG-KEAP1 

were lysed in 0.1% NP-40 lysis buffer (10% glycerol, 50mM HEPES, 150 mM NaCl, 2mM 

EDTA, 0.1% NP-40) containing protease inhibitor mixture (1861278, Thermo Scientific, 

Waltham, MA) and phosphatase inhibitor (78427, Thermo Scientific, Waltham, MA). 

Approximately 50mg of whole cell lysate was cleared by centrifugation and incubated with 

20μL of packed FLAG resin (F2426, Sigma-Aldrich Corporation, St. Louis, MO) before 

washing 5 times with lysis buffer. Following an on-beads digestion with FASP Protein 

Digestion Kit (Protein Discovery, San Diego, CA), tryptic peptides were cleaned up by C18 

Spin Column (Thermo Scientific, Waltham, MA), then separated by reverse phase nano-

HPLC using a nanoAquity UPLC system (Waters Corp, Milford, MA). Peptides were first 

trapped in a 2 cm trapping column (75 μm ID, Michrom Magic C18 beads of 5.0 μM particle 

size, 200 Å pore size) and then separated on a self-packed 25 cm column (75 μm ID, 

Michrom Magic C18 beads of 3.0μM particle size, 100 Å pore size) at room temperature. 

The flow rate was 200 nl/min over a gradient of 1% buffer B (0.1% formic acid in 

acetonitrile) to 30% buffer B in 180 min. Then a following wash raised buffer B to 70%. 

The identity of the eluted peptides was determined with an in-line LTQ-Orbitrap Velos mass 
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spectrometer (Thermo Scientific, Waltham, MA). The ion source was operated at 2.0–2.4 

kV with ion transfer tube temperature set at 275 °C. Full MS scan (300–2000 m/z) was 

acquired in Orbitrap with 60,000 resolution setting, data-dependent MS2 spectra were 

acquired in LTQ by collision induced dissociation (CID) using the 20 most intense ions. 

Precursor ions were selected based on charge states (1, 2 or 3) and intensity thresholds 

(above 2000) from the full scan, dynamic exclusion (one repeat during 30-s, a 60-s 

exclusion time window) was also taken into account. The polysiloxane lock mass of 

445.120030 was used throughout spectral acquisition.

Mass Spectrometry Data Analysis

All raw data were converted to mzXML format before a search of the resultant spectra using 

Sorcerer™-SEQUEST® (build 4.0.4, Sage N Research, Milpitas, CA) and the 

Transproteomic Pipeline (42)(TPP v4.3.1). Data were searched against the human 

UniProtKB/Swiss-Prot sequence database (Release 2011_08) supplemented with common 

contaminants, i.e. porcine (Swiss-Prot P00761) and bovine (P00760) trypsin, and further 

concatenated with its reversed copy as a decoy (40,494 total sequences). Search parameters 

used were a precursor mass between 400 and 4500 amu, up to 2 missed cleavages, 

precursor-ion tolerance of 3 amu, accurate mass binning within PeptideProphet (43), semi-

tryptic digestion, a static carbamidomethyl cysteine modification, and variable methionine 

oxidation. Two KEAP1 experiments labeled MA128 were searched as one experiment 

through Sorcerer’s interface, as they constituted the same sample run through the mass 

spectrometer in two halves. False discovery rates (FDR) were determined by ProteinProphet 

(44) and minimum protein probability cutoffs resulting in a 1% FDR were selected 

individually for each experiment. ProteinProphet results for each APMS experiment were 

stored in a local Prohits database (45) and Cytoscape v2.8.2(46) was used for network 

visualization. Unsearched data is available through the ProteoCommon.org Tranche network 

using the following hash:

V3N2GaJ7UTihN2nz03Dp1o424ntyGD8DtTI11Af8kTpolRCL8k3+EYd52Mh1Yc4wp0iZk

E9T XXz9jE6C49+4EKs6aUwAAAAAAAADSA==

RESULTS

Combining APMS Scoring Methods Enriches for Previously Reported Protein Interactions

Existing spectral count-based APMS scoring methods demonstrate a high level of accuracy 

in predicting protein complex co-membership, thus making them appealing features for 

classification. A direct comparison of three popular and fundamentally distinct scoring 

algorithms—HGSCore, CompPASS and SAINT—revealed overlapping and complementary 

prediction accuracies (Figure 1). Specifically, the three methods were separately applied to 

each dataset, and individual thresholds were determined to achieve a 5% false positive rate, 

treating all un-annotated interactions as the negative set. The unions and intersections of 

each method’s set of accepted interactions were then compared (Figure 1). Although some 

methods performed better than others, each of the three approaches was capable of 

identifying known protein-protein interactions disjoint from the remaining two. As expected, 

no single method identified all of the previously annotated protein interactions. That said, 
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the intersection of the three datasets showed strong enrichment for validated protein 

interactions. As such, the HGSCore and CompPASS (with a modified WD score) were 

chosen as features to broaden and strengthen the confidence of selected interactions, and for 

their computational speed.

Spotlite Outperforms Previous APMS Scoring Methods

To further improve upon interaction predictions, we chose to include into Spotlite data 

outside of APMS that had previously been shown to correlate with co-complexed proteins. 

These indirect sources of evidence were mRNA co-expression patterns among seven 

species, GO annotation similarity, phenotypic similarity, domain-domain binding affinities, 

and homologous interactions. Each was encoded into a feature, and along with the HGSCore 

and CompPASS, describe a putative pair of interacting proteins. Then, using the Random 

Forest algorithm, these interactions were predicted to be genuine based on the values of their 

corresponding feature vector.

In order to benchmark Spotlite against previous methods, we performed a variation of cross-

validation by training a Random Forest classifier on each combination of three datasets and 

then testing on the remaining fourth dataset (Figure 2). Spotlite consistently outperformed 

SAINT, CompPASS and HGSCore based on ROC curve analysis and partial area indexes, 

which demonstrates greater sensitivity and specificity toward known interactions in the 

BioGRID database. These data also demonstrate that the discriminatory patterns learned 

from each dataset were generally applicable, as classification accuracy was superior across 

all cross-validation instances. To generate our final classifier for use in the web application, 

all four of the datasets were used for training. Table II shows each feature’s coverage within 

the Spotlite database and its respective importance based on the Random Forest’s Gini 

Index. As expected, the HGSCore and CompPASS were the two most important features 

used for distinguishing between known and false or unknown co-complexed proteins. 

Additionally, to determine the increase in accuracy due to the inclusion of indirect data, we 

calculated the number of misclassified interactions while performing stratified five-fold 

cross-validation with all features included, and compared it to training with the APMS 

features only. Impressively, misclassified interactions occurred at a rate of 34.95% using 

only APMS-derived features, and decreased to 30.58% after inclusion of the indirect 

features.

Spotlite Web Application for Public Use

We have made Spotlite available to the research community through a user-friendly web 

application that follows a simple workflow (Figure 3). Users may upload a tab-delimited file 

containing each experiment, its associated purification technique, bait, prey, and each prey’s 

spectral count. An option for using the publically available APMS data deposited within 

Spotlite allows the smaller datasets of individual researchers to take advantage of the 

existing larger collection (using only the data of the same purification technique), thereby 

improving the filtering of the common contaminants by the HGSCore and CompPASS 

features. Next, the indirect feature data, which has been pre-computed for every potential 

pair of genes, is retrieved from the database. Finally, the data are classified by the Random 

Forest classifier. The false discovery rates are calculated and users can then explore and 
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visualize their results through the website or export them to a spreadsheet. For our largest 

available dataset, the Complexome, the entire process takes approximately two minutes to 

complete after the initial file upload. To maintain privacy, all uploaded APMS data and 

results are deleted after 24 hours of upload, or destroyed on command by the user.

Spotlite Analysis of KEAP1 APMS Data

To demonstrate its utility, performance and ease in identifying true interacting proteins from 

APMS data, we affinity purified the KEAP1 E3 ubiquitin ligase from HEK293T cells and 

analyzed the resulting data within Spotlite (Table S1). Specifically, cells engineered to 

stably express FLAG-tagged KEAP1 were detergent solubilized and subjected to FLAG 

affinity purification and shotgun mass spectrometry. Using biological duplicate KEAP1 

APMS experiments and a reference set of an additional 22 FLAG purifications performed on 

18 different baits, the KEAP1 protein interaction network was scored and visualized with 

Spotlite. The unfiltered KEAP1 dataset contained 534 prey proteins, of which 24 were 

annotated in BioGRID as being previously identified as KEAP1 interactors; 18 through 

high-throughput experiments and 6 using low-throughput methods (Figure 4A). After 

application of Spotlite and a global 10% FDR threshold, the network reduced to 35 proteins, 

of which three were shown to be genuine through low-throughput experiments, nine through 

high-throughput methods and 23 putative novel interactors (Figure 4B). Next, we selected 

eight KEAP1 interacting proteins that passed Spotlite thresholding for further validation by 

immunoprecipitation and Western blot analysis: MCM3, DPP3, SLK, MCC, MCMBP, 

MAD2L1, SQSTM1 and FAM117B. Of these, five were previously annotated as high-

throughput interactors, one by low-throughput assays and two were novel interactors (MCC 

and FAM117B). Impressively, all eight endogenously expressed proteins co-purified with 

FLAG-tagged KEAP1 (Figure 4C).

In addition to providing the Random Forest classification score, the Spotlite web application 

lists the following individual features for each protein pair: HGSCore (HGS), CompPASS, 

gene ontologies for biological process (BP) and cellular component (CC), gene co-

expression for seven species (CXP), domain-domain binding score (Domain), number of 

homologous interactions (Homo int), shared phenotypes (Phen), shared human diseases 

(Disease) and whether the proteins have previously been shown to interact (Known?). As an 

example, Spotlite’s visualization for the KEAP1-MAD2L1 interaction is provided in Figure 

5. Both proteins affect growth and size in mice, specifically postnatal growth retardation 

with KEAP1 and decreased embryo size with MAD2L1. Additionally, both proteins are 

encoded by mRNAs which positively correlate across human tissues, and both proteins are 

strongly associated with oncogenesis.

DISCUSSION

Protein mass spectrometry is quickly becoming a staple technology in academic 

laboratories. The rapidly decreasing instrumentation costs, often pre-packaged and 

streamlined bioinformatic pipelines and enhanced mass accuracy and scan speeds are no 

doubt driving the recent explosion of protein mass spectrometry data. With similar advances 

in two-hybrid technologies, it is now economically feasible to pursue, and in fact achieve a 
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proteome-wide connectivity map. A key step in this endeavor, or in the comprehensive 

definition of any biomolecule—whether that be genomics, transcriptomics, metabolomics or 

proteomics—is the computational scoring and integration of the resulting datasets.

After performing hundreds of APMS experiments directed at mapping protein connectivity 

central to various signal transduction pathways, we and others quickly found the high rate of 

false-positive identification rate limiting and exceedingly expensive. Appreciating the need 

for an accessible and accurate APMS scoring algorithm, we developed Spotlite as a new 

computational tool capable of revealing true interactions from the contaminants within 

APMS data. Importantly, we deployed Spotlite through a web-based application which 

provides open access and full transparency to any interested scientist. The inclusion of 

indirect data as features within Spotlite’s Random Forest classification not only provides 

4.35% increased prediction accuracy but also yields valuable information regarding shared 

biological function, phenotype and disease relationships among protein pairs.

Given the success of established scoring approaches employed by CompPASS, HGSCore 

and SAINT, we initially set out to define their relative performance on various APMS 

datasets, and by doing so to identify the most accurate approach for implementation within a 

classification scheme. However, our analyses revealed valuable complementarity between 

the algorithms, which appeared partially dependent upon the network architecture of the 

analyzed APMS dataset. As such, we found greatest success by providing the Random 

Forest classifier with both CompPASS and HGSCore; given its relatively slow computation 

speed, inclusion of SAINT was not feasible for a web-based application. Though Spotlite’s 

performance shows a marked improvement over existing methods, its success is governed 

by the small number of known protein interactions (positive dataset), the lack of validated 

non-interactions (negative dataset), and mislabeled instances used during training. 

Furthermore, many indirect features lacked high coverage, resulting in missing values. 

While these limitations may place a ceiling on current performance, data will continue to 

pour in and fill the gaps. We expect Spotlite to improve over time due to increased feature 

coverage, and re-training of the classifier as larger interaction networks become available.

A critical aspect of any supervised learning approach is the selection of a gold standard 

dataset containing accurately labeled examples that are representative of the future data to be 

classified. While many protein-protein interactions are annotated, proteins known not to 

interact are rare—the Negatome being the sole available resource and of prohibitively small 

size (47). In addition to our approach of using known interactions contained in the APMS 

data as our positive class and random samples from the APMS unknown interactions as the 

negative, we explored alternative strategies for defining our training set, namely the 

common practice for protein-protein interaction prediction of using all known interactions 

and a random sample for the noninteracting class. Classifiers were trained by including all 

known interactions, with missing values for the HGSCore and CompPASS, and also by 

including both known and randomly sampled unknowns, neither of which were able to 

match the accuracy of training on APMS interactions alone. A possible reason for this is a 

deemphasized role of the APMS scoring methods. It is also important to note that as we are 

predicting co-complexed proteins, our set of known interactions included both direct and co-

complexed interactions.
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Presently, Spotlite supports human APMS data exclusively; however, it can be extended to 

other species by compiling the data for their features. Aside from analyzing another species’ 

data using the current workflow, we envision the possibility of using APMS from multiple 

species to improve predictions through homologous interactions, which is already a 

powerful feature in our implementation. Along these lines, merging datasets from various 

laboratories has the potential to further increase accuracy. While this is currently an optional 

feature within Spotlite, it should be done with great care as contaminants will vary due to 

differences in cell lines, mass spectrometers and protocols, leading to improperly high 

CompPASS and HGSCore values for mutually exclusive contaminants which now appear 

more unique. This combined analysis of datasets is an area of future research.

A major focus of our research focuses on the development of proteomic and functional 

genomic technologies to define the mechanics and disease contribution of the KEAP1. The 

KEAP1 protein functions as a CUL3-based E3 ubiquitin ligase, most well-known for its 

ubiquitination of the NFE2L2 transcription factor (48–50). Recently, somatic inactivating 

mutations in KEAP1 have been reported in a variety of solid human tumors, particularly in 

lung cancer (51–59). The leading model posits that KEAP1 inactivation results in 

constitutive NFE2L2 transcriptional activation of antioxidant and pro-survival genes (60, 

61). APMS analysis of KEAP1 followed by Spotlite scoring and a 10% FDR filter revealed 

35 associated proteins. Of the eight proteins validated to reside within KEAP1 protein 

complexes by IP/Western blot, the indirect data—as visualized through the Spotlite web 

application—drew attention to the KEAP1-MAD2L1 protein association. Specifically, the 

MAD2L1 protein is known to function pivotally within the spindle assembly checkpoint 

complex, which holds cells in metaphase until chromosome-spindle attachment is complete 

(62–64). Like KEAP1, MAD2L1 is strongly associated with cancer; its over-expression 

drives chromosomal instability and aneuploidy (65, 66). MAD2L2 is also known to be 

ubiquitinated, although the E3 ubiquitin ligase is unknown (67, 68). An intriguing possibility 

is that KEAP1 ubiquitinates MAD2L1 to control its activity and/or stability. Within cancer 

systems, somatic mutation of KEAP1 may coincide with elevated MAD2L1 activity, thus 

driving aneuploidy.

In conclusion, we have provided a user-friendly web application for predicting complex co-

membership from APMS data. This web application employs a novel, Random Forest 

classifier that integrates existing, proven APMS scoring approaches, gene co-expression 

patterns, functional annotations, phenotypic observations, protein domains, and homologous 

interactions, which we have shown outperforms existing APMS scoring methods.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Comparison of accepted interactions using various APMS scoring methods
Venn diagrams show sets of previously established interactions using a 5% false positive 

rate threshold for each scoring method. The counts of known interactions are in bold and the 

counts of false or unknown interactions are in parentheses. Areas are proportional to the 

total number of interactions within their respective subsets.
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Figure 2. Random Forest cross-validation and comparison
Receiver operating characteristic curves for each dataset. Values in parentheses represent 

partial area indexes.
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Figure 3. Schematic of Spotlite workflow
Dashed lines represent optional paths selected by the user. Upon uploading a new dataset, 

the user can choose to retrieve public APMS data of the same affinity purification technique 

before calculating scores for CompPASS and the HGSCore.
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Figure 4. Spotlite application to KEAP1 APMS
(A) The unfiltered spoke model network of KEAP1 represents 534 nodes. Nodes were sized 

by total spectral counts, as indicated within the key. Green nodes represent proteins reported 

in BioGRID to form complexes with KEAP1. (B) Spotlite filtered spoke model network 

using a false discovery rate threshold of 10%. Eight unlabeled nodes represent possible 

contaminants. (C) FLAG affinity purified protein complexes from HEK293T cells stably 

expressing FLAG-GFP or FLAG-KEAP1 were analysed by Western blot for the indicated 

endogenously expressed proteins.
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Figure 5. Screenshots of Spotlite visualization for KEAP1-MAD2L1 data
Column headers on the main results screen are the following: Spotlite score (Classifier), 

HGSCore (HGS), CompPASS, gene ontologies for biological process (BP) and cellular 

component (CC), gene co-expression for seven species (CXP), domain-domain binding 

score (Domain), number of homologous interactions (Homo int), shared phenotypes (phen), 

shared human diseases (Disease) and whether the proteins have previously been shown to 

interact (Known?; H=high throughput, L=low throughput). Transparency is provided 

through a series of user-triggered pop-up windows which details the information used to 

generate the Spotlite feature score.
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Table II

Feature importances for Random Forest classifier

Feature Typea Database Coverageb Training Coveragec Gini Importanced

HGSCore Direct 11.79% 100.00% 1.88

CompPASS Direct 11.79% 100.00% 1.54

Human co-expression Indirect 69.29% 92.92% 1.37

Chicken co-expression Indirect 11.89% 22.33% 1.25

Fish co-expression Indirect 4.51% 17.11% 1.24

Fly co-expression Indirect 2.20% 9.85% 1.18

Mouse co-expression Indirect 29.31% 47.77% 1.13

Worm co-expression Indirect 1.36% 5.48% 1.09

Rat co-expression Indirect 13.63% 26.50% 1.08

Disease ontology Functional 3.98% 11.69% 1.02

Mouse phenotype ontology Functional 8.53% 20.75% 0.95

Human phenotype ontology Functional 0.80% 1.91% 0.93

Biological process GO Functional 48.66% 84.33% 0.81

Homologous interactions Sequence 85.86% 99.53% 0.77

Cellular localization GO Functional 61.69% 86.02% 0.71

Domain-domain binding affinity Sequence 70.32% 88.33% 0.05

a
Classification of the type of evidence a feature represents with respect to co-complexed proteins.

b
Percentage of all potentially co-complexed pairs of genes within the Spotlite database containing values for a feature. HGSCore and CompPASS 

coverages represent the percentage of bait-prey interactions tested, including preys with 0 spectra. Ontology coverages computed by taking the 
percentage of gene pairs in which both genes have ≥ 1 annotation. Homologous interactions coverage - both genes must have a known homolog in 
the same species. Domain-domain binding affinity coverage - both genes must contain a known domain.

c
Coverages calculated identically to b - restricted to the training dataset.

d
Feature importance measure computed by Random Forests.
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