J Nutrigenet Nutrigenomics 2010;3:259–2	Reprinted with permission
DOI: 10.1159/000324362 Published online: April 6, 2011	© 2011 S. Karger AG, Basel
	www.karger.com/jnn

Originally published: Simopoulos AP, Milner JA (eds): Personalized Nutrition. World Rev Nutr Diet. Basel, Karger, 2010, vol 101, pp 123–130

Dietary Methyl Deficiency, microRNA Expression and Susceptibility to Liver Carcinogenesis

Athena Starlard-Davenport^a Volodymyr Tryndyak^a Oksana Kosyk^b Sharon R. Ross^c Ivan Rusyn^b Frederick A. Beland^a Igor P. Pogribny^a

^aDivision of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Ariz., ^bDepartment of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, N.C., and ^cDivision of Cancer Prevention, National Cancer Institute, Bethesda, Md., USA

MicroRNAs (miRNAs) are small 21–25 nucleotide-long non-coding RNAs that have emerged as key negative post-transcriptional regulators of gene expression [1, 2]. Currently there are more than 700 mammalian miRNAs that can potentially target up to one-third of protein-coding human genes [1] involved in diverse physiological and pathological processes, including cancer [3, 4]. Indeed, aberrant levels of miRNAs have been reported in all major human malignancies [5, 6]. In tumors, altered expression of miRNAs has been demonstrated to inhibit tumor suppressor genes or inappropriately activate oncogenes and has been associated with every aspect of tumor biology, including tumor progression, invasiveness, metastasis, and acquisition of resistance by malignant cells to chemotherapeutic agents [3, 4, 7, 8]. These observations lead to the suggestion that aberrant expression of miRNAs may contribute to tumorigenesis [9]. However, most of the tumor-miRNA-related studies are based on expression analysis of miRNAs in tumors in comparison with corresponding adjacent normal tissues [4–6]. The altered expression of any given miRNA in neoplastic cells is not sufficient to address conclusively the role of these changes in tumorigenesis [10]. Additionally, despite the established biological significance of miRNA dysregulation in neoplastic cells, there is a lack of knowledge on the role of miRNAs during early stages of tumor development, especially if variations in the expression of specific miRNAs are associated with differences in the susceptibility to tumorigenesis.

259

Journal of	J Nutrigenet Nutrigenomics 2010;3:259–266		
Nutrigenomics	DOI: 10.1159/000324362 Published online: April 6, 2011	© 2011 S. Karger AG, Basel www.karger.com/jnn	260

Starlard-Davenport et al.: Dietary Methyl Deficiency, miRNA Expression and Liver Carcinogenesis

In light of these considerations, the goals of this study were to: (1) define the role of miRNA dysregulation in early stages of liver carcinogenesis, and (2) determine how these alterations in miRNA expression may be mechanistically linked to the pathogenesis of liver cancer induced by dietary methyl deficiency.

Materials and Methods

Animals, Diets and Experimental Design

Male C57BL/6J and DBA/2J mice (Jackson Laboratory, Bar Harbor, Me., USA) were housed in sterilized cages in a temperature-controlled room (24°C) with a 12-hour light/dark cycle, and given ad libitum access to purified water and NIH-31 pelleted diet (Purina Mills, Richmond, Ind., USA). At 8 weeks of age, the mice from each strain were allocated randomly into 2 groups, 1 control and 1 experimental. The mice in the experimental group were maintained on a low methionine (0.18%) diet, lacking in choline and folic acid (Dyets Inc, Bethlehem, Pa., USA) for 12 weeks. The mice in the control group received a diet supplemented with 0.4% methionine, 0.3% choline bitartrate and 2 mg/kg folic acid. Diets were stored at 4°C and given ad libitum, with twice a week replacement. Five experimental and 5 control mice were sacrificed at 12 weeks after diet initiation. The livers were excised, frozen immediately in liquid nitrogen, and stored at –80°C for subsequent analyses. All animal experimental procedures were carried out in accordance with the animal study protocol approved by the National Center for Toxicological Research Animal Care and Use Committee.

RNA Extraction and miRNA Microarray Expression Analysis

Total RNA was extracted from the liver tissue using miRNAeasy Mini Kit (Qiagen, Valencia, Calif, USA) according to the manufacturer's instructions. The miRNA microarray analysis was performed by LC Sciences (Houston, Tex., USA), as reported previously in detail [11].

miRNA Expression Analysis by Quantitative Reverse Transcription Real-Time PCR

Total RNA (200 ng) was used for qRT-PCRs of the miR-29c, miR-34a, miR-122, miR-155, miR-192, miR-200b, miR-203 and miR-221, utilizing TaqMan miRNA assays (Applied Biosystems, Foster City, Calif., USA), according to the manufacturer's instructions. snoRNA202 was used as an endogenous control. The relative amount of each miRNA was measured using the $2^{-\Delta\Delta Ct}$ method [12]. All qRT-PCR reactions were conducted in triplicate and repeated twice.

Gene Expression Analysis by qRT-PCR

Total RNA (10 μ g) was reverse transcribed using random primers and a high-capacity cDNA archive kit (Applied Biosystems), according to the manufacturer's protocol. The expression of the α -smooth muscle actin (α -Sma) gene was measured by qRT-PCR, using Taqman[®] gene expression assay (Mm00725412_s1; Applied Biosystems).

Western Blot Analysis of Protein Expression

The levels of cyclin G1 (Ccng1), cyclogenase 2 (Cox2), E2F transcription factor 3 (E2f3), and CCAAT enhancer binding protein beta (C/ebp- β) proteins were determined by Western immunoblot analysis [13].

Statistical Analysis

Results are presented as mean \pm SD. Statistical analyses were conducted by 1-way ANOVA, using treatment and weeks as fixed factors. Pair-wise comparisons were conducted by the Student-Newman-Keuls test. p values <0.05 were considered significant.

Nutrigenetics Nutrigenomics

Nutrigenet Nutrigenomics 2010;3:259–266	
DOI: 10.1159/000324362	© 2011 S. Karger AG, Basel
Published online: April 6, 2011	www.karger.com/jnn
Starlard-Davenport et al.: Dietary Methyl Deficiency, miRN	A Expression and Liver Carcinogenesis

Results and Discussion

Dysregulation of miRNAs in the Livers of C57BL/6J Mice Fed a Methyl-Deficient Diet miRNA microarrays were used to analyze the miRNA expression profiles in the livers of control C57BL/6J mice and C57BL/6J mice fed a methyl-deficient diet that causes a liver pathological state similar to human nonalcoholic fatty liver disease [14]. We identified 74 miRNAs (40 up-regulated and 34 down-regulated) that were differentially expressed (p < 0.05), including miR-15a, miR-29c, miR-30a, miR-34a, miR-101a, miR-107, miR-122, miR-155, miR-200b, miR-200c, miR-221, miR-222 and miR-224 in the livers of the C57BL/6J methyl-deficient mice (fig. 1a). The results obtained by miRNA microarray analysis were confirmed by qRT-PCR (fig. 2a).

Functions of Dysregulated miRNAs

Dysregulated miRNAs are known to affect cell proliferation, apoptosis, lipid metabolism, oxidative stress, DNA methylation and inflammation. These processes are substantially compromised in pathological states associated with hepatocarcinogenesis. Specifically, it is well-established that altered lipid metabolism, oxidative stress, apoptosis and epigenetic alterations may directly trigger hepatic steatosis, a condition that has been shown to progress to hepatocellular carcinoma [15–17].

Among the down-regulated miRNAs, miR-15a, miR-30a, miR-101a and miR-122 are of particular interest. Previously, we and other investigators have demonstrated a substantial down-regulation of liver-specific miR-122 during liver carcinogenesis and in primary hepatocellular carcinomas [18–21]. Recently, a significant decrease in miR-122 expression has been observed in individuals with non-alcoholic steato-hepatitis [22]. The down-regulation of miR-122 in the livers of C57BL/6J mice fed a methyl-deficient diet was accompanied by increased level of Ccng1 protein (fig. 1b). The altered expression of CCNG1 [19] and other confirmed targets of miR-122, such as fatty acid synthase [22, 23], sterol regulatory element-binding protein-1c [22, 23], cationic amino acid transporter (CAT1; SLC7A1) [24], and BCL-W, an anti-apoptotic member of BCL2 family member [25], has frequently been observed during hepato-carcinogenesis and has been attributed to the pathogenesis of liver cancer.

Feeding C57BL/6J mice a methyl-deficient diet for 12 weeks resulted in decreased expression of miR-101a and miR-101b (fig. 1a). One of the confirmed targets for miR-101a is Cox-2 [26], which is substantially up-regulated in the livers of mice exposed to the methyl-deficient diet (fig. 1b). The increased expression of COX-2 has been detected during human and rodent liver tumor development [27, 28] and is currently considered as an attractive target for chemoprevention during early stages of hepatocarcinogenesis. Additionally, recent evidence has demonstrated that miR-101 targets FBJ murine osteosarcoma viral oncogene homolog (FOS) oncogene [29], a key component of the liver oncogenic network [30].

Another down-regulated miRNA in the livers of mice fed the methyl-deficient diet is miR-15a, one of the first miRNA's discovered to be dysregulated in cancer [31].

J Nutrigenet Nutrigenomics 2010;3:259–266	
DOI: 10.1159/000324362	© 2011 S. Karger AG, Basel
Published online: April 6, 2011	www.karger.com/jnn

Starlard-Davenport et al.: Dietary Methyl Deficiency, miRNA Expression and Liver Carcinogenesis

Fig. 1. Dysregulation of miRNA expression in the livers of C57BL/6J mice fed a methyl-deficient diet for 12 weeks. **a** Hierarchical clustering of the differentially expressed miRNA genes (as determined by ANOVA) in the livers of control and methyl-deficient (MD) mice. Rows show miRNA, while columns show independent biological replicates. For each miRNA red indicates high expression levels and green indicates low expression levels. Each miRNA listed is significantly differentially expressed (p < 0.05; n = 3). **b** Western blot analysis of Ccng1 (miR-122), COX-2 (miR-101a), E2f3 (miR-34a and miR-200b) and Cebp/ β (miR-155) proteins in the livers of control and methyl-deficient mice. **c** qRT-PCR analysis of *a*-*Sma* gene in the livers of control and methyl-deficient mice (mean ± SD; n = 5). **d** Apoptotic cell death in the livers of control and methyl-deficient mice as detected by TUNEL assay (mean ± SD; n = 5). 262

J Nutrigenet Nutrigenomics 2010;3:259–266	
DOI: 10.1159/000324362 Published online: April 6, 2011	© 2011 S. Karger AG, Basel www.karger.com/jnn
Starlard-Davenport et al.: Dietary Methyl Deficiency, miR	RNA Expression and Liver Carcinogenesis

C57BL/6J 3.5 8 Control MD diet 3.0 7 6 2.5 5 ⁻old change 2.0 4 1.5 3 1.0 2 0.5 1 0 0 miR-29c miR-122 miR-192 miR-203 miR-221 miR-34a miR-200b miR-155 а DBA/2J 3.0 25 □ Control MD diet * * * 2.5 20 2.0 * * * ⁻old change 15 1.5 10 1.0 5 0.5 0 0 b miR-29c miR-122 miR-192 miR-203 miR-221 miR-34a miR-200b miR-155

Fig. 2. qRT-PCR analysis of differentially expressed miRNAs in the livers of control C57BL/6J (**a**) and DBA/2J mice (**b**) and mice fed a methyl-deficient diet (MD) for 12 weeks. * Significantly different from control mice. ** Significantly different from C57BL/6J methyl-deficient mice (mean \pm SD; n = 5).

miR-15a targets multiple oncogenic pathways, including BCL2, cyclin D1 (CCND1) and WNT3A signaling [31], a pathway that triggers the activation of hepatic stellate cells and progression of hepatic fibrosis [32]. miR-107 [20] and let-7a and let-7d [33], which are down-regulated (miR-107) and up-regulated (let-7a and let-7d) in the livers of methyl-deficient mice (fig. 1a), have also been associated with the pathogenesis of hepatic steatosis, fibrosis and hepatocarcinogenesis. Indeed, figure 1c shows an increase in expression of the α -Sma gene, a marker of hepatic stellate cell activation and fibrosis development [34] in the livers of mice fed the methyl-deficient diet.

J Nutrigenet Nutrigenomics 2010;3:259–266	
DOI: 10.1159/000324362 Published online: April 6, 2011	© 2011 S. Karger AG, Basel www.karger.com/jnn
	J Nutrigenet Nutrigenomics 2010;3:259–266 DOI: 10.1159/000324362 Published online: April 6, 2011

Starlard-Davenport et al.: Dietary Methyl Deficiency, miRNA Expression and Liver Carcinogenesis

miR-34a, miR-155, miR-200b and miR-221 were the most up-regulated miRNAs among the differentially expressed miRNAs in the livers of methyl-deficient C57BL/6J mice (figs. 1a and 2). The transcription factor E2f3, a critical regulator of the p53 network, is one of the targets for these miRNAs as reported in Targetscan 5.1 (www.targetscan.org) and in other reports [35, 36]. Furthermore, there is a solid connection between miR-34 and the p53 apoptotic pathway [37–39], which plays a pivotal role in the pathogenesis of liver injury regardless of its etiology, and especially in non-alcoholic hepatosteatitis [40, 41]. Figure 1d shows the increased apoptosis in the livers of C57BL/6J mice fed a methyl-deficient diet. Additionally, recent evidence has demonstrated the importance of miR-34a, not only in apoptosis, but also in non-apoptotic cell death in vivo [42].

The over-expression of miR-155 and miR-221 has been frequently detected during tumor development [43, 44]. The up-regulation of these miRNAs has been associated with activation of the extracellular signal-regulated (ERK) and phosphatidylinositol 3-kinase (PI3)-AKT pathways, 2 pathways frequently disturbed during liver tumorigenesis. Furthermore, the results of a recent study have demonstrated that miR-221 targets and down-regulates pro-apoptotic BCL2-modifying factor during human hepatocarcinogenesis [45]. It is well-established that one of the hallmarks of the carcinogenic process is a dysregulation of cell proliferation and apoptosis [46]. In this context, the altered expression of miR-34a, miR-155, miR-200b and miR-221 in the livers of methyl-deficient mice illustrates the critical role of miRNA in the disruption of the delicate balance between cell division and apoptosis during carcinogenesis.

In a previous study [17], we demonstrated that feeding DBA/2J mice a lipogenic methyl-deficient diet resulted in more prominent pathomorphological and molecular changes in the livers, including DNA hypomethylation, a greater severity of steatosis and necrosis, and oval cell proliferation, as compared to C57BL/6J mice. Interestingly, we detected strain-specific significant differences in the expression of miR-29c, miR-34a, miR-155 and miR-200b in the livers of C57BL/6J (fig. 2a) and DBA/2J methyl-deficient mice (fig. 2b). Specifically, the expression of miR-34a, miR-155 and miR-200b in the livers of DBA/2J mice fed the methyl-deficient diet was, respectively, 4.9, 5.9 and 3.0 times greater than in methyl-deficient C57BL/6J mice. Likewise, the livers of C57BL/6J mice were characterized by a more pronounced down-regulation of miR-29c. The aberrant expression of these miRNAs is associated with an altered DNA methylation status (miR-29c), increased cell death (miR-34a and miR-200b), and liver steatosis and fibrosis (miR-155). miR-155, which was the most differentially expressed miRNA in the livers of DBA/2J and C57BL/6J mice fed the methyl-deficient diet, activates the AKT signaling pathway [47], triggering oval cell proliferation [48], a fundamental event in hepatocarcinogenesis.

In conclusion, these findings demonstrate that alterations in expression of miRNAs are a prominent event during early stages of liver carcinogenesis induced by methyl deficiency and strongly suggest that differences in the susceptibility to liver carcinogenesis may be determined by the variations in miRNA expression response. More

264

© 2011 S. Karger AG, Basel
www.karger.com/jim
© : // / xp

importantly, our data provide a mechanistic link between alterations in microRNA expression and the pathogenesis of liver cancer.

Disclaimer

The views presented in this chapter do not necessarily represent those of the US Food and Drug Administration.

References

- 1 Bartell DP: MicroRNAs: genomics, biogenesis, and function. Cell 2004;116:281–297.
- 2 Guarnieri DJ, DiLeone RJ: MicroRNAs: a new class of gene regulators. Ann Med 2008;40:197–208.
- 3 Ventura A, Jacks T: MicroRNAs and cancer: short RNAs go a long way. Cell 2009;136:586–591.
- 4 Garzon R, Calin GA, Croce CM: MicroRNAs in cancer. Annu Rev Med 2009;60:167–179.
- 5 Lu J, Getz G, Miska EA, et al: MicroRNA expression profiles classify human cancers. Nature 2005;435: 834–838.
- 6 Calin GA, Croce CM: MicroRNA signatures in human cancers. Nat Rev Cancer 2006;6:857–866.
- 7 Ma L, Teruya-Feldstein J, Weinberg RA: Tumor invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 2007;449:682–688.
- 8 Zheng T, Wang J, Chen X, Liu LX: Role of microRNA in anticancer drug resistance. Int J Cancer 2010; 126:2–10.
- 9 Osada H, Takahashi T: MicroRNAs in biological processes and carcinogenesis. Carcinogenesis 2007;28:2–12.
- 10 Kent OA, Mendell JT: A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 2006;25:6188–6196.
- Pogribny IP, Tryndyak VP, Boyko A, et al: Induction of microRNAome deregulation in rat liver by longterm tamoxifen exposure. Mutat Res 2007;619:30– 37.
- 12 Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\Delta\Delta Ct}$ method. Methods 2001;25:402–408.
- 13 Pogribny IP, Muskhelishvili L, Tryndyak VP, Beland FA: The tumor-promoting activity of 2-acetylaminofluorene is associated with disruption of the p53 signaling pathway and the balance between apoptosis and cell proliferation. Toxicol Appl Pharmacol 2009;235:305–311.
- 14 Anstee QM, Goldin RD: Mouse models in nonalcoholic fatty liver and steatohepatitis research. Int J Exp Pathol 2006;87:1–16.

- 15 Farrell GC, Larter CZ: Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology 2006; 43:S99–S112.
- Erickson SK: Nonalcoholic fatty liver disease. J Lipid Res 2009;50:S412–S416.
- 17 Pogribny IP, Tryndyak VP, Bagnyukova TV, et al: Hepatic epigenetic phenotype predermines individual susceptibility to hepatic steatosis in mice fed a lipogenic methyl-deficient diet. J Hepatol 2009;51: 176–186.
- 18 Kutay H, Bai S, Datta J, et al: Down-regulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem 2006;99:671–678.
- 19 Gramantieri L, Ferrracin M, Fornari F, et al: Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res 2007;67:6092–6099.
- 20 Ladeiro Y, Couchy G, Balabaud C, et al: MicroRNA profiling in hepatocellular tumors is associated with clinical fetures and oncogene/tumor suppressor gene mutations. Hepatology 2008;47:1955–1963.
- 21 Coulouarn C, Factor VM, Andersen JB, Durkin ME, Thorgeirsson SS: Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene 2009;28:3526–3536.
- 22 Cheung O, Puri P, Eicken C, et al: Nonalcoholic steatohepatitis is associated with altered hepatic microRNA expression. Hepatology 2008;48:1810– 1820.
- 23 Mitsuyoshi H, Yasui K, Harano Y, et al: Analysis of hepatic genes involved in the metabolism of fatty acids and iron in non-alcoholic fatty liver disease. Hepatol Res 2009;39:366–373.
- 24 Chang J, Nicolas E, Marks D, et al: miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol 2004;1:106–113.

DOI: 10.1159/000324362

Published online: April 6, 2011

genesis 2002;23:245-256. Sung YK, Hwang SY, Kim JO, et al: The correlation 28 between cyclooxygenase-2 expression and hepatocellular carcinogenesis. Mol Cells 2004;17:35-38.

25 Lin CJ, Gong HY, Tseng HC, Wang WL, Wu JL:

Biophys Res Commun 2008;375:315-320.

miR-122 targets an anti-apoptotic gene, Bcl-w, in

human hepatocellular carcinoma cell lines. Biochem

Tanaka T, Haneda S, Imakawa K, Sakai S, Nagaoka

K: A microRNA, miR-101a, controls mammary

gland development by regulating cyclooxygenase-2 expression. Differentiation 2009;77:181-187.

Denda A, Kitayama W, Murata A, et al: Increased

expression of cycloogenase-2 protein during rat

- 29 Li S, Fu H, Wang Y, et al: MicroRNA-101 regulates expression of the v-fos FBJ murine osteosarcoma viral oncogene homolog (FOS) oncogene in human hepatocellular carcinoma. Hepatology 2009;49: 1194-1202.
- Caselmann WH: Transactivation of cellular gene 30 expression by hepatitis B viral proteins: a possible molecular mechanism of hepatocarcinogenesis. J Hepatol 1995;22:34-37.
- 31 Ageilan RI, Calin GA, Croce CM: miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ 2009;17:215-220.
- 32 Myung Sj, Yoon JH, Gwak GY, et al: Wnt signaling enhances the activation and survival human hepatic stellate cells. FEBS Lett 2007;581:2954-2958.
- 33 Mott JL: MicroRNAs involved in tumor suppressor and oncogene pathways: implications for hepatobiliary neoplasia. Hepatology 2009;50:630-637.
- 34 Lefkowitch JH: Hepatobiliary pathology. Curr Opin Gastroenterol 2006;22:198-208.
- 35 Welch C, Chen Y, Stallings RL: MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 2007;26:5017-5022.
- Tazawa H, Tsuchiya N, Izumiya M, Nakagawa H: 36 Tumor-suppressive miR34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA 2007;104:15472-15477.

37 He L, He X, Lim LP, et al: A microRNA component of the p53 tumour suppressor network. Nature 2007;447:1130-1134.

© 2011 S. Karger AG. Basel

www.karger.com/inn

- 38 Raver-Shapira N, Marciano E, Meiri E, et al: Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 2007;26:731-743.
- 39 Yamakuchi M, Ferlito M, Lowenstein CJ: miR-34a repression of SIRT1 regulates apoptosis. Pric Natl Acad Sci USA 2008;105:13421-13426.
- 40 Wieckowska A, Zein NN, Yerian LM, et al: In vivo assessment of liver cell apoptosis as a novel biomarker of disease severity in nonalcoholic fatty liver disease. Hepatology 2006;44:27-33.
- Farrell GC, Larter CZ, Hou JY, et al: Apoptosis in 41 experimental NASH is associated with p53 activation and TRAIL receptor expression. J Gastroenterol Hepatol 2009;24;443-452.
- 42 Kato M, Paranjape T, Ullrich R, et al: The miR-34 microRNA is required for the DNA damage response in vivo in C. elegans and in vitro in human breast cancer cells. Oncogene 2009;28:2419-2424.
- Gramantieri L, Fornari F, Callegari E, et al: 43 MicroRNA involvement in hepatocellular carcinoma. J Cell Mol Med 2008;12:2189-2204.
- Faraoni I, Antonetti FR, Cardone J, Bonmassar E: 44 miR-155 gene: a typical multifunctional microRNA. Biochim Biophys Acta 2009;1792:497-505.
- 45 Gramantieri L, Fornari F, Ferracin M, et al: MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality. Clin Cancer Res 2009;15:5073-5081.
- 46 Hanahan D, Weinberg RA: The hallmarks of cancer. Cell 2000;100:57-70.
- Yamanaka Y, Tagawa H, Takahashi N, et al: Aberrant 47 overexpression of microRNAs activate AKT signaling via downregulation of tumor suppressors in NK-celllymphoma/leukemia. Blood 2009;114:3265-3275.
- 48 Okano J, Shiota G, Matsumoto K, et al: Hepatocyte growth factor exerts a proliferative effect on oval cells through the PI3/AKT signaling pathway. Biochem Biophys Res Commun 2003;309:298-304.

Journal of Nutrigenetics Nutrigenomics

26

27

Starlard-Davenport et al.: Dietary Methyl Deficiency, miRNA Expression and Liver Carcinogenesis