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Abstract

Drug-induced cholestasis is an important form of acquired liver disease and is associated with 

significant morbidity and mortality. Bile acids are key signaling molecules, but they can exert 

toxic responses when they accumulate in hepatocytes. This review focuses on the physiological 

mechanisms of drug-induced cholestasis associated with altered bile acid homeostasis due to 

direct (e.g. bile acid transporter inhibition) or indirect (e.g. activation of nuclear receptors, altered 

function/expression of bile acid transporters) processes. Mechanistic information about the effects 

of a drug on bile acid homeostasis is important when evaluating the cholestatic potential of a 

compound, but experimental data often are not available. The relationship between 

physicochemical properties, pharmacokinetic parameters, and inhibition of the bile salt export 

pump (BSEP) among seventy-seven cholestatic drugs with different pathophysiological 

mechanisms of cholestasis (i.e. impaired formation of bile vs. physical obstruction of bile flow) 

was investigated. The utility of in silico models to obtain mechanistic information about the 

impact of compounds on bile acid homeostasis to aid in predicting the cholestatic potential of 

drugs is highlighted.
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INTRODUCTION

The liver is the major organ responsible for the metabolism and excretion of endogenous 

and exogenous compounds, including drugs. The liver is predisposed to drug toxicity 

because of its anatomical location and the expression of uptake transporters that facilitate 

accumulation of drugs in hepatocytes. Drug-induced liver injury (DILI) is the most common 

cause of acute liver failure, 1 and is one of the primary reasons for the failure of 

pharmaceutical agents during drug development. Unfortunately, current in vitro screening 

approaches or in vivo preclinical studies do not adequately predict the likelihood of DILI. 

Even Phase III clinical trials that involve a few thousand patients often fail to detect DILI. In 

some cases, instances of severe liver injury and death only were observed after drug 

approval and administration to tens or hundreds of thousands of patients. These unexpected 

findings led to blackbox warnings, or in severe cases, withdrawal of the drug from the 

market. Recent examples include troglitazone and bromfenac (withdrawn), and bosentan and 

diclofenac (blackbox warnings).

DILI is classified into hepatocellular, mixed, or cholestatic injury based on the major 

underlying mechanism.2 Among 784 DILI cases reviewed by the Swedish adverse drug 

reactions advisory committee between 1970 and 2004, almost one-half of the cases had 

either cholestatic or mixed cholestatic hepatic toxicity.3 Acute cholestatic injury comprised 

approximately 16% of all hepatic adverse drug reactions in a Danish study of 1100 DILI 

cases from 1978 to 1987.4 In the United States, drugs were responsible for approximately 

20% of cases of jaundice in the elderly population.5 However, reported reactions are thought 

to be only a small fraction of all the instances of drug-related cholestasis in the community 

because drug-induced cholestasis can present with asymptomatic disease where the only 

clinical manifestation is an elevation in liver enzymes, which often is not detected or 

reported. Therefore, the actual number of cases and medical costs associated with drug-

induced cholestasis could exceed what has either been reported or estimated. In the present 

paper, the clinical presentation and mechanisms of bile-acid mediated drug-induced 

cholestasis are reviewed. In addition, we investigated whether the physicochemical 

properties or pharmacokinetic parameters of selected drugs, or the ability of these 

compounds to inhibit BSEP, influenced the type of cholestatic liver injury (impaired bile 

formation vs. obstruction of bile flow). Furthermore, existing in silico models developed to 

predict drug effects on bile acid transporters and nuclear receptors that are involved in bile 

acid homeostasis are reviewed.

CLINICAL FEATURES OF DRUG-INDUCED CHOLESTASIS

Diagnosis

Biochemical tests (liver function tests) typically are used to define drug-induced cholestasis. 

The Council of International Organizations of Medical Sciences (CIOMS) defines 

cholestatic injury as an elevation of serum alkaline phosphatase (AP) to greater than 2x the 

upper limit of normal (ULN) combined with a major elevation of γ-glutamyl transpeptiase 

(GGT) in the presence of a normal alanine transaminase (ALT) value. Alternatively, 

cholestasis is thought to be present when there is an increase in both ALT and AP, but with 

an ALT/AP ratio of < 2. In severe cases of cholestasis, an increase in serum conjugated 
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bilirubin also is observed. Mixed hepatocellular/cholestatic injury is defined as an ALT/AP 

ratio of 2 – 5, whereas hepatocellular injury is defined as ALT > 2x ULN or ALT/AP ≥ 5.6 

An accurate diagnosis of DILI also requires careful causality assessment, interpretation of 

clinical features and laboratory tests including liver biopsy findings, if available, and the 

exclusion of other potential causes for liver injury.

Clinical Presentation

Drug-induced cholestasis may present as an acute illness that promptly diminishes after 

withdrawal of the offending drug. Drug-induced cholestasis may present with or without 

jaundice, and symptoms may occur weeks or months after the start of treatment. Nonspecific 

symptoms such as nausea, malaise, anorexia, and fatigue may be elicited due to 

parenchymal liver injury. For some drugs (e.g., amoxicillin-clavulanate, erythromycin), 

abdominal pain or discomfort has been reported.7 Chronic drug-induced cholestasis can 

result in the development of xanthomas, pruritus, and melanoderma. Symptoms often 

resolve following withdrawal of the offending drug, but in some cases, if there is significant 

loss of the interlobular bile ducts, chronic liver disease may develop and even progress to 

liver failure.8 Rarely, drugs can induce cholelithiasis (gall stones) or mimic large duct 

sclerosing cholangitis, resulting in extrahepatic obstruction.9 Drug-induced cholestasis can 

be classified into the following categories:

Acute Drug-Induced Cholestasis without Hepatitis (Bland Cholestasis)—This is 

a rare type of drug-induced cholestasis that typically is produced by estrogens or anabolic 

steroids, and manifests histologically as pure canalicular cholestasis. Bland cholestasis 

causes abnormal biliary secretions without hepatocellular damage.

Acute Drug-Induced Cholestasis with Hepatitis (Cholestatic Hepatitis)—This 

type of drug-induced cholestasis is associated with concomitant hepatic parenchymal 

damage. Cholestatic hepatitis is characterized by portal inflammation and varying degrees of 

hepatocyte injury and necrosis.

Acute Drug-Induced Cholestasis with Bile Duct Injury—This type of drug-induced 

cholestasis involves bile duct injury (ductular, cholangiolar, or cholangiolytic) but minimal 

parenchymal liver cell injury.

Chronic Drug-Induced Cholangiopathies—These drug-induced cholestatic disorders 

vary from mild, nonspecific bile duct injury (mild elevation in AP or GGT) to vanishing bile 

duct syndrome (VBDS), sclerosing cholangitis, and cholelithiasis.10

PHYSIOLOGY OF BILE ACID HOMEOSTASIS

Cholestasis may occur if there is impaired formation of bile or if there is a physical 

obstruction to the flow of bile after it has been secreted from hepatocytes. To understand the 

pathogenesis of cholestasis, it is important to understand the physiological principles 

involved in bile flow.

YANG et al. Page 3

J Pharm Sci. Author manuscript; available in PMC 2015 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Synthesis and Conjugation

Primary bile acids are synthesized from cholesterol in hepatocytes. Approximately 16 

enzymes are involved in this process; the rate limiting step is 7α-hydroxylation by 

Cytochrome P450 7A1 (CYP7A1).11,12 Chenodeoxycholic acid (CDCA) and cholic acid 

(CA) are the most common primary bile acids in humans while rodents have high levels of 

muricholic acid (MCA) and hyocholic acid (HCA). Secondary bile acids are formed by gut 

bacteria-mediated dehydroxylation of primary bile acids. The most common secondary bile 

acids include lithocholic acid (LCA) and deoxycholic acid (DCA), which are formed by 7-

dehydroxylation of CDCA and CA, respectively. Bile acids are conjugated extensively with 

glycine or taurine in the liver, and more than 98% of bile acids excreted from the liver are 

amidated. Bile acids also may undergo sulfation or glucuronidation. Conjugated bile acids 

are more water soluble and therefore, are excreted more readily into feces and urine. Bile 

acid synthesis has been comprehensively reviewed elsewhere.11,13

Hepatobiliary Transport

Bile acids undergo vectorial transport from sinusoidal blood across the basolateral 

membranes into hepatocytes, and across the canalicular membranes into bile. Bile acids are 

taken up from the sinusoidal blood into hepatocytes by the uptake transport proteins sodium 

taurocholate cotransporting polypeptide (NTCP) and organic anion transporting 

polypeptides (OATPs) (Figure 1A). NTCP is responsible for sodium-dependent bile acid 

uptake, while sodium-independent transport is mediated by OATPs. The efficiency of 

hepatic uptake varies depending on the bile acid structure: trihydroxy > dihydroxy bile 

acids, and conjugated > unconjugated bile acids.14 Individual bile acids may use different 

uptake transporters. The uptake of conjugated bile acids such as taurocholic acid (TCA) is 

mediated predominantly (>75%) by sodium-dependent NTCP. In contrast, sodium-

dependent uptake accounts for less than half of the uptake of unconjugated bile acids.15–18 

Within hepatocytes, bile acids are translocated by diffusion or undergo carrier-mediated 

transport after binding to cytosolic proteins such as glutathione S-transferases, liver fatty 

acid binding protein (L-FABP), and dehydrogenases.19 Vesicular transport of bile acids has 

been suggested, but confocal microscopy studies of fluorescent bile acid analogs in 

hepatocyte couplets showed no intracellular vesicular structure containing bile acids.20 

However, characteristics and intracellular disposition of fluorescent bile acid analogs may 

differ between individual bile acids, and the significance of vesicular transport of bile acids 

in hepatocytes remains to be investigated. At the canalicular membrane, bile acids are 

excreted into bile predominantly via the bile salt export pump (BSEP) in an ATP-dependent 

manner (Figure 1A). Multidrug resistance-associated protein (MRP) 2, which is the main 

driving force for bile salt-independent bile flow through canalicular excretion of reduced 

glutathione, also transports glucuronide and sulfate conjugates of bile acids.21 The osmotic 

forces that are generated by bile acid secretion, coupled with the coordinated contraction of 

the actin filaments that surround the canaliculus, generate the pressure necessary to force 

bile to flow down the bile duct. The biliary tract itself is composed of a network of small to 

large ducts that are lined by cholangiocytes (bile duct epithelial cells). Cholangiocytes also 

express ion and organic anion transporters on the apical [i.e. apical sodium-dependent bile 

salt transporter (ASBT), OATP1A2] and basolateral [i.e. organic solute transporter 

(OST)α/β, MRP3] membranes that modify the composition of bile before it passes into the 
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larger bile ducts.21–23 In humans, bile acids enter the gallbladder where they are stored and 

expelled into the duodenum in response to hormonal signals such as cholecystokinin. In 

addition to canalicular excretion, hepatocytes also are capable of effluxing bile acids across 

the basolateral membrane into sinusoidal blood via MRP3, MRP4, and a recently identified 

heteromeric organic solute transporter, OSTα-OSTβ (Figure 1A). Human MRP3 and rat 

Mrp3 transported glycocholic acid (GCA) and taurolithocholate 3-sulfate (TLC-S), whereas 

TCA was transported to a significant degree only by rat Mrp3.24 Unconjugated (CA, DCA) 

and conjugated bile acids [TCA, GCA, taurochenodeoxycholic acid (TCDCA), 

glycochenodeoxycholic acid (GCDCA)] were transported by MRP4 in the presence of 

glutathione with higher affinity than MRP3,25 suggesting that MRP4 may play an important 

role in basolateral efflux of bile acids in humans. OSTα-OSTβ transports glycine and taurine 

conjugated bile acid species by facilitated diffusion; OSTα-OSTβ mediates cellular efflux or 

uptake depending on the electrochemical gradient.26,27 The contribution of basolateral 

efflux to overall hepatic bile acid excretion is small under normal conditions, but expression 

of these transporters is up-regulated under cholestatic conditions as an important part of 

adaptive response to serve as a compensatory route of bile acid excretion.28–32 Assem et al. 

reported that Mrp4 and sulfotransferase (Sult) 2a1 are both upregulated during cholestasis 

suggesting that increased sulfation and hepatic basolateral efflux of sulfated bile acids leads 

to increased renal excretion as a compensatory excretion route.33 In healthy humans, the 

proportion of sulfated bile acids in the serum is less than 2% of bile acids, and the amount of 

total bile acids excreted in urine is minimal, whereas in patients with hepatobiliary/

cholestatic disease, urinary excretion of bile acids increased more than 100-fold, with 25 – 

80% of urinary bile acids excreted in the sulfated form.34 These studies demonstrate that 

sulfation and glucuronidation of bile acids are important detoxification pathways; 

conjugation increases the hydrophilicity of bile acids and, in most cases, decreases the 

toxicity and facilitates the urinary excretion of bile acids.

Intestinal Transport

Bile acids undergo efficient enterohepatic recirculation. The bile acid pool size is only about 

2 – 3 g in humans, but 12 – 18 g of bile acids are secreted into bile per day because the pool 

recycles several times after each meal.35 Just a small fraction of the bile acid pool is lost in 

the feces (0.2 – 0.6 g/day), and about 0.3 g/day of bile acids are synthesized in hepatocytes 

to replace the portion that is excreted.35 In the intestinal lumen, taurine- or glycine-

conjugated bile acids are de-conjugated by gut bacteria. Bile acids are reabsorbed by ASBT 

in the terminal ileum (Figure 1B) or by passive diffusion.36 From the enterocyte, bile acids 

enter the mesenteric blood via basolateral transport proteins such as MRP3 and OSTα-OSTβ 

(Figure 1B),16,23,37–41 and return to the liver in portal blood followed by efficient uptake by 

hepatocyte transporters, as described above. It has been reported that MRP4 is expressed in 

the basolateral membrane of Caco-2 cells,42 but its expression and contribution to 

basolateral transport of bile acids in enterocytes remain to be investigated. Sulfate-

conjugates of bile acids are not deconjugated readily and only a limited amount of sulfated 

bile acids are re-absorbed.34 Bile acids that are not absorbed from the colon are eliminated 

in the feces; fecal elimination is balanced by biosynthesis from cholesterol in the liver.
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Bile Acid Toxicity

Bile acids are required for the digestion and absorption of fats and fat-soluble vitamins and 

they facilitate the excretion of bile pigments, cholesterol, and other medium-sized molecules 

by micellar solubilization. Bile acids induce biliary lipid secretion and solubilize cholesterol 

in bile, thereby promoting cholesterol elimination. Bile acids are potent activators of nuclear 

receptors such as farnesoid-X receptor (FXR) and pregnane X receptor (PXR), and they play 

an important role in the regulation of lipid homeostasis.43,44

However, bile acids can be cytotoxic when present in abnormally high concentrations in 

hepatocytes. Therefore, defects in bile acid excretion may lead to cholestasis. Defects in 

hepatocytes (especially at the canalicular membrane), altered fluidity of bile, impaired 

contraction of the actin filaments in the pericanalicular region, and changes in bile duct 

patency can reduce bile flow. Importantly, drugs also can affect bile flow at one or more of 

these steps, which will be discussed in more detail in the following sections. Bile acid 

toxicity is thought to be highly correlated with hydrophobicity; more hydrophobic bile acids 

are more cytotoxic. The rank order of bile acid cytotoxicity, from greatest to least is: LCA> 

CDCA, DCA > CA > ursodeoxycholic acid (UDCA).45 Under normal conditions, it is likely 

that the unbound concentration of bile acids in the cytosol of hepatocytes is low because bile 

acids are highly bound to cytosolic proteins. However, if hepatic concentrations exceed the 

binding capacity of the cytosolic proteins, unbound bile acid concentrations would be 

expected to increase markedly. Accumulation of bile acids in hepatocytes leads to 

mitochondrial damage and ultimately to apoptosis or necrosis.46,47 LCA has been shown to 

induce biliary tract injury; oral administration of LCA to mice resulted in cholangitis.48

MECHANISMS OF DRUG-INDUCED CHOLESTASIS

Cholestatic drugs may disrupt bile acid homeostasis by direct inhibition of bile acid 

transport (Figure 2A), or by indirect processes, which may include regulation of transporter 

localization (Figure 2B) or expression (Figure 2C). In the following section, the 

physiological mechanisms of drug-induced cholestasis that are associated with altered bile 

acid homeostasis are reviewed.

Role of hepatic transport proteins in drug-induced cholestasis

Hepatic biliary and basolateral transport proteins regulate the physiologic/pathophysiologic 

effects of endogenous compounds such as bile acids as well as exogenous compounds. 

Increasing evidence supports the hypothesis that drug-mediated functional disturbances in 

hepatic bile acid transporters can lead to intracellular accumulation of potentially harmful 

bile acids and subsequent development of cholestatic hepatocyte damage. In an effort to 

avoid drug-induced cholestasis, an in vitro test for BSEP inhibition during drug development 

may prove beneficial to screen for hepatotoxic compounds. However, bile acid-drug 

interactions are more complicated. The intracellular accumulation of bile acids is dependent 

upon both uptake and efflux (basolateral and canalicular) processes. Furthermore, the 

sensitivity of each transport protein to administered drugs may differ. Thus, to predict the 

hepatic exposure to bile acids, inhibitory effects of drugs on each transport protein, as well 

as drug concentrations at the site of interaction should be considered when translating in 
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vitro data to in vivo. For the inhibition of uptake transporters, systemic concentrations of 

drugs are important, whereas intracellular drug concentrations are important when 

considering the inhibitory effects of drugs on bile acid efflux. However, measurement of 

intracellular hepatocyte drug concentrations is challenging, and these data typically are not 

available, particularly in humans. Additionally, most major human bile acids are >80% 

bound to plasma proteins,49 so it is likely that bile acids are highly bound to cytosolic 

proteins in hepatocytes; total as well as unbound intracellular bile acid concentrations may 

be important in predicting drug-bile acid interactions.

Several transport proteins have been identified as potential loci for drug-induced cholestasis. 

These include the basolateral uptake transporters (NTCP and OATPs), canalicular efflux 

transporters (BSEP, MRP2, and MDR3), and basolateral efflux transporters (MRP3 and 

MRP4). The potential role(s) of each of these transport proteins in drug-induced cholestasis 

will be discussed in detail in the following paragraphs.

Hepatic Canalicular Efflux Transport Proteins—The rate-limiting step in bile 

formation is transport of biliary constituents across the canalicular membrane. This process 

is mediated predominantly by BSEP, a hepatic transport protein that is a member of the 

ATP-binding cassette (ABC) gene superfamily. Impaired BSEP function due to defects in 

gene coding or gene regulation can lead to inherited and acquired cholestatic disorders such 

as progressive familial intra-hepatic cholestasis type 2 (PFIC2), benign recurrent 

intrahepatic cholestasis type 2 (BRIC2), and intrahepatic cholestasis of pregnancy.50–52 

Many drugs that cause either cholestatic or mixed hepatocellular/cholestatic liver injury 

(e.g., troglitazone, bosentan, cyclosporine, rifampin, sulindac, and glibenclamide) inhibit 

BSEP/Bsep-mediated biliary excretion of bile acids, potentially leading to increased hepatic 

exposure to cytotoxic bile acids.53–58 Two recent studies that systematically compared the 

potency of BSEP inhibition between cholestatic and non-cholestatic drugs revealed that 

drugs that caused cholestatic/mixed DILI in humans exhibited a markedly higher incidence 

and potency of BSEP inhibition compared to drugs that were non-cholestatic or caused 

hepatocellular liver damage.59,60 In these studies, the inhibitory effects of test compounds 

on TCA uptake into inside-out membrane vesicles prepared from insect cells over-

expressing BSEP/Bsep were investigated, and BSEP inhibition was demonstrated to be one 

of the risk factors for drug-induced cholestasis. These studies also showed a close 

correlation between inhibition potency for human BSEP- and rat Bsep-mediated TCA 

transport.59,60 In most of the BSEP inhibition studies, including the above studies, TCA was 

used as a model bile acid. However, Kis et al. showed that troglitazone and glibenclamide 

inhibited the BSEP/Bsep-mediated transport of different bile acids (TCA, GCA, TCDCA, 

and GCDCA) with similar potencies (IC50), whereas cyclosporine A exhibited a 10-fold 

more potent inhibition of GCA and TCDCA transport compared to TCA and GCDCA.57 

Thus, extrapolation of the results of transport inhibition from one bile acid to another may 

not be accurate. Also, one should note that membrane vesicles do not express metabolizing 

enzymes, thus inhibitory effects of metabolites cannot be detected unless the metabolite(s) 

are tested directly.

Whereas most of the BSEP inhibitors directly cis-inhibit BSEP, estradiol 17β-glucuronide 

and progesterone metabolites indirectly trans-inhibit Bsep after secretion into the bile 
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canaliculus by Mrp2.61 Bosentan stimulated Mrp2-dependent bilirubin excretion and bile 

salt-independent bile flow, while phospholipid and cholesterol secretion were markedly 

inhibited and uncoupled from bile salt secretion.62 Inhibition of biliary lipid secretion was 

not observed in Mrp2-deficient TR- rats, which suggested that translocation of organic 

anions across the canalicular membrane is a prerequisite for the occurrence of the 

uncoupling effect.62

MDR3, an ATP-dependent phospholipid flippase, translocates phosphatidylcholine from the 

inner to the outer leaflet of the canalicular membrane.63 Subsequently, canalicular 

phospholipids are solubilized by canalicular bile salts to form mixed micelles, thereby 

protecting cholangiocytes from the detergent properties of bile salts. Mutations in MDR3 

result in impaired biliary excretion of phosphatidylcholine and cause PFIC3, a severe 

pediatric liver disease that usually requires liver transplantation.64 Yoshikado et al. noted 

that two patients with itraconazole-induced cholestatic liver injury exhibited markedly high 

serum itraconazole concentrations.65 In itraconazole-treated rats, biliary phospholipids, 

rather than bile acids, were markedly decreased compared to control rats.65 Itraconazole 

decreased MDR3-mediated efflux of phosphatidylcholine in MDR3-overexpressing cells, 

but did not alter BSEP-mediated TCA transport.65 These results suggest that inhibition of 

MDR3-mediated biliary phospholipid secretion can be a risk factor for drug-induced 

cholestasis even if bile acid excretion is not altered. In vitro, MDR3 transported verapamil 

and cyclosporine, which could potentially lead to competitive inhibition of phospholipid 

flippase activity and cholestatic injury.66

Hepatic Basolateral Efflux Transport Proteins—As described above, BSEP 

inhibition is a risk factor for drug-induced cholestasis. However, not all drugs that inhibit 

BSEP cause cholestasis. This suggests that screening for BSEP inhibition alone cannot 

accurately predict the hepatotoxic potential of drugs. This might be due to compensatory 

mechanisms of bile acid transport. The basolateral efflux transporters, MRP3 and MPR4, 

play a minor role in bile acid efflux under normal conditions, but they are up-regulated 

under cholestatic conditions to compensate for impaired biliary excretion.67–72 

Compensatory basolateral efflux prevents hepatic bile acid accumulation and enables 

subsequent renal elimination of bile acids. Thus, impaired function of MRP3 and MRP4 by 

drugs, or genetic polymorphisms resulting in reduced-function variants may result in 

accumulation of toxic bile acids in hepatocytes. Troglitazone sulfate (TS), a major 

metabolite of troglitazone and a potent BSEP inhibitor, also inhibits MRP4-mediated 

dehydroepiandrosterone (DHEAS) transport; potent inhibition of both canalicular and 

basolateral efflux of bile acids by TS may predispose hepatocytes to toxicity.73 Our group 

has investigated the inhibitory effects of 88 compounds on MRP3 and MRP4, and reported 

that MRP4 inhibition was associated with an increased risk of cholestatic potential for drugs 

that are not BSEP inhibitors.74,75 These results suggest that MRP4 inhibition also may 

represent a risk factor for the development of cholestatic DILI in humans.

Hepatic Uptake Transport Proteins—Basolateral uptake transporters are important in 

controlling hepatic and systemic exposure to drugs and toxins. The hepatic accumulation of 

bile acids is regulated by both uptake and efflux (basolateral and canalicular) processes, thus 
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inhibition of hepatic bile acid uptake may exert protective effects by preventing the hepatic 

accumulation of bile acids. Bosentan, a potent inhibitor of human BSEP and rat Bsep, 

caused hepatic injury in humans, but bosentan-treated rats did not develop hepatotoxicity.54 

Species difference in bosentan-induced hepatotoxicity might be explained by differential 

inhibition of human NTCP and rat Ntcp. Bosentan was a more potent inhibitor of sodium-

dependent TCA uptake in rat (IC50 = 5.4 μM) than human (IC50 = 30 μM) suspended 

hepatocytes, resulting in less hepatocyte accumulation of TCA in rats after administration of 

bosentan.76 Drugs also may exert differential inhibitory effects on individual bile acids. 

Marion et al. reported that troglitazone differentially affected the uptake and accumulation 

of CDCA species (CDCA and metabolites) compared with TCA in rat SCH, causing an 

intracellular increase in CDCA species but not TCA.18 Troglitazone inhibited both uptake 

and biliary excretion of TCA in rat and human hepatocytes, leading to unchanged or even 

decreased intracellular accumulation.18,77–79 Hepatic accumulation of CDCA species was 

not altered after incubation with 10 μM troglitazone, but was significantly increased with 

100 μM troglitazone suggesting that biliary excretion of CDCA species was inhibited to a 

greater extent than uptake processes by higher concentrations of troglitazone. CDCA is more 

abundant in humans, and is known to be more cytotoxic compared to TCA.80,81 These 

results suggest that one should consider species differences as well as differential inhibitory 

effects of drugs on individual bile acids when predicting hepatotoxicity in humans.

Role of intestinal transport proteins in drug-induced cholestasis

Bile acid concentrations in enterocytes are important in the bile acid regulatory loop. Once 

activated by bile acids, intestinal FXR induces an intestinal hormone, fibroblast growth 

factor 19 (FGF19; or Fgf15 in mice), which migrates to the liver and activates hepatic FGF 

receptor 4 (FGFR4) signaling to inhibit hepatic bile acid synthesis.13 Activation of hepatic 

FXR also down-regulates bile acid synthesis by activation of small heterodimer partner 

(SHP).13 In ASBT null mice, which were unable to absorb bile acids in the ileum, intestinal 

and hepatic FXR activity was impaired resulting in decreased Fgf15 and Shp in the ileum 

and liver, respectively.82 Because Fgf15 and Shp play important roles in the regulatory 

feedback loop of bile acid synthesis, mRNA levels of Cyp7a1and bile acid synthesis were 

increased in ASBT null mice compared to wild-type mice.82 Similarly, inhibition of bile 

acid absorption in the intestine by ASBT inhibitors or bile acid sequestrants interrupted the 

normal feedback inhibition of bile acid synthesis, leading to increased hepatic Cyp7a1 

expression and bile acid synthesis.82 On the other hand, inhibition of basolateral bile acid 

transport in enterocytes of OSTα null mice increased intestinal Fgf15 expression and 

decreased bile acid synthesis in hepatocytes.40 Interruption of bile acid absorption by 

surgical procedures (i.e. partial external biliary diversion, partial ileal bypass) or bile acid 

sequestrants (i.e. cholestyramine, cholespitol) have been used to treat cholestasis and/or 

pruritus.83–85 Bile acid sequestrants are non-digestible resins that bind to intestinal bile acids 

and form an insoluble complex, reducing absorption of bile acids. They are used to treat 

primary hypercholesterolemia, and also as a second-line treatment for pruritus in patients 

with incomplete biliary obstruction. ASBT inhibitors have been investigated to treat 

hypercholesterolaemia, but the effects on cholestatic liver disease have not been evaluated 

fully. Reduced absorption of bile acids through the enterohepatic circulation may have 
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therapeutic effects in certain types of cholestatic liver disease, but effects on the feedback 

loop of bile acid synthesis also must be considered.

Indirect Interactions: Effects on Expression/Activity/Localization of Transport Proteins and 
Enzymes Involved in Bile Acid Homeostasis

Due to the critical physiological and pathophysiological role of bile acids, homeostasis is 

tightly regulated through multiple nuclear receptors including FXR, the retinoid-X receptor 

(RXR), the liver receptor homologue-1 (LRH-1), the constitutive androstane receptor (CAR) 

and the liver-X-receptor (LXR), as well as the cell surface bile acid receptors including the 

G-protein coupled receptor TGR5. In addition, bile acid transporters undergo post-

transcriptional regulation including insertion/retrieval of transporters into/from the plasma 

membrane. These mechanisms allow fine tuning of bile acid synthesis and transport and, 

under normal physiological conditions, maintain enterohepatic circulation and regulate 

intracellular concentrations of bile acids through repression of bile acid synthesis, induction 

of bile acid metabolism (e.g. induction of phase I and II hydroxylation, sulfation and 

conjugation) as well as inhibition of hepatic bile acid uptake, and stimulation of bile acid 

efflux. The importance of nuclear receptors in the adaptive response to bile acids has been 

demonstrated in numerous knockout rodent models. For example, PXR or CAR knockout 

mice are more susceptible to cholestatic liver injury than wild-type mice.31,86,87 Nuclear 

receptor-mediated adaptive changes are likely caused by compounds normally excreted into 

bile (e.g. bile acids, hormones, drugs, or bilirubin) that are retained during cholestasis and 

act as nuclear receptor ligands.88,89

Drugs that act as nuclear receptor activators (e.g. rifampicin, dexamethasone) can increase 

the clearance of other drugs or induce the formation of reactive metabolites that can cause 

hepatotoxicity. For example, acetaminophen liver toxicity was exacerbated by increased 

phase I-mediated oxidation to the reactive metabolite N-acetyl-p-benzoquinone-imine by 

CYP inducers.90,91

Several anticholestatic compounds such as UDCA, phenobarbital, and rifampicin are nuclear 

receptor agonists, which could explain their anticholestatic properties. In recent years, FXR 

agonists have been proposed as a treatment for cholestatic liver disease because they repress 

bile acid uptake and synthesis, and promote bile acid excretion by activation of canalicular 

bile acid transporters. However, the utility of FXR agonists in the treatment of cholestasis 

might depend on the type of cholestasis, and changes in the expression of transport proteins 

that are induced. For conditions that are characterized by bile duct destruction such as 

primary biliary cirrhosis (PBC) or primary sclerosing cholangitis (PSC), stimulation of 

canalicular bile acid excretion may worsen liver injury. Interestingly, FXR knockout mice 

but not wild-type mice adapted to bile duct obstruction by increasing expression of Mrp4 

mRNA and were protected from liver injury after ligation of the common bile duct.92 It was 

suggested that FXR acts as a negative regulator of the basolateral bile acid transport protein 

MRP4, whose increased expression normally protects the liver from accumulation of 

potentially toxic bile acids through basolateral efflux and subsequent renal elimination. FXR 

competes with CAR for binding at the MRP4 promoter and represses MRP4 induction by 

CAR activation; activation of FXR could impair the MRP4-mediated basolateral efflux of 
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bile acids.93 Because of this, FXR antagonists might be beneficial in certain types of 

cholestasis (e.g. total biliary obstruction) where increased renal bile acid excretion is 

desired. For more detail about FXR and PXR and their role as potential targets for 

cholestasis, see the review of Jonker et al.43

Estrogen-induced cholestasis—While decreased expression or impaired function of 

transport proteins can contribute to or cause cholestasis, most changes in transport protein 

expression observed in cholestatic patients or animal models represent compensatory 

mechanisms providing alternate routes of excretion in response to the retention of bile acids. 

There are only a few examples where changes in transport protein expression or localization 

(as opposed to inhibition) due to drug treatment or other cholestatic agents, such as 

hormones and proinflammatory cytokines, are the primary cause of cholestasis. The most 

prominent example of this type of cholestasis is estrogen- and C17-alkylated steroid-induced 

cholestasis, which causes a clinical picture that is similar to intrahepatic cholestasis of 

pregnancy in susceptible women who use oral contraceptives or postmenopausal estrogen 

replacement therapy. Estrogen-induced cholestasis can be induced experimentally in rodents 

with estradiol-17β-D-glucuronide (E217G) or the synthetic estrogen ethinylestradiol.94,95 

Although trans-inhibition of BSEP-mediated bile acid transport by E217G has been 

demonstrated,61 the internalization of Bsep and Mrp2, which impairs the excretory function 

within minutes by reducing the amount of protein in the canalicular membrane, appears to 

be a key mechanism of cholestasis.96–98 E217G activates classical, Ca2+-dependent protein 

kinase C and phosphoinositol 3-kinase signaling pathways, which are cooperatively 

involved in internalization and intracellular retention of Bsep/Mrp2.99,100 Furthermore, 

E217G activates the estrogen receptor α (ERα) in isolated perfused rat liver.101 This might 

explain why chemical inhibition or knock-down of ERα partially prevented decreased Bsep/

Mrp2 activity and reduced transporter internalization.101 This finding is substantiated further 

by the observation that Erα(−/−) mice are resistant to ethinylestradiol-induced 

hepatotoxicity.102 At the moment, it is not quite clear how the activation of the ERα leads to 

internalization of transporter proteins. Recent data suggest that phosphoinositol 3-kinase is 

not directly involved in this process, and it was shown that activation of protein kinase C 

actually precedes activation of ERα, suggesting that other yet unknown mediators are 

involved.101 Interestingly, the upregulation of Mrp3 expression and activity in rat liver after 

administration of ethinylestradiol was independent of cholestasis and required the estrogen 

receptor.103

Inflammation-induced cholestasis—Inflammation often contributes to liver injury 

during cholestasis. However, cholestasis also can be induced by inflammation itself. This 

phenomenon is common in patients with extrahepatic infections or inflammatory processes 

in which inflammatory cytokines or bacterial endotoxins lead to profound reductions in bile 

flow.104,105 The prototypical example of inflammation-induced cholestasis is sepsis-

associated cholestasis. Lipopolysaccharide (LPS), an endotoxin from the cell wall of gram-

negative bacteria, is a potent causal agent in inflammation. LPS often is released at 

extrahepatic sites and cleared from the systemic circulation by Kupffer cells in the liver, 

which respond by producing proinflammatory cytokines and/or nitric oxide (NO). These 
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cytokines and NO activate membrane receptors and after intracellular signal transduction, 

they alter hepatic and renal transport protein expression and function.

Most of our knowledge about inflammation-induced changes in hepatic transport proteins is 

based on animal models; reduced expression of the bile acid uptake proteins Ntcp and Oatp, 

decreased expression of the canalicular bile acid efflux pumps Bsep and Mrp2, and 

downregulation of phase I and II metabolizing enzymes have been described. There is also 

some regulation through internalization of Bsep and/or Mrp2 from the canalicular membrane 

to intracellular vesicles.106,107 However, the key factor appears to be translational regulation 

resulting in reduced mRNA transcription and hence protein synthesis. Interestingly, signal 

transduction of inflammatory cytokines targets regulatory transcription factors (e.g. through 

phosphorylation or decreased binding of nuclear transcription factors) resulting in reduced 

nuclear quantities and function of these nuclear receptors. This has, for example, been 

demonstrated for RXRα, an important heterodimerization partner for numerous nuclear 

receptors such as FXR, RXR, PXR and CAR, in response to LPS or IL-1β treatment.108–110

So far, only a few studies have investigated the effects of inflammation-induced cholestasis 

in human disease. In PBC and PSC, cholestasis develops with a substantial inflammatory 

component; decreased expression of NTCP, OATP1B1, MRP2, and BSEP have been 

reported, whereas MRP3, MRP4, and OSTα/β expression were increased.30,32,111 

Furthermore, in patients with advanced stage PBC, the canalicular localization of MRP2 was 

disrupted and the expression of the uptake transporters, OATP1B1, OATP1B3, and NTCP 

was decreased.112 In another study, an increase in the severity of inflammation and the 

fibrosis score in patients with viral hepatitis was associated with decreased hepatic MRP2, 

MDR1, and OATP1B1, but not MRP3, mRNA expression.113

ASSESSMENT OF PHYSICOCHEMICAL PROPERTIES AND 

PHARMACOKINETIC PARAMETERS OF DRUGS WITH DIFFERENT 

MECHANISMS OF CHOLESTASIS

In previous sections, direct and indirect mechanisms of drug-induced cholestasis mediated 

by interruption of bile acid homeostasis were reviewed. Since multiple processes are 

involved in bile acid homeostasis, an accurate prediction of the cholestatic potential of drugs 

mediated by these pathways is not straightforward. Several studies have investigated risk 

factors for the development of drug-induced pharmacokinetic parameters.59,60 In this type of 

analysis, it is critical to establish well-defined phenotypes (i.e. cholestasis). In general, there 

are two major mechanisms of drug-induced cholestasis: (1) impaired formation of bile due 

to drugs that interact with bile acid formation and/or hepatic bile acid transport (hepatic 

cholestasis), and (2) physical obstruction of bile flow after bile has been secreted from 

hepatocytes, which might be caused by drugs that damage the bile duct itself (ductular/

ductal cholestasis). If cholestatic drugs with different mechanisms of cholestasis are all 

considered as one group, it may confound the study results and lead to inaccurate predictions 

of cholestatic potential. In the present investigation, we compared the physicochemical 

properties and pharmacokinetic parameters of 77 cholestatic drugs. The compounds selected 

for investigation included 50 drugs reported to cause cholestasis due to impaired bile acid 
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formation (bland cholestasis or cholestatic hepatitis; classified into Group 1) and 27 drugs 

reported to cause cholestasis by obstruction of bile flow (classified into Group 2) (Table 

1). 6,114–117 Eleven drugs, including glyburide and carbamazepine, were reported to cause 

both impaired bile formation and obstruction of bile flow; these drugs were classified into 

Group 3 (“Mixed Cholestasis”; Table 1), and were not included in the statistical 

analysis.6,114–117

Relationship between Mechanism of Cholestasis and Physicochemical Properties of Drugs

To explore the relationship between the mechanism of cholestasis and physicochemical 

properties, we compared the molecular weight, lipophilicity, and solubility of the Group 1 

and Group 2 cholestatic drugs. The physicochemical properties of the investigated 

compounds are summarized in Table 1; if experimentally determined logP and logS values 

were not available, then they were obtained from Dragon Ver.5.5 (Talete SRL, Milano, 

Italy). The molecular weight distribution of these compounds ranged from 114.2 to 1202.8 

g/ml. The median (range) molecular weights for Group 1 and Group 2 cholestatic drugs 

were 346.9 (114.2 – 1202.8) and 295.8 (136.1 – 814.1) g/mol, respectively. The log P value, 

which is an indicator of lipophilicity, varied from −1.8 to 8.6, with median (range) values of 

2.6 (−1.4 – 8.6) and 2.3 (−1.8 – 5.1) for Group 1 and Group 2, respectively. The solubility, 

indicated by logS, ranged from −10.2 to 0.4, with median (range) values of −3.5 (−10.2 – 

0.4) and −2.8 (−5.7 – −0.1) for Group 1 and Group 2, respectively. There were no 

statistically significant differences between drugs from these two different cholestatic 

groups with regard to any of the physicochemical properties discussed above.

Relationship between Mechanism of Cholestasis and Plasma Concentrations of Drugs

To explore the relationship between the mechanism of cholestasis and systemic exposure, 

we investigated the maximum plasma concentrations (Cmax), maximum unbound plasma 

concentrations (Cmax,u), and standard and maximum daily doses of the cholestatic drugs in 

humans. Information about Cmax, standard and maximum daily doses were retrieved from 

Thompson’s Micromedex DRUGDEX index, Lexicomp database, and PubMed. The Cmax,u 

was calculated for each drug using the Cmax and experimentally determined plasma protein 

binding values available from published sources. If protein binding data were not available, 

estimated values were used118; estimated and experimentally determined protein binding 

values were comparable for the drugs with available protein binding data. The Cmax 

distribution ranged from 0.00004 to 492 μg/ml (Table 1). The median (range) Cmax values 

for Group 1 and Group 2 cholestatic drugs were 1.1 (0.00028 – 492) and 2.0 (0.004 – 150) 

μg/ml, respectively. Cmax,u values ranged from 0.00001 to 231.6 μM (Table 1), with median 

(range) values of 0.4 (0.00003 – 80.6) and 2.2 (0.0005 – 231.6) μM for Group 1 and Group 

2, respectively. Plasma protein binding ranged from 0 to 99.8 %; median (range) values 

were 88 (0 – 99.8) and 90 (0.5 – 99) for Group 1 and Group 2, respectively. The median 

standard daily doses were 300 (4 – 6750) and 440 (1.3 – 6500) mg/day, whereas the 

maximum daily doses were 450 (8 – 12000) and 600 (15 – 12000) mg/day for Group 1 and 

Group 2, respectively. There were no significant differences in Cmax, Cmax,u, plasma protein 

binding, standard daily doses or maximum daily doses between the two groups of cholestatic 

drugs, indicating that these values, by themselves, were not predictive of the mechanism of 

cholestasis.
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Relationship between Mechanism of Cholestasis and the Metabolism and Excretion of 
Drugs

To explore the relationship between the mechanism of cholestasis and drug disposition, we 

investigated the extent of metabolism, renal excretion and biliary excretion of cholestatic 

drugs. Drugs were categorized as high, intermediate or low, if the extent of metabolism/

excretion was ≥ 70%, between 30% and 70%, and < 30%, respectively. The relationship 

between the mechanism of cholestasis and the biopharmaceutics drug disposition 

classification system (BDDCS) class also was investigated. The BDDCS categorizes drugs 

into four classes; class 1 represents drugs with high solubility and extensive metabolism, 

whereas class 2 drugs have low solubility and extensive metabolism. Drugs with high 

solubility and poor metabolism are categorized into class 3, and class 4 is composed of 

drugs with low solubility and poor metabolism.119 Information on metabolism, the routes of 

excretion, BDDCS class, and clinical parameters were retrieved from Thompson’s 

Micromedex DRUGDEX index, Lexicomp database, PubMed, and WOMBAT-PK 2007,120 

and are presented in Table 1. Among the 50 cholestatic drugs categorized in Group 1, 26 

(52%) drugs were classified as high with respect to the extent of metabolism. Among 27 

cholestatic drugs categorized in Group 2, information about metabolism was available for 25 

drugs; 60% (15 out of 25) of these were extensively metabolized. Drugs with high renal 

excretion accounted for 44% (22 out of 50) of Group 1 cholestatic drugs and 48% (13 out of 

27) of Group 2 cholestatic drugs. 14% (7 out of 50) of Group 1 and 19% (5 out of 27) of 

Group 2 cholestatic drugs were excreted extensively into bile (≥70%). However, the 

classification of cholestatic drugs (Group 1 vs. 2) was not associated with the extent of 

metabolism or the extent of renal or biliary excretion when examined using the chi-square 

test (Table 2). Cholestatic drugs were categorized evenly as BDDCS class 1 – 3, with fewer 

drugs in BDDCS class 4. This is consistent with the previous report that only a small 

number of the approved drugs are categorized as BDDCS class 4.119 There was no 

significant association between BDDCS class and the type of cholestasis when examined 

using the chi-square test (Table 2).

Relationship between Mechanism of Cholestasis and Inhibition of Bile Acid Transport 
Proteins by Drugs

Inhibition of bile acid transport is one important mechanism of drug-induced cholestasis. 

Thus, the relationship between the mechanism of cholestasis and the ability of drugs to 

inhibit bile acid transport was investigated. BSEP is a major transport protein responsible for 

the biliary excretion of bile acids. Inhibition data for BSEP is relatively abundant compared 

to inhibition of other bile acid transport proteins based on recent publications describing 

high-throughput screening approaches to analyze for BSEP inhibition.59,60,121 Information 

about BSEP inhibition was available for 41 cholestatic drugs (Table 1). Drugs with IC50 

values less than 133 μM were defined as BSEP inhibitors as reported previously.59 Chi-

square analysis revealed that BSEP inhibitors are more abundant in Group 1 compared to 

Group 2 cholestatic drugs (61% vs 20%, p=0.023; Table 2); among the 31 Group 1 

cholestatic drugs, 19 drugs (61%) were BSEP inhibitors. On the other hand, only 2 out of 10 

Group 2 cholestatic drugs were BSEP inhibitors. Although this analysis was performed with 

only a limited number of drugs, the data suggest that BSEP inhibition might not play a major 

role in cholestasis that is caused by bile duct obstruction. Inhibition data for other bile acid 
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transporters such as ASBT, NTCP, OATP and MRP4, as well as substrate information on 

major drug transporters such as OATP, MRP2, BCRP, and P-gp, might be necessary to 

understand the complex interplay of bile acid homeostasis, the pharmacokinetic behavior of 

drugs, and direct and indirect regulation of the pathogenesis of different types of cholestasis.

IN SILICO MODELING TO PREDICT DIRECT AND INDIRECT EFFECTS OF 

DRUGS ON BILE ACID HOMEOSTASIS

Interruption of bile acid homeostasis plays a key role in the development of cholestasis. 

Therefore, in order to improve the prediction of cholestatic potential, it is important to 

understand how drugs affect bile acid disposition. However, for a large number of drugs, 

experimental data documenting an interaction with bile acid transporters are not available; 

high-throughput screening methods to test the inhibition potential of drugs have not been 

available until recently.59,60,122 Data regarding drug effects on nuclear receptors involved in 

bile acid homeostasis are even more scarce because the role of nuclear receptors in bile acid 

homeostasis has been revealed only recently.123,124 In silico modeling can be used to fill this 

data gap; existing datasets can be used to build in silico models based on the structural 

properties of drugs, and these models can be used to predict drug effects on bile acid 

homeostasis. When large datasets are available and resulting in silico models are well-

validated, they can help reduce the financial burden in early drug discovery and 

development by limiting the need for extensive laboratory experiments. In the following 

section, in silico models to predict drug effects on bile acid transporters and nuclear 

receptors such as PXR and FXR are reviewed.

In Silico Modeling to Predict Drug Interactions with Bile Acid Transport Proteins

The 3D structures of membrane transport proteins remain scarce. Thus, current 

computational transporter studies rely on a series of experimentally measured interactions of 

small molecules with membrane transporters and employ statistical learning approaches, 

such as quantitative structure-activity relationship (QSAR) and ligand-based pharmacophore 

construction. Available computational models of bile acid transporters (i.e., MRP2, MRP3, 

MRP4, BSEP, NTCP, ASBT, OATPs) are summarized in Table 3. Due to the great 

heterogeneity of experimental reports (e.g., from diverse assay types, test concentrations and 

experimental conditions), most of the computational studies present classification models 

(e.g., inhibitors vs. non-inhibitors). The few available quantitative models (such as for 

binding affinity or inhibition) usually are limited to small sets of compounds with the 

measurements from the same source.

For the canalicular efflux transporters BSEP and MRP2 (Table 3), Warner et al. reported 

classification of BSEP inhibitors (defined by an IC50 threshold of 300μM) by a recursive 

partitioning QSAR for over 600 chemicals using molecular descriptors as covariates.121 An 

earlier study by Saito et al. reported a multiple linear regression model of BSEP inhibition 

(measured in % of taurocholate transport at 100μM test concentration) for 37 diverse drug-

like compounds using chemical fragment descriptors, but this model has not been validated 

further.125 Several groups reported QSAR models for MRP2 inhibition at various potency 

thresholds (Table 3) using linear (e.g., PLS – partial least squares regression and 
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discriminant analysis) and non-linear modeling methods (SVM – Support Vector Machine, 

kNN – k Nearest Neighbors, RF – Random Forest).126–128 The accuracy of these models on 

external data (judged by test sets) ranged from 70 to 90%. In addition, Ng et al. developed a 

QSAR model of binding affinity to rat Mrp2 for 25 methotrexate analogues as well as a 

pharmacophore for their binding model.129 Zhang et al. have constructed a pharmacophore 

for MRP2 inhibitors, which performed slightly worse than their SVM QSAR model.127

Due to lack of experimental measurements, very few computational studies exist for the 

basolateral bile acid efflux transporters MRP3 and MRP4 (Table 3). Sedykh et al. reported 

classification models of MRP4 inhibitors at a 10μM threshold with external accuracy of 

70%, however, the modeling was based on a rather small set of 64 molecules.128 In a recent 

study, Akanuma et al. attempted structural analysis of MRP4 transport for several groups of 

β-lactam antibiotics.130

For the bile acid uptake transporters, there were appreciably more studies on ASBT and 

OATPs than on NTCP (Table 3), which reflects the importance of the former to the 

absorption, distribution, metabolism, excretion and toxicity of pharmaceuticals because they 

also are expressed in gut and kidney.131 Karlgren et al. reported classification models of 

OATP1B1, OATP1B3, and OATP2B1inhibitors at a 20μM potency threshold, with expected 

accuracy of 75–93%.132 Several QSAR models of ASBT binding affinity as well as 

pharmacophores were developed by Zheng et al., Rais et al., and Gonzalez et al. with 

squared correlation coefficient (R2) values of 0.68–0.89, albeit all were trained on small 

congeneric series of conjugated bile acid derivatives.133–137 Sedykh et al. and Zheng et al. 

reported classification QSARs of ASBT inhibitors based on 10μM and 100μM potency 

thresholds respectively.128,133 In a recent study, Greupink et al. developed a 3D-

pharmacophore model based on five NTCP substrates, which were then applied to screen 

large chemical libraries. Several NTCP inhibitors were identified among the top selected 

hits.138

Based on the data presented in Table 3, the small size of the modeling data sets is the major 

limitation to accurate in silico prediction of drug interactions with bile acid transporters. 

Conformational flexibility of membrane transporters, their broad substrate specificity, as 

well as noisiness and limitations of experimental assays all require large and diverse sets of 

chemical structures for proper statistical learning. Large and diverse modeling sets also are 

necessary for the broad applicability of the resulting models, so that more structural classes 

of chemicals can be covered and reliably predicted. Presently, there are too few compounds 

with experimental data available for MRP3, MRP4 and NTCP transporters. Even though 

OSTα/β is essential for bile acid transport, adequate data for in silico modeling is not yet 

available.27

In Silico Models of Drug Interactions with the Nuclear Receptors, FXR and PXR

A number of the resolved 3D protein structures of FXR and PXR are publicly available 

(e.g., 1OSH, 1OSV for FXR, 3R8D, 2QNV for PXR at www.pdb.org), which allows for 

application of modeling techniques such as docking and structure-based pharmacophore 

construction. However, accurate characterization of a drug-protein interaction by structure-

based methods can be difficult, which is the case for PXR with its large and flexible pocket 
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leading to promiscuous binding and poor docking results.139,140 Therefore, statistical 

knowledge-inference methods, such as QSAR, are still applied widely. Currently available 

computational models of FXR and PXR are reviewed in Table 4. Although stand-alone 

docking yielded modest results (~60% accuracy), as demonstrated by Khandelwal et al., 

Kortagere et al., and Ekins et al., docking was used routinely to impute bound conformations 

of chemicals for the subsequent 3D-QSAR modeling studies.139,141–144 Most of the 

classification models of PXR agonists have external accuracy in the 70–85% range (Table 

4). A few quantitative models for the potency of PXR activation (measured as EC50) also 

have been reported,139,145 although it is important to note that these do not take into account 

the extent of activation (i.e., efficacy), which can vary substantially among the agonists.

Relatively few in silico studies are available for FXR activation, likely due to the limited 

availability of experimental data. Several quantitative models of FXR activation (Table 4) 

achieve correlations in the 0.76–0.93 range (square of Pearson’s correlation coefficient), 

albeit on rather small data sets. Recent studies by Shuster and Grinke employed a set of 

pharmacophores for classification of FXR agonists with accuracy of ~70%.146,147 While 

diverse models for PXR activation currently are available (e.g., see the recent review by 

Kortagere et al.140) and further improvements are likely to be incremental, in the case of 

FXR, new models based on larger data samples definitely are needed for reliable use in drug 

design and risk assessment.

CONCLUSIONS AND FUTURE DIRECTIONS

Disruption of bile acid homeostasis is an important mechanism of drug-induced cholestasis. 

In order to accurately predict the cholestatic potential of drugs, an understanding of the 

molecule’s effects on the many processes involved in bile acid homeostasis appears to be 

necessary. In silico modeling, which will diminish the time and resources required for 

laboratory experiments, is a promising approach to obtain this mechanistic information. 

Drugs may inhibit bile acid transporters directly, or alter the expression, function and/or 

localization of transporters by indirect interactions mediated by nuclear receptors and 

intracellular signaling pathways. In addition, patient-specific factors including genetic 

polymorphisms, underlying disease, and pregnancy may alter the function of bile acid 

transporters and predispose individuals to cholestasis. These data can be integrated and 

incorporated into mechanistic, mathematical models to improve predictions. Multi-scale 

modeling approaches incorporating both drug disposition and physiological processes (i.e. 

systems biology) is an exciting, emerging area. Recent efforts using mechanistic, 

mathematical modeling approaches have successfully predicted the hepatotoxicity induced 

by drugs such as acetaminophen and methapyrilene.148,149 The same approach can be taken 

to predict drug-induced cholestatic injury, thereby allowing more accurate predictions 

during the early stages of drug development.
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Figure 1. 
Localization of bile acid transporters in human hepatocytes (A) and enterocytes (B).
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Figure 2. Mechanisms of altered bile acid transport by cholestatic drugs. (A) Direct inhibition of 
transport proteins
Cholestatic drugs might directly interfere with bile acid transport through inhibition of 

transporter function. (B) Altered localization of transport proteins. Certain cholestatic 

drugs can activate membrane-bound and intracellular receptors resulting in activation or 

inhibition of intracellular signal transduction and increased insertion into or internalization 

from the plasma membrane. Internalized proteins can be degraded or undergo recycling to 

the plasma membrane. (C) Altered transport protein expression. Bile acids and certain 

cholestatic drugs are activators of nuclear receptors (NR). Binding of ligands results in 

dissociation of heat-shock proteins from the NR, homo-dimerization and subsequent 

translocation to the nucleus where they bind to response elements of target genes and 

activate gene transcription.
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Table 2
Relationship between mechanism of cholestasis (impaired formation of bile and 
obstruction of bile flow) and the extent of metabolism and excretion, BDDCS, and BSEP 
inhibition for 77 cholestatic compounds

Drugs with no information were excluded from the analysis. P-values from chi-square tests are presented.

Metabolism (n=75)a

Group 1 (Impaired formation of bile) Group 2 (Obstruction of bile flow) P-value

High 26 15

0.7881Intermediate 13 5

Low 11 5

Renal Excretion (n=77)a

Group 1 (Impaired formation of bile) Group 2 (Obstruction of bile flow) P-value

High 22 13

0.9186Intermediate 17 8

Low 11 6

Biliary Excretion (n=77)a

Group 1 (Impaired formation of bile) Group 2 (Obstruction of bile flow) P-value

High 7 5

0.1065Intermediate 11 1

Low 32 21

BDDCS (n=73)b

Group 1 (Impaired formation of bile) Group 2 (Obstruction of bile flow) P-value

Class I 11 9

0.503
Class II 20 7

Class III 13 5

Class IV 6 2

BSEP Inhibition (n=41)c

Group 1 (Impaired formation of bile) Group 2 (Obstruction of bile flow) P-value

Yes 19 2
0.023

No 12 8

a
High (≥70%); Intermediate (≥30% and <70%); Low (<30%)

b
Class 1, high solubility/extensive metabolism; class 2, low solubility/extensive metabolism; class 3, high solubility/poor metabolism; class 4, low 

solubility/poor metabolism.

c
Drugs with IC50 < 133 μM are defined as BSEP inhibitors.
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Table 3

Computational models of small molecule interactions with bile acid transporters

Transporter Model description External Accuracya Data sizeb (train/test) Reference

BSEP %inhibition at 100μM R2=0.95 37/0 Saito et al 2009125

BSEP Classification of inhibitors at 300μM 87% 437/187 Warner et al 2012121

MRP2 Binding affinity, Ki R2=0.82 20/5 Ng et al 2005129

MRP2 Classification of inhibitors at 80μM 72% 79/39 Pedersen et al 2008126,127

MRP2 Classification of inhibitors 74–77% 257/61 Zhang et al 2009127

MRP2 Classification of substrates 87% 150/38 Sedykh et al 2013128

MRP2 Classification of inhibitors at 10μM 89% 77/19 Sedykh et al 2013128

MRP3 Classification of substrates 98% 50/12 Sedykh et al 2013128

MRP4 Classification of substrates 92% 74/18 Sedykh et al 2013128

MRP4 Classification of inhibitors at 10μM 70% 51/13 Sedykh et al 2013128

ASBT Binding affinity, Ki R2=0.73 29/1 Gonzalez et al 2009137

ASBT Classification of inhibitors at 100μM 54–88% 38/19–30 Zheng et al 2009133

ASBT Binding affinity, Ki R2=0.68 23/4 Zheng et al 2010134

ASBT Binding affinity, Ki R2=0.89
32/1 Rais et al 2010135,136

Transport constraints, Km/Vmax R2=0.68

ASBT Classification of substrates 93% 80/20 Sedykh et al 2013128

ASBT Classification of inhibitors at 10μM 92% 120/30 Sedykh et al 2013128

NTCP Ligand-based 3D pharmacophore 60% 5/10 Greupink et al 2012138

OATP1B1

Classification of inhibitors at 20μM

81–93% 98/48 Karlgren et al 2012132,155

OATP1B1 79% 134/67 Karlgren et al 2012132

OATP1B3 92% 125/62 Karlgren et al 2012132

OATP2B1 75% 118/60 Karlgren et al 2012132

OATP2B1 Classification of inhibitors at 100μM 80% 109/27 Sedykh et al 2013128

OATP2B1 Classification of substrates 75% 42/11 Sedykh et al 2013128

a
Accuracy of the model when evaluated on external data (i.e., data not known to the model)

b
Number of data points (i.e., distinct molecules) available for modeling
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Table 4

Computational models of PXR and FXR activation

Model description External Accuracya Data sizeb (train/test) Reference

Pregnane X Receptor (PXR)

Classification of agonists at 100 μM 73–87% 175/15 Ung et al 2007156

Classification of agonists at 100 μM 63–67% 177/145 Khandelwal et al 2008141

Classification of agonists at 100 μM 72–81% 168/130 Kortagere et al 2009142

Classification of agonists at 10μM 77%
95/20 Ekins et al 2009139

Activation, EC50 R2=0.45

Classification of agonists (0.5nM – 38.3μM) 82–85% 316/315 Dybdahl et al 2012157

Classification of agonists at 100μM
85% 405/29

Matter et al 201214578% 586/50

Activation, EC50 R2=0.45 273/33

Farnesoid X Receptor (FXR)

Activation by non-steroidal agonists, EC50 R2=0.76 82/20 Honorio et al 2005143,158

Activation by non-steroidal agonists, EC50 R2=0.77 77/20 Honorio et al 2007143

Activation by non-steroidal agonists, EC50 R2=0.93 58/10 Zhang et al 2007144

Structure-Activity relationship analysis - 50/0 Genet et al 2010159

Classification of agonists at 100μM by structure-based 
pharmacophores 73% −/221

Shuster et al 2011146

Grienke et al 2011147

a
Accuracy of the model when evaluated on external data (i.e., data not known to the model)

b
Number of data points (i.e., distinct molecules) available for modeling
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