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Abstract
Cross-validation is frequently used for model selection in a variety of applications. However, it is
difficult to apply cross-validation to mixed effects models (including nonlinear mixed effects
models or NLME models) due to the fact that cross-validation requires “out-of-sample”
predictions of the outcome variable, which cannot be easily calculated when random effects are
present. We describe two novel variants of cross-validation that can be applied to nonlinear mixed
effects models. One variant, where out-of-sample predictions are based on post hoc estimates of
the random effects, can be used to select the overall structural model. Another variant, where
cross-validation seeks to minimize the estimated random effects rather than the estimated
residuals, can be used to select covariates to include in the model. We show that these methods
produce accurate results in a variety of simulated data sets and apply them to two publicly
available population pharmacokinetic data sets.
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1 Introduction
1.1 Overview of Population Pharmacokinetic and Pharmacodynamic Modeling

Population pharmacokinetic and pharmacodynamic (PK/PD) modeling is the
characterization of the distribution of probable PK/PD outcomes (parameters,
concentrations, responses, etc) in a population of interest. These models consist of fixed and
random effects. The fixed effects describe the relationship between explanatory variables
(such as age, body weight, or gender) and pharmacokinetic outcomes (such as the
concentration of a drug). The random effects quantify variation in PK/PD outcomes from
individual to individual.

Population PK/PD models are hierarchical. There is a model for the individual, a model for
the population, and a model for the residual error. The individual PK model typically
consists of a compartmental model of the curve of drug concentrations over time. The
pharmacokinetic compartmental model is similar to a black box engineering model. Each of
the compartments is like a black box, where a system of differential equations is derived
based on the law of conservation of mass (Sandler, 2006). The number of such
compartments to include in the model must be determined based on the data.

The equations for the PK/PD parameters represent the model for the population in the
hierarchy of models. The PK/PD parameters are modeled with regression equations
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containing fixed effects, covariates, and random effects (denoted by η’s). The random
effects account for the variability across subjects in the parameters and for anything left out
of the parameter equations (such as a covariate not included). The vector of random effects
(η) is assumed to follow a multivariate normal distribution with mean 0 and variance-
covariance matrix Ω. The matrix Ω may be diagonal, full block, or block diagonal. The
model for the residual error (ε) accounts for any deviation from the model in the data not
absorbed by the other random effects. The residual error model may be specified such that
measurements with higher values are given less importance compared with measurements
with smaller values, often referred to as “weighting”.

Hence, population PK/PD models are non-linear mixed effects (NLME) models. They are
represented by differential equations that may or may not have closed-form solutions, and
are solved either analytically or numerically. The parameters are estimated using one of the
various algorithms available such as first order conditional estimation with interaction
(FOCEI). See Wang (2007) for a mathematical description of these algorithms.

Once model parameters are estimated using an algorithm such as FOCEI, one may fix the
values of the model estimates and perform a post hoc calculation to obtain random effect
values (η’s) for each subject. Thus, one may fit a model to a subset of the data and obtain
random effect values for the full data set. See Wang (2007) for a discussion of how these
posterior Bayes (post hoc) estimates of the η’s are calculated.

1.2 Cross-Validation and Nonlinear Mixed Effects Modeling
In general, cross-validation is not frequently used for evaluating nonlinear mixed effects
(NLME) models (Brendel et al, 2007). When cross-validation is applied to NLME models, it
is generally used to evaluate the predictive performance of a model that was selected using
other methods. For example, in Bailey et al (1996), data were pooled across subjects to fit a
model as though the data were obtained from a single subject. Subjects were removed one at
a time, and the accuracy of the predicted observations with subsets of the data was assessed.
Another approach (Hooker et al, 2008) removed subjects one at a time to estimate model
parameters and predicted PK parameters using the covariate values for the subject removed.
The parameters were compared with the PK parameters obtained using the full data set in
order to evaluate the final model and identify influential individuals. See Mulla et al (2003),
Kerbusch et al (2001), and Rajagopalan and Gastonguay (2003) for additional examples
where cross-validation was used to validate NLME models.

Less frequently cross-validation is used for model selection in NLME modeling. For
example, one may wish to compare a model with a covariate to another model without the
covariate. In Ralph et al (2006), the prediction error of the posterior PK parameter for each
subject was calculated, and a paired t-test was performed to compare the prediction error
between a base and full model to assess whether differences between the models were
significant. The full model was only found to be correct when the effect of the covariate was
large.

In several published studies, cross-validation failed to identify covariate effects that were
identified using other methods. As noted earlier, Ralph et al (2006) found that cross-
validation only identified covariate effects when the effect was large. Similarly, Zomorodi et
al (1998) found that cross-validation tended to favor a base model (without a covariate)
despite the fact that the covariate was found to be significant using alternative approaches.
Fiset et al (1995) also found that models with and without covariates tended to produce
comparable error rates despite the fact that likelihood-based approaches favored models that
included covariates. Indeed, Wahlby et al (2001) used a special form of cross-validation
where one concentration data point was chosen for each parameter, which was the point at
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which the parameter was most sensitive based on partial derivatives. Once again, little
difference was observed between models that included covariates and corresponding models
without covariates. Thus, cross-validation can fail to detect covariate effects even when
attention is restricted to a subset of the data that should be most sensitive to model
misspecification.

Despite the fact that cross-validation may fail to detect covariate effects, it has been
successfully used to compare models with structural differences, such as a parallel
Michaelis-Menten and first-order elimination (MM+FO) model and a Michaelis-Menten
(MM) model (Valodia et al, 2000). This indicates that cross-validation can be used for
model selection in NLME modeling under certain circumstances. Moreover, the fact that
cross-validation often fails to detect covariate effects is not surprising. When covariate
effects are present in an underlying NLME model, a misspecified model that fails to include
a covariate may not significantly decrease the predictive accuracy of the model. This can
occur when random effects in the pharmacokinetic parameters can compensate for the
missing covariate. Thus, if cross-validation chooses the model with the lowest out-of-sample
prediction error, it may not be able to determine whether a covariate should be included in
the model.

Other methods have been proposed for using cross-validation for model selection in NLME
modeling (Ribbing and Jonsson, 2001; Katsube et al, 2011). However, these methods rely on
estimation of the likelihood function, which is unusual for cross-validation, and they have
not been studied extensively.

Thus, we propose an alternative form of cross-validation for covariate model selection in
NLME modeling. Rather than choosing a model which minimizes the out-of-sample
prediction error, we choose a model which minimizes the post hoc estimates of the random
effects (η’s). The motivation is that if the η’s are large, this suggests that there is a large
amount of unexplained variation from individual to individual, which indicates that a
covariate may be missing from the model. However, traditional cross-validation (which
minimizes the out-of-sample prediction error) is still useful for comparing structural models,
as we will discuss below.

2 Methods
2.1 Cross-Validation

Cross-validation is a method for evaluating the expected accuracy of a predictive model.
Suppose we have a response variable Y and a predictor variable X and we seek to estimate

Y based on X. Using the observed X’s and Y’s we may estimate a function  such that our

estimated value of Y (which we call ) is equal to . Cross-validation is an estimate of

the expected loss function for estimating Y based on . If we use squared error loss (as is

conventional in NLME modeling), then cross-validation is an estimate of .

A brief explanation of cross-validation is as follows: First, the data is divided into K
partitions of roughly equal size. For the kth partition, a model is fit to predict Y based on X
using the K − 1 other partitions of the data. (Note that the kth partition is not used to fit the
model.) Then the model is used to predict Y based on X for the data in the kth partition. This
process is repeated for k = 1,2, …,K, and the K estimates of prediction error are combined.

Formally, let  be the estimated value of f when the kth partition is removed, and suppose
the indices of the observations in the kth partition are contained in Kk. Then the cross-
validation estimate of the expected prediction error is equal to
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Here n denotes the number of observations in the data set. For a more detailed discussion of
cross-validation, see Hastie et al (2008).

The above procedure is known as k-fold cross-validation. Leave-one-out cross validation is
a special case of k-fold cross-validation where k is equal to the number of observations in
the original data set.

2.2 Comparing covariate models
In some situations, a researcher may want to compare models with and without covariate
effects, such as a model with an age effect on clearance versus a model without an age effect
on clearance. This method is designed to detect differences in models that affect the
equations for the parameters.

Consider a data set with subjects i = 1,2,…,n. Each subject has observations yij for j = 1,2,
…,ti (where ti is the number of time points or discrete values of the independent variable for
which there are observations for subject i). The question of interest is whether or not a fixed
effect dPdX for a covariate X should be included in an equation for a parameter P, having
fixed effect tvP and random effect ηP. The equation for P could have any of the typical
forms used in NLME modeling. For example, one could compare a model with a covariate
X

(1)

to a model having no covariate effect

(2)

If a covariate X has an effect on a parameter P, the unexplained error in P (modeled by ηP)
when X is left out of the model tends to have higher variance. By including covariate X in
the model, we wish to reduce the unexplained error in P, which is represented by ηP.
Therefore, metrics involving ηP are useful for determining whether a covariate X is needed.
Specifically, one can perform cross-validation to compare the predicted ηP’s when X is
included or not included in the model. We propose a statistic for determining whether a
covariate, X, is needed for explaining variability in a parameter, P, when P is modeled with
a random effect ηP. The statistic can be calculated as follows:

For i = 1 to n:

1. Remove subject i from the data set.

2. Fit a mixed effects model to the subset of the data with subject i removed.

3. Accept all parameter estimates from this model, and freeze the parameters to those
values.

4. Fit the same model to the whole data set, without any major iterations, estimating
only the post hoc values of the random effects. (In NONMEM, use the commands
MAXITER=0, POSTHOC=Y. In NLME, set NITER to 0.)
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5. Square the post hoc eta estimate for the subject that was left out for the parameter
of interest

Take the average of the quantity in step 5 over all subjects.

This sequence of steps can also be represented by the equation

(3)

where  is the post hoc estimate of the random effect for the ith subject for parameter P in
a model where the ith subject was removed, and n is the number of subjects. Note that our
method leaves out one subject at a time, rather than one observation at a time.

In general, one will favor the model with the minimum value of CrVη. However, to avoid
over-fitting, it is common when applying cross-validation to choose the most parsimonious
model (i.e. the model with the fewest covariates) that is within one standard error (SE) of the
model with minimum CrVη (Hastie et al, 2008). We will follow this convention in all of our
subsequent examples. We define SE(CrVη) as the sample standard deviation of the squared
post hoc etas for the subjects left out divided by the square root of the number of subjects.
The formula for SE(CrVη) is given by

(4)

where

(5)

Alternatively, one may follow the same procedure while removing more than one subject at
a time. For example, one may divide the data into k roughly equally-sized partitions, fit a
model using the data in k − 1 of the partitions, and calculate the post hoc η values for the
subjects left out of the model. For data sets with large numbers of subjects, this approach is
obviously faster than the “leave-one-out” approach, and it may also reduce the amount of
variance in the cross-validation estimates (Hastie et al, 2008). However, this approach may
not be practical if the number of subjects is small. We will only consider the leave-one-out
method in our subsequent analysis.

2.3 Comparing models with major structural differences
In other situations, a researcher may want to compare models with major structural
differences, such as a one compartment model and a two compartment model. This method
is designed to detect differences in models that affect the overall shape of the response.

As discussed previously, consider a data set with subjects i = 1,2,…,n, where each subject
has observations yij for j = 1,2,…,ti. The statistic can be calculated as follows:

For i = 1 to n:

1. Remove subject i from the data set.

2. Fit a mixed effects model to the subset of the data with subject i removed.
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3. Accept all parameter estimates from this model, and freeze the parameters to those
values.

4. Fit the same model to the whole data set, without any major iterations, estimating
only the post hoc values of the random effects. (In NONMEM, use the commands
MAXITER=0, POSTHOC=Y. In NLME, set NITER to 0.)

5. Calculate predicted values for subject i (the subject that was left out). Note that this
estimate uses the post hoc estimate of the random effects for subject i.

6. Take the average of the squared individual residuals for the subject that was left out
(over all time points or over all values of the independent variable ti)

Take the average of the quantity in step 6 over all subjects.

This sequence of steps can also be represented by the equation

(6)

where yij is the observed value for the ith subject at the jth time point or independent
variable value and  is the predicted value for the ith subject at the jth time point or
independent variable value in a model where subject i is left out and post hocs are obtained.
Once again, note that our method leaves out one subject at a time, rather than one
observation at a time.

For purposes of exploration, another statistic that takes into account the weighting of the
response can also be calculated:

(7)

Here WTIRESij,−i is the individual weighted residual for subject i at time or independent
variable value j in a model where subject i is left out and post hocs are obtained, which is
defined to be:

(8)

where wtij,−i is the weight defined by the residual error model (equal to the squared

reciprocal of  for constant CV error models or 1 for additive error models), and  is
the estimated residual variance.

As discussed previously, we will follow the convention of choosing the most parsimonious
model (defined to the model with the fewest number of compartments) within one standard
error (SE) of the model with the minimum CrVy. The formula for SE(CrVy) is given by

(9)

where

Colby and Bair Page 6

J Pharmacokinet Pharmacodyn. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(10)

and the formula for SE(wtCrVy) is calculated similarly, with

(11)

One may also consider k-fold cross-validation, although we will restrict our attention to
leave-one-out for our subsequent analysis.

This method is similar to existing methods for cross-validation on NLME models. However,
some applications of cross-validation do not use post hoc estimates of the outcome variable,
which is an important difference from our proposed method. Also, we will show why this
method should not be used for comparing covariate models.

2.4 Simulated Data Analysis
Five sets of simulated data were generated to evaluate the performance of our proposed
cross-validation methods. In each simulation scenario, two models were compared: a sparser
“base model” and a less parsimonious “full model.” The objective was to determine which
of the two possible models was correct using cross-validation.

A brief description of the five simulation scenarios is given in Table 1. For a more detailed
description of how the simulated data sets were calculated, see Section S1 in Online
Resource 1. For simulation scenarios 1-4, 200 simulated data sets were generated using
Pharsight’s Trial Simulator software version 2.2.1. (Only 100 simulated data sets were
generated for scenario 5.) For each simulated data set, Pharsight’s Phoenix NLME (platform
version 1.3) was used to fit the appropriate population PK models (both the base model and
the full model) using the Lindstrom-Bates method (Lindstrom and Bates, 1990). The η
shrinkage of each model was calculated and diagnostics were performed to verify the
convergence of each model. To calculate the cross-validation statistics for each simulated
data set, subjects were removed from the data set one at a time and the models were
recalculated with each subject removed. Post hoc estimates of the random effects (and
corresponding predicted values of y) were then calculated for the subject that was excluded
from the model. The values of CrVη, CrVy, and wtCrVy were obtained by averaging over
each such model. The simulated data sets, batch files, Phoenix mdl files, and other files used
to process the output are available from the authors by request.

For each simulated data set, the base model was selected if the value of CrVη for the base
model was less than that of the full model. The full model was selected if the value of CrVη
was less than that of the base model plus one standard error (using the convention that the
more parsimonious model is preferable if its cross-validation error is within one standard
error of the cross-validation error of a less parsimonious model). Similar decision rules were
used for CrVy and wtCrVy. The Akaike’s insformation criterion (AIC) (Akaike, 1974) and
Bayesian information criterion (BIC) (Schwarz, 1978) were also calculated for the two
models for each simulated data set. The model (base or full) with the smallest AIC/BIC was
selected under the two criteria. For each scenario, the performance of cross-validation was
compared to the performance of AIC/BIC using a two-sample proportion test.
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Note: Consistent with the recommendations of Vonesh and Chinchilli (1997), the BIC was
weighted by the number of observations. Although others have suggested that the BIC
should be weighted by the number of subjects (Kass and Raftery, 1995), one recent
simulation study found that neither choice of weight consistently outperforms the other
when applied to mixed models (Gurka, 2006).

2.5 Indomethacin Data Analysis
Pharsights Phoenix NLME (version 1.3) was used to fit models to a previously published
indomethacin data set (Kwan et al, 1976). The data consists of six subjects with 11
observations per subject. Each subject was administered a 25 mg dose of indomethacin
intravenously at the beginning of the study, and the concentration of indomethacin was
measured at 11 time points over an eight-hour period.

The concentrations were plotted versus time for each subject (see Figure 1). Based on the
plot, a two compartment IV bolus model with clearance parametrization and a proportional
residual error model was fit to this data set. See Section S3.1 in Online Resource 1 for a
more detailed description of the model. Individual initial estimates were obtained using the
curve stripping method (Gibaldi and Perrier, 1982) with a WinNonlin Classic model. The
averages of the individual PK parameters were used as initial estimates for the pop PK
model. Random effects were added to the PK parameters for systemic volume and clearance
in the form θP * exp(ηP), where P is the parameter of interest. The Phoenix project file used
to fit this model is available from the authors by request.

After fitting the model, a series of diagnostic plots were generated to assess the validity of
the model. (See Section S3.2 in Online Resource 1 for details.) The model was then
compared to a one compartment model based on both CrVy and a likelihood ratio test
(LRT). First, the model was refit without including any random effects on the PK
parameters. (The LRT cannot be used when the random effects are included in this case
since the one compartment model forces the removal of some random effects, which implies
that these random effects have variances of 0. Thus, comparing the two models would
require testing the null hypothesis that a variance is equal to 0, which is on the boundary of
the parameter space, rendering the LRT invalid. See Fitzmaurice et al (2011) for details.).
The LRT was used to test the null hypothesis of no difference in the predictive accuracy of
the two compartment model versus the one compartment model. The value of CrVy was also
calculated for both models. Finally, the value of CrVy was calculated for a one compartment
and two compartment version of the original model (with random effects included). See
Section S3.1 in Online Resource 1 for a detailed description of the models that were
considered.

2.6 Theophylline Data Analysis
Pharsights Phoenix NLME (version 1.3) was used to fit models to a published theophylline
data set (Boeckmann et al, 1992). This theophylline data set consists of twelve subjects with
eleven observations per subject. Each subject was administered a dose of theophylline at the
beginning of the study ranging between 3.1 mg/kg and 5.86 mg/kg. The concentration of
theophylline was measured at 11 time points per subject over a 24 hour period. Each
subject’s weight was also recorded.

The concentration were plotted versus time for each subject (see Figure 2). Based on the
plot, a one compartment extravascular model with clearance parametrization and an additive
residual error model was fit to this data set. Random effects were added to the PK
parameters for absorption rate, and systemic volume and clearance in the form θ P exp(ηP),
where P is the parameter of interest. See Section S3.1 in Online Resource 1 for a more
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detailed description of the model. The Phoenix project file used to fit this model is available
from the authors by request.

The LRT and the CrVy statistic were used to compare a model with a time lag parameter
(Tlag) to a model without a Tlag parameter, (with no random effect on the Tlag parameter).
Moreover, the covariate plots for the model with Tlag seemed to indicate a body weight
effect on Ka might be needed (see Figure 3). Thus, the LRT and the CrVη statistic were used
to compare a model with the Tlag parameter and body weight effect on Ka to the model with
the Tlag parameter and no body weight covariate.

3 Results
3.1 Simulation Results

The results of the simulations are summarized in Table 2. The CrVη statistic was correct in
97.0 percent of the 200 cases under scenario 1, whereas AIC was correct in 88.5 percent of
cases and BIC was correct in 94.5 percent of cases. It correctly identified the full model
under scenario 2 in 92.5 percent of the 200 cases, whereas AIC found the correct model in
98.5 percent of cases and BIC found the correct model in 93 percent of cases. Under
scenario 3, CrVη was correct in 93.0 percent of cases, whereas AIC and BIC were correct in
97.5 and 94.0 percent of cases, respectively. Under scenario 4, CrVη was correct in 97.0
percent of cases, whereas AIC and BIC were correct in 71.5 and 64.0 percent of cases,
respectively. CrVη was significantly more likely to identify the correct model than AIC in
scenario 1 (p = 0.002) and it was significantly more likely to identify the correct model than
both AIC and BIC in scenario 4 (p < 0.0001 in both cases). The performance of CrVy and
wtCrVy was also evaluated for scenarios 1-4, but it performed poorly in each case with the
exception of scenario 1. All four applicable methods (AIC, BIC, CrVy, and wtCrVy)
correctly identified the true model under scenario 5 in 100 out of 100 cases.

Some additional information about the distributions of the various test selection statistics are
contained in Tables S1, S2, S3, and S4 in Section S1 in Online Resource 1. In general the
mean values of AIC and BIC are lower in the true models (compared to the misspecified
values) and the mean value of CrVη is significantly lower in the true models. This is not true
for CrVy and wtCrVy in scenarios 1-4; both statistics tend to be smaller for the base model
irrespective of which model is correct (which explains the poor performance of these
statistics in scenarios 2-4). It is also note-worthy that an outlying observation generated an
extreme value for wtCrVy for one simulated data set in scenario 3.

Boxplots of the η shrinkage values for both models under scenarios 1-4 are shown in Figure
S6 in Online Resource 1. (The η shrinkage values were not calculated for scenario 5 since
CrVη was not used in this scenario.) The models converged for all simulated data sets with
the exception of two instances of scenario 5 (although some instances of all five simulated
scenarios produced models that showed signs of numerical instability).

3.2 Indomethacin Example
The final model appeared to fit well based on the diagnostic plots (see Figures S7, S8, S9 in
Online Resource 1). The model coefficients and shrinkage estimates are shown in Tables S5
and S6 in Online Resource 1.

The LRT favored the two compartment model (with no random effects) over the
corresponding one compartment model (p < 0.0001). The CrVy statistic was in agreement
with the LRT, having a value of 0.1419 (SE 0.03393) for the one compartment model, and
0.0428 (SE 0.01355) for the two compartment model. The CrVy statistic in the model with
random effects also favored the full (two compartment) model over the base (one
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compartment) model. The value of CrVy for the full model was 0.01679 (SE 0.004194) and
0.1406 (SE 0.03358) for the base model.

3.3 Theophylline Example
The final model appeared to fit well based on the diagnostic plots (see Figures S10, S11,
S12 in Online Resource 1). The model coefficients and shrinkage estimates are shown in
Tables S7 and S8 in Online Resource 1.

The LRT favored the Tlag model (p < 0.0001). The CrVy statistic was in agreement with the
LRT, having a value of 0.2546 (SE 0.05727) for the model with Tlag, and 0.3927 (SE
0.10001) for the model without Tlag. The LRT had a borderline result (p = 0.0667) for
comparing the model with a body weight effect on Ka and Tlag to the model without a body
weight effect on Ka and Tlag, while the η versus covariate plot (Fig 3) indicated an effect.
The CrVη statistic clearly favored the full model with a Tlag and a weight effect on Ka,
having a value of 0.06220 (SE 0.02942) for the full (Tlag and wt) model, and 0.7819 (SE
0.2846) for the base (Tlag) model.

4 Discussion
As noted earlier, cross-validation is not frequently used for comparing NLME models
(Brendel et al, 2007). Other methods, such as the LRT, AIC, and BIC are more commonly
used. However, each of these alternative approaches have certain drawbacks. All three
methods can only be applied to models having the same residual error model. The LRT can
only be applied when models are nested and both models have the same random effects.
Moreover, there may be an inflated type I error rate associated with the LRTs (Bertrand et
al, 2009). Both the AIC and BIC have other shortcomings as well. Specifically, the AIC
tends to overfit, meaning that it keeps too many covariates in the model. The BIC, in
contrast, tends to underfit (fail to include significant covariates), particularly when the same
size is small (Hastie et al, 2008).

Our results show that cross-validation can be used for model selection in NLME modeling
and that it can produce significantly better results than these competing methods. The CrVη
statistic identified the correct model at least 92.5% of the time in each of the simulated
examples we considered. In contrast, the AIC was significantly more likely to select a
covariate for age in our first simulation scenario (even though age had no effect on clearance
in the simulated model), and both the AIC and BIC were significantly less likely to detect
the effect of hepatic impairment in our fourth simulation scenario.

All four applicable methods (AIC, BIC, CrVy, and wtCrVy) correctly identified the true (two
compartment) in our fifth simulation scenario in 100 out of 100 cases. This finding is of
interest because the standard likelihood ratio test cannot be applied when there are random
effects in the full model that are not present in the base model.

Both the CrVy statistic and the LRT favored a two compartment model in the indomethacin
example. However, in the theophylline example, the population covariate plots (η’s versus
covariates) seemed to suggest a weight covariate should be included in the model even
though the LRT was not significant at the p < 0.05 level. The CrVη statistic clearly favored
the model with the weight covariate. This is consistent with previous studies showing that
theophylline distributes poorly into body fat. Hence, the administered mg/kg dose should be
calculated on the basis of ideal body weight, (Gal et al, 1978; Rohrbaugh et al, 1982)
implying that body weight affects the extent of absorption. This is possible evidence that the
LRT cannot always identify covariate effects when they exist and that cross-validation may
be able to detect covariate effects in these situations.
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Although it may seem reasonable to use the CrVy or wtCrVy statistics to determine if a
covariate should be included in a model, our simulations suggest that they can give
misleading results. Both statistics consistently favored models without a covariate even
when a covariate effect existed. The predicted values are just as accurate with and without
the covariate effect when the true model has a covariate effect, because the η’s can
compensate for a missing covariate in a parameter. This suggests that one should use CrVη
rather than CrVy or wtCrVy in situations when one wishes to compare different covariate
models. This also indicates that it may be misleading to use cross-validation for model
validation (as opposed to model selection) if one uses post hoc estimates of the η’s when
calculating the predicted value of the response on the “left out” portion of the data. One may
obtain a low cross-validation error rate even when the model is misspecified.

One possible drawback to using cross-validation for model selection is the fact that it is
more computationally intensive than the LRT, AIC, or BIC. Leave-one-out cross-validation
was applied in each of the examples in the present study, since each example consisted of
relatively small data sets. However, larger data sets may require 1-2 hours (or as many as 10
hours in extreme cases), to fit a single model. If such a data set included hundreds of
subjects, leave-one-out cross-validation would clearly be computationally intractible. In
such situations, one may reduce the computing time by reducing the number of cross-
validation folds. If 10-fold cross-validation is performed, this requires that the model be
fitted only 10 times, and the number of folds could be reduced further if needed. Even a
complicated model that required ten hours to fit could be evaluated over the course of
several days using 5-fold cross-validation. Indeed, these cross-validation methods are no
more computationally intensive than bootstrapping, which is commonly used to validate
NLME models. The extra computational cost may be worthwhile in situations where it is
important that the model is specified correctly.

Another potential issue with cross-validation is the fact that estimation methods for NLME
models sometimes fail to converge. Although this was not a major issue in the examples we
considered, if the model fails to converge for a significant proportion of the cross-validation
folds, it is possible that it will produce inaccurate results. Further research is needed on the
effects of lack of convergence on our proposed cross-validation methods.

These methods might be applied more generally with modifications to other types of linear
mixed effects models or generalized linear mixed effects models. These methods may be
applied without modification to population PK/PD models and sparser data. These are areas
for future research. We expect in the sparse data case that the effectiveness of the covariate
selection method may be compromised by η shrinkage, which could distort the η size
criterion. The covariate selection method introduced in this paper may not produce correct
results for parameters with high η shrinkage (greater than 0.3, for example, in a model
where the covariate is not included). The random effects for those parameters are typically
removed during model development, and hence covariate adjustments may not be needed for
those parameters. However, cross-validation produced correct results in our first simulation
scenario even though the median shrinkage was approximately 0.3 in the base model (Figure
S6 in Online Resource 1). The conditions under which our proposed cross-validation method
produces valid results in sparse data sets is another area for future research.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Concentration versus time profiles from the indomethacin data set
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Fig. 2.
Concentration versus time profiles from the theophylline data set
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Fig. 3.
η versus covariate plots for the theophylline model with Tlag and no weight effect on Ka
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Table 1

Description of the five simulation scenarios

Scen. True Model Base Model Full Model

1 one compartment, no co-
variate effects

one compartment, no co-
variate effects

one compartment, age ef-
fect on clearance

2 one compartment, age ef-
fect on clearance

one compartment, no co--
variate effects

one compartment, age ef-
fect on clearance

3 two compartments, age ef-
fect on clearance

two compartments, no co-
variate effects

two compartments, age ef-
fect on clearance

4 one compartment, body
weight effect on volume,
body weight, age, gender,
and hepatic impairment ef-
fects on clearance

one compartment, body
weight effect on volume,
body weight, age, and gen-
der effects on clearance

one compartment, body
weight effect on volume,
body weight, age, gender,
and hepatic impairment ef-
fects on clearance

5 two compartments, no co-
variate effects

one compartment, no co-
variate effects

two compartments, no co-
variate effects
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