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Abstract
The classical oscillatory shear wave model of Ferry et al. [J. Polym. Sci. 2:593-611, (1947)] is
extended for active linear and nonlinear microrheology. In the Ferry protocol, oscillation and
attenuation lengths of the shear wave measured from strobe photographs determine storage and loss
moduli at each frequency of plate oscillation. The microliter volumes typical in biology require
modifications of experimental method and theory. Microbead tracking replaces strobe photographs.
Reflection from the top boundary yields counterpropagating modes which are modeled here for linear
and nonlinear viscoelastic constitutive laws. Furthermore, bulk imposed strain is easily controlled,
and we explore the onset of normal stress generation and shear thinning using nonlinear viscoelastic
models. For this paper, we present the theory, exact linear and nonlinear solutions where possible,
and simulation tools more generally. We then illustrate errors in inverse characterization by
application of the Ferry formulas, due to both suppression of wave reflection and nonlinearity, even
if there were no experimental error. This shear wave method presents an active and nonlinear analog
of the two-point microrheology of Crocker et al. [Phys. Rev. Lett. 85: 888 - 891 (2000)]. Nonlocal
(spatially extended) deformations and stresses are propagated through a small volume sample, on
wavelengths long relative to bead size. The setup is ideal for exploration of nonlinear threshold
behavior.
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1 Introduction
A classical [6,8,1] method for linear viscoelastic characterization of gels and polymer solutions
is based upon measurements of the unidirectional propagation of shear waves induced by an
oscillating plate. The experimental technique and associated modeling and analysis are
extensively discussed in the literature [30,7,2,13,14]. Linear viscoelastic constitutive equations,
coupled with momentum balance and boundary conditions, yield an exact solution for a semi-
infinite domain. In the original method, strain-induced birefringence of synthetic polymers
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allows visualization and strobe photography of the propagating shear wave. The measured
shear wave oscillation and attenuation lengths are explicitly related to frequency-dependent
shear and loss moduli. These formulas are recalled in Section 2.

Practical experimental apparatus of course uses a finite depth of fluid and shear waves reflect
off the upper boundary. The effect of such reflections can be neglected as long as the
exponential attenuation length of the shear wave is much shorter than the liquid layer depth;
see [7], Chapter 5. The advantage of the Ferry design over various other devices carried over
from acoustics, which involve interpreting surface signals, lies in the ability to strobe the entire
shear wave as it progresses through the viscoelastic medium. The method is therefore effective
if the material is birefringent under strain, and available in sufficient volumes. Linear response
is ostensibly controlled in the bulk by imposing sufficiently small amplitude displacements,
yet the possibility of large local strains near the source plate is evident even in the classical
photographs.

When considering the problem of viscoelastic characterization of biological fluids, the
hypotheses underlying the Ferry method break down. Typically, samples contain only a few
microliters, and finite depth effects are important. Strobe photography is impractical. Nonlinear
viscoelastic behavior is conjectured to have biological implications. Hence, a method to assess
nonlinear effects is required.

Another implication of the inherent small length scales encountered in biology is that two
different approaches to rheometry are possible. In classic rheometry at length scales much
greater than microscopic free-path lengths, some sort of external forcing must be imposed on
a fluid to study its response. However, at small length scales one can measure the response of
a fluid to random thermal forcing, an approach known as passive microrheometry. Of course,
the response to externally imposed forcing can also be studied and this is known as active
microrheometry. Passive microrheometry must account for the stochastic forcing and also for
the observation [4] that bulk behavior might not be correctly captured by techniques which use
point measurements (e.g. single bead tracking techniques, [19]).

Our primary interest is the viscoelastic characterization of pulmonary liquids as part of the
Virtual Lung Project at UNC Chapel Hill [31]. Hill and Superfine [11] have developed an
active microrheometry technique based upon an oscillating plane Couette cell, similar in
principle to the Ferry setup. Rather than rely upon visualization due to strain-induced
birefringence, Hill and Superfine [11] mix micron-scale, neutrally buoyant beads and use
particle-tracking to measure shear wave propagation features. This method is appealing for the
following reasons.

• The setup mimics the in vivo conditions of oscillatory transport of pulmonary mucus
by coordinated cilia and tidal breathing cycles. In Fig. 1 a schematic of the idealized
biological configuration is presented in which multiple cilia beat in a coordinated
fashion to impose an oscillatory motion at the bottom of a viscoelastic fluid layer.
The more complicated geometry of the true biological system should not play a role
in bulk viscoelastic characterization. Cilia are closely spaced on lung epithelial tissue
with ∼0.5 μm a typical distance between adjacent cilia, whereas the depth of the fluid
layer is approximately 30 μm. At the low Reynolds numbers of interest, viscous effects
rapidly smooth out the traces of excitation by individual cilia and the fluid appears as
if put into motion by a flat plate.

• The bead position time series are dominated by non-local deformations and stresses
rather than local thermal forcing of the bead by the fluid. The signals are deterministic
rather than stochastic, and more accurately capture bulk behavior (similar to 2-point
passive microrheology [4]). The viscoelastic response of the biological fluid can
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exhibit scale-dependent behavior, but the Couette cell models the excitation of the
entire depth of fluid by coordinated cilia beating, the normal mechanism for mucus
transport.

• It is straightforward to include one-dimensional heterogeneity (stratification) effects
both in the experiment and in the theoretical development presented below, enabling
an experimental-modeling protocol for nonlinear inverse characterization at the low
stress levels typical in human physiology.

• Both linear and nonlinear behavior can be investigated by controlling the lower plate
oscillation amplitude. Shear thining and normal stress generation are phenomena
specific to nonlinear viscoelastic fluids. We explore how to recognize the onset of
nonlinear behavior as the plate-induced strain increases.

The modeling and assessment of counterpropagating waves and nonlinearity versus imposed
strain, especially in regard to inverse characterization, are the primary contributions of this
paper. We show in the present paper that accuracy of the classical Ferry formulas varies
significantly depending on viscoelastic moduli versus frequency, imposed displacement
amplitude, and sample height. For example, a conservative estimate of wave speeds for
30μm thick samples of a viscoelastic material, based on reported ranges of bulk moduli in
pulmonary liquids, indicates multiple wave reflections within each period of plate oscillation
in 10 – 20Hz frequency range. From simulated finite depth data for prescribed viscoelastic
moduli, thereby removing any experimental error, we show that fitting to formulas based on
unidirectional waves can lead to enormous errors in inverse recovery of the moduli.

The key issue motivating this paper is whether the assumptions of the Ferry model, linearity
and a semi-infinite domain, are approximately satisfied under experimental conditions with
limited volumes. More precisely, we assess accuracy of the linear, semi-infinite assumption
across a multiple parameter space: storage and loss moduli versus frequency, gap height, and
plate displacement amplitude. The infinite depth assumption is surely not valid, so the first
target is to assess the order of errors in storage and loss moduli across some frequency range,
due to this effect alone. Next, we aim to characterize the threshold strain (imposed by the lower
plate displacement relative to sample height) at which nonlinear effects become significant,
and to assess measurable flow and stress features triggered by nonlinearity. It is hypothesized
that normal stresses in shear, a standard signature of nonlinearity, play an important role in
pulmonary liquid transport by coordinated cilia and coughing events. A possible scenario is
that normal and shear stresses propagate from the mucus and periciliary liquid layer to the
epithelium, causing cellular compressive and shear strain, serving to regulate biochemical
feedback. The role of shear thinning in pulmonary transport is not known, so a method is
desirable that can simply ascertain whether a given sample shear thins under controlled strain
conditions.

The remainder of this paper is organized as follows. Section 2 gives a summary of models,
from linear–viscous to nonlinear–viscoelastic. Section 3 contains analytical results, including
exact solutions and formulas for linear and nonlinear, semi-infinite and finite depth, models,
as well as analysis of well-posed boundary conditions for the nonlinear models. Section 4
contains numerical studies of the two nonlinear models, their comparison to linear models and
one other, and a discussion of physical predictions.

2 Shear wave models
2.1 Physical parameters and non-dimensionalization

We consider a layer of incompressible fluid of height H ͂, set into motion by an oscillating lower
flat plate, and whose upper surface remains flat and parallel to the lower plate. The ∼ superscript
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will be used to denote quantities expressed in physical units. The lower plate is set into harmonic
motion V͂(t͂) = V͂0 sin(ῶt͂), as illustrated in Figure 1.

A reference viscosity ῆ0 value is chosen for the fluid of interest, namely the zero strain-rate
viscosity of the fluid. The reference length A͂ = V͂0/ῶ is the maximum displacement of the driven
plate; the reference time ῶ−1 is set by the plate frequency; and the reference stress ῆ0ῶ is the
viscous plate shear stress. With this choice, the non-dimensional velocity of the lower plate is
given by vx(0, t) = V (t) = sin(t), where vx(y, t) denotes the velocity component of the fluid in
the direction of plate motion at height y. It is a property of the model equations that with this
scaling, we can focus on the 2-parameter space of values of storage and loss moduli, and make
general statements about errors in recovering the moduli that depend only on the pair of values,
independent of the imposed frequency. We return later to the practical implications of this
scaling property. Let λ ͂ be the relaxation time of the material. The following dimensionless
parameters arise in the model equations:

• Reynolds number Re = ρ͂ῶA͂2/ῆ0

• Deborah number λ = λ ͂ῶ

• Bulk shear strain γ = A͂/H͂.

2.2 Equations of motion
By symmetry, the one-dimensional propagation of velocity and stress leads to the following
reductions in flow and stress variables, all functions only of t and the height y between the two
flat surfaces. The fluid pressure p and velocity components are

(1)

From vx(y, t), we may construct transient particle displacements X(y, t) at each height (y) in the
layer,

(2)

for given initial conditions X(y, 0).

The fluid motion is determined from the non-dimensional momentum equation,

(3)

together with a constitutive law for the extra stress, τ, which likewise is assumed to depend
only on t and y,

(4)
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To close the system for (p, vx, τ)(y, t), we require the constitutive law relating τ and ∇v. A
hierarchy of laws has been discussed in standard texts [7], [2,16], the elements of which we
now recall, mainly to present equations in the non-dimensional variables adopted here.

Newtonian Viscous Fluid—For viscous fluids, the Navier-Stokes constitutive law is τxy =
∂vx/∂y (the viscosity coefficient does not appear due to the scaling, 2.1) and the momentum
equation (3) reduces to

(5)

Linear Viscoelastic Fluids—The constitutive law of linear viscoelasticity (the Lodge
model) is

(6)

where G(t) is the non-dimensional shear relaxation modulus function. In physical units we have
G ͂ = ῆ0ῶG. The momentum equation (3) becomes

(7)

For a single-mode Maxwell fluid the shear modulus is G(t) = (ηp/λ) e−t/λ in non-dimensional
form (ηp = ῆp/ῆ0), and equation (7) simplifies to a damped wave (telegraphers) equation for
vx (cf. [7, 2]),

(8)

Upper Convected Maxwell and Giesekus Models of Nonlinear Viscoelasticity—
We consider nonlinear effects introduced by the upper convected derivative

(9)

and shear thining [2,16]. The constitutive relationship is a differential equation

(10)

In this type of model the additional polymeric stress τ is transported by the velocity field v,
decays exponentially at rate λ, is produced by the solvent fluid rate of strain
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 (non-dimensional), and is nonlinearly modified through the Giesekus term
(a/λ) τ τ. The Giesekus “mobility parameter” a distinguishes various viscoelastic models: a =
0 reduces to the upper convected Maxwell (UCM) model, while a = 0.5 is the Leonov model.
In general, it is assumed that 0 ≤ a ≤ 1, and the mobility parameter is to be fitted from data
along with λ.

The coupled system formed by the momentum and stress transport equations can be written as
an evolution equation,

(11)

with

together with the pressure equation

(12)

As in the Newtonian fluid case, there is no convective nonlinearity in the momentum equation
itself. An important indicator of nonlinearity is the shear-induced generation of a non-zero first
normal stress difference, N1 = τxx − τyy, an easily measured feature. The presence of a normal
stress gradient along the y-direction then generates a pressure gradient, absent in the linear
model. Indeed, neglecting all nonlinear terms from (equation 11) the two normal stress
components τxx, τyy, obey identical ordinary differential equations

(13)

Thus, there is no possibility of generation of normal stresses in shear flow under linear
assumptions. Additionally, any initial normal stresses distributed across the layer relax
exponentially fast, and do not propagate nor couple to the shear stress and shear wave.

2.3 Boundary conditions
Boundary conditions are required at the lower plate y = 0, which is experimentally controlled,
and at the top boundary y = H, which may or may not be explicitly controlled. The system of
partial differential equations (equation 11) is hyperbolic if the normal stress τyy obeys an
inequality (see Sect. 3.3.1). If the inequality is violated, the model is no longer well-posed for
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the study of this experiment, a common occurrence for Maxwell-type models (cf. [9]). Hence,
the characteristics of the system must be investigated to determine allowable boundary
conditions. The following physically motivated conditions are analyzed in Sec. 3.3.2.

2.3.1 Lower plate boundary condition—At y = 0, no-slip boundary conditions apply, so
that

(14)

with V (t) the imposed velocity of the lower plate.

2.3.2 Top boundary condition—We distinguish two types of top (flat) interface
conditions:

1. The top of the layer is in contact with a flat plate, which could be held stationary or
driven at velocity VH(t)

(15)

The stationary upper plate condition is the most readily realized experimental
condition when seeking inverse characterization.

2. The top of the layer is in contact with another fluid, in which case continuity of shear
stress yields

(16)

The simplest case is to assume a passive ambient so that the shear stress is identically
zero.

We address the issue of normal stress boundary conditions in the characteristic analysis below.

3 Analytical results
For viscous and linear viscoelastic fluids, with semi-infinite and finite domains, the model
equations above are exactly solvable by Fourier methods if one ignores transients, and further
solvable with transients by Laplace methods. The traditional approach (cf. Ferry [7]) is to
suppress transients, leading to closed form solutions whose experimentally measurable features
(e.g. attenuation length and shear wavelength) are explicitly related to material properties. Thus
inverse characterization is given by simple formulas. We review these results now with some
extensions that appear to be absent in the literature. The numerical solutions, naturally, can
easily be used to model transients. We further show that the nonlinear model for an upper
convected Maxwell law is also exactly solvable, and therefore explicit representations for
normal stress generation in shear are determined. The Giesekus model does not submit to a
closed-form solution.

3.1 Viscous fluid solution
The long-time solution for the viscous model (equation 5) is widely available (e.g. [27]) and
recalled for completeness as well as comparison with generalizations.
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Semi-infinite domain solution—Upon positing a solution of the form vx(y, t) = m{V͂x(y)
eit} (recall time is measured in units of ῶ−1, so the physical frequency is ῶ/2π), the solution is
given by

which obeys the far-field boundary condition limy→∞ vx(y, t) = 0. We have introduced
. The Reynolds number, Re = ρ͂ῶA͂2/ῆ0, determines both the

penetration (1/α0) and oscillation (2π/β0) lengthscales, through . The velocity
field produces a particle displacement

The viscous shear stress is given by τxy = ∂vx/∂y,

showing a constant phase difference φ = 5π/4 between the shear stress and the velocity.

Finite-depth channel with stationary upper plate—The no-slip boundary condition at
the top of the channel reads vx(y = H, t) = 0. The solution is simple to derive

(17)

but does not appear to have been written down in the literature.

3.2 Linear viscoelastic model solutions
We summarize the Fourier, frequency-locked solutions to (equation 7) with the lower plate
forcing V (t) = sin(t), ignoring transients.

Semi-infinite domain solution [7]—If the loss modulus is non-zero, then

(18)

A separable Fourier solution is posited, vx(y, t) = m{v̂x(y)eit}. Then from (equation 6) and
(equation 7) a simple ordinary differential equation for v̂x(y) is obtained,

(19)
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where the non-dimensional complex viscosity

(20)

has been introduced. For a Maxwell model with G(s) = (ηp/λ)e−s/λ we obtain

(21)

The decay condition (equation 18) selects one independent solution of (equation 19), and the
velocity has the same form as the viscous solution:

(22)

where , (a, β ∈ ℝ +),

(23)

For the single mode Maxwell fluid

(24)

(25)

where the “zero-stress” shear wave speed  has been introduced. Clearly, 0 <
α ≤ β, with equality only in the viscous limit η″ = 0, η* = 1 (λ = 0, ηp = 1) such that

. The greater the elastic component η″, the larger the difference between the
oscillation wavelength 2π/β and the attenuation length 1/α.

The transform of the complex modulus, G(ω) = G′ + iG″, in our choice of non-dimensional
units, is related to the complex viscosity η(ω) by G = iη*; in dimensional units, G ͂ = iῶῆ*. The
non-dimensional formulas relating storage and loss moduli and the reciprocal lengthscales α
and β are:
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(26)

Re-expressing the above formulas in physical quantities recovers the formulas of Ferry,
Sawyer, and Ashworth [7]

used to infer G ͂′(ω), G ͂″(ω) from experimental measurements of ᾶ = αA͂,β ͂ = βA͂.

The particle positions X(y, t) at height y are then given by

(27)

The shear stress can be computed using the Lodge stress formula (equation 6)

From the velocity (equation 22) we obtain,

(28)

and, of course, the normal stresses are identically zero for linear viscoelasticity, τxx = τyy =
τzz = 0. The phase shift of the tangential stress with respect to the velocity is φ + π, with φ =
arctan(β/α), 0 ≤ φ ≤ π/2. Note that the stress required to achieve the claimed boundary condition
on plate speed is .

A comparison to the viscous solution is informative. The ratio of the viscous to viscoelastic
penetration lengths (α/α0) is shown in Fig. 2. When η″ = 0 we obtain the expected increase in
penetration depth as η′ increases – a more viscous fluid leads to more momentum transfer from
the oscillating plate. As the fluid elasticity η″ increases, the penetration depth ratio decreases.
Some of the momentum imparted to the fluid by the oscillating plate is now radiated as an
elastic shear wave, hence the penetration depth is smaller. The ratio of viscid to viscoelastic
wavelengths (β/β0) is also shown in Fig. 2. For viscoelastic fluids with η″ > 0 the wavelength
reflects the competition between diffusive and radiative momentum transfer. At a given η′ an
initial increase in the elasticity decreases the wavelength. In this range the motion is
overdamped and the decrease in penetration depth dominates the wavelength. At greater values
of η″ the radiative momentum transfer (through shear waves) becomes dominant and there is
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an increase in the wavelength. The maximum viscoelastic shear stress is greater than the purely
viscous stress by a factor of  and exhibits a different phase shift, φ + π instead of 5π/4.

Finite channel depth—When the fluid is bounded above at y = H by a flat interface moving
at velocity vH(t), a no-slip boundary condition yields

The Fourier method used here ignores transients and can only be used for upper plate velocities
of the form vH(t) = VHeit with VH some complex constant giving the amplitude of the upper
plate motion as well as its relative phase with respect to the lower plate forcing. The solution
in this case is given by

(29)

The most easily controlled experimental condition is to place a stationary solid lid on the top
interface in which case VH = 0,

(30)

a simple formula which appears not to have been published before. It is the basis of the finite-
depth inverse characterization presented below. The half-plane solution (equation 22) is
recovered in the limit H → ∞

(31)

recalling that δ = α + iβ and α > 0. The stress is given by

Finite channel depth, flat fluid-fluid boundary above—The boundary condition in this
case is continuity of tangential stress within the viscoelastic fluid τyx(H, t) and the adjacent
fluid τH(t). Again, because we are neglecting transients, the adjacent fluid must exhibit a
tangential stress dependence of the form τH(t) = THeit to be consistent with the Fourier
procedure. This leads to

(32)
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and the solution

(33)

This solution is relevant if one solves the model equations for the fluid layer above, or designs
an experiment with a controlled dynamic shear stress at the interface.

It should be noted however that ensuring that the top fluid layer has the simple harmonic
tangential stress τH(t) = THeit is difficult to realize experimentally. If the adjacent fluid exerts
negligible stress upon the viscoelastic fluid layer TH ≅ 0, then the formula

is valid. Otherwise, it is to be expected that τH(t) contains other frequencies besides the
fundamental frequency used in the lower plate forcing eit. Should one attempt, irrespective of
this observation, to use formula (equation 33), then the complex viscosity deduced from the
experimental measurements will be affected by aliasing of the additional frequencies present
in τH(t) onto the fundamental mode eit.

Linear model limitations—The constitutive law (equation 6) is valid for small strains

For the half-plane solution (equation 22) the strain is given by

assuming X(y, 0) = 0. Physically we expect the maximum strain to be obtained at y = 0 where
the displacement is

The extremum of X(0, t) is obtained when , hence

Since , the small strain condition becomes
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The elastic limit of fluid behavior corresponds to η″ ≫ η′ for which the small strain condition
becomes

It is useful to revert to physical units to highlight the significance of these limits. Recall that
Re = ρ͂ῶA͂2/ῆ0 and G ͂′ = ῶῆ″. The small strain condition in the elastic limit then states that

or, physically, that the dynamic pressure induced by the oscillating plate must be much less
than the elastic modulus of the fluid. In the viscous limit η′ = 1, η″ = 0, the small-strain condition
becomes . In physical terms this states that

or that the amplitude A͂ of the oscillating lower plate must be much less than the viscous

penetration depth . If viscous and elastic effects are roughly equal, η′ ≅ η″, then the
small strain condition becomes

The coefficients (η′, η″) obtained from fitting experimental data to the formulas above should
be checked against these limits to ascertain whether non-linear effects are insignificant. In the
finite-depth linear and nonlinear models, one can calculate the local strain from the numerical
solutions, which generically will be maximal in the first half-wavelength of the shear
deformation at the lower plate.

3.3 Nonlinear model solution in special limits
3.3.1 Hyperbolic system structure—We now turn to a consideration of nonlinear effects
by solving (equation 11). If the system obeys the linear limit, that will become evident from
the solution. Our focus is conditions where nonlinear effects are measurable. In general
numerical methods are required for a solution. We present the analysis needed for such
numerical methods. For the upper convected Maxwell model, quite conclusive analytical
results are attainable.

The matrix A from (equation 11) has eigenvalues μ1 = μ2 = 0, μ3 = − c, μ4 = c with
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(34)

denoting the velocity of propagation of shear waves transverse to the flow direction. If the fluid
is elastic to some extent, then λ > 0 and finite. Furthermore if τyy ≥ 0 then the shear wave
velocity c is a real number. It is interesting to note that for a given relaxation time λ there exists
a critical normal stress τyy = −ηp/λ at which c = 0, and for τyy < −ηp/λ, the system is no longer
hyperbolic, but elliptic. The associated right eigenvectors are

(35)

The eigenvectors form a basis for real c ≠ 0, hence the system (equation 11) is hyperbolic. The
structure of this system is particularly simple with two non-propagating components, whose
physical significance will be addressed below. The multiplicity-two zero characteristic speed
allows considerable analytical progress.

Consider a local linearization in which we use average values (denoted by an overbar) in the
eigenvector expressions

The characteristic variables of the problem are

and (equation 11) can be rewritten in terms of these variables as

(36)

with Λ = diag {μ1,μ2, μ3,μ4} and φ = R−1ψ,
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The forcing term φ can be rewritten as a function of the characteristic variables φ = φ(w) by
using the transformation,

(37)

3.3.2 Characteristic boundary conditions—The hyperbolic structure of the problem
indicates the compatible physical boundary conditions that must be used in numerical

simulations. The non-propagating quantities w1 = τyy and  can be freely
specified initially on the bottom and top boundaries. Subsequent values must be determined
by solving the ordinary differential equations at each boundary

(38)

At the lower plate (y = 0) only the  quantity can be specified as a boundary
condition since it is propagating into the fluid from the adjacent domain. The quantity

 propagates from within the fluid domain towards the boundary and must
be determined as part of the solution procedure. Conversely, at the top boundary (y = H) w3
can be given as a boundary condition and w4 results from the solution procedure. Typically,
we wish to give boundary conditions in terms of the physical variables. The essence of the
above discussion is that we cannot impose both vx and τxy at boundaries. We list common cases
of compatible boundary conditions which inform experimental protocols for this class of
models to be applicable.

1. Velocity and normal stresses. At the lower plate we specify vx and propagation from
within the channel as specified by the characteristic equation

(39)

gives w3. This allows  to be computed. We solve (equation
38) to obtain w1, w2. Using (equation 37) we then compute τxx, τyy thereby obtaining
all the variables within the q vector. At the upper plate we proceed analogously, by
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specifying vx but obtaining τxy from the w4 component as .
The w4 component is determined from propagation within the fluid by solving

(40)

2. Tangential and normal stresses. At both boundaries we specify τxy. Solving (equation
38) gives w1, w2 and hence τyy, τxx. At the bottom boundary vx is obtained from the
propagating w3 component by solving (equation 39) and at the top from the w4
component obtained by solving (equation 40).

3. Non-reflective top boundary condition. To simulate an infinite domain we can set the
incoming characteristic at y = H ≫ 1 to zero, w3 = 0. Numerically, care must be taken
so there are no spurious reflections of the w4 component at the y = H boundary.

Figure 3 gives a graphical overview of the procedure used to set boundary conditions.

3.3.3 Upper convected Maxwell (UCM) solution—After the general analysis presented
above let us consider an exactly solvable case. For the UCM model we have a = 0 and the
system (equation 11) becomes

(41)

with an immediate solution for τyy(y, t) = τyy(y, 0) exp(−t/λ).

Assume that τyy(y, 0) = 0, either because this is the true initial state of the system or that enough
time has passed since an initial excitation to ensure the decay term exp(−t/λ) has become
negligibly small. At later times, τyy(y, t) = 0. Consequently the shear wave propagation velocity

is constant  and the above system (equation 41) decouples into a 2 × 2 linear
system for vx, τxy,

(42)

and a linear equation for τxx,

(43)

The system (equation 42) describes the propagation of shear waves and is identical to the
telegraphers equation (8) derived earlier in the linear Maxwell limit. The shear wave propagates
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and decays as in the linear model. The convective nonlinearity of the UCM system appears as
a source driving the τxx stress which in the linear model is zero. For known vx(y, t), τxy(y, t) the
solution is

(44)

Longitudinal momentum is lost when τxy and ∂vx/∂y are in phase, and gained when they are of
opposite phase.

The telegraphers equation has been studied by a number of authors under various boundary
conditions. In the Rayleigh (or first Stokes) problem the fluid in a half plane is set into motion
by an impulsively started lower plate. The first published solution for an elastic Maxwell fluid
was given by Carslaw and Jaeger [3] using Laplace transform methods. Laplace transform
methods have also been applied by Kazakia & Rivlin [15], [25],[26]. Tanner [28], [29]
considers a viscous Oldroyd-B fluid. Narain & Joseph [23] present a boundary layer analysis
of the problem. Joseph et al. [13], [12] consider perturbations of the plane Couette solution to
account for a cylindrical rheometer. Preziosi & Joseph consider a generalization of Boltzmann's
equation of linear viscoelasticity[24]. Denn & Porteus [5] consider reflections in startup flow
associated with finite-depth effects.

The Stokes second problem, in which the lower plate undergoes harmonic oscillations, has
received less attention. The Laplace transform method which has dominated most previous
research cannot be applied when finite-depth effects are present and even in the half-plane case
is unwieldy because of the continuous excitation of the fluid by the oscillating lower plate. To
our knowledge the Riemann method [10] has not been applied to this problem as is done here,
though it is a standard procedure for hyperbolic problems. The change of dependent variable

(45)

transforms the telegraphers equation into a Klein-Gordon equation

(46)

In the characteristic variables ξ = (ct − y)/4λc, η = (y + ct)/4λc the KIein-Gordon equation
admits the Green function

(47)

with J0 the Bessel function of the first kind. This leads to the solution
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(48)

Note that the kernel K(s, y, t) in the integrand is nonsingular since

(49)

In the above, the initial value functions U(y) = u(y, 0), V(y) = ut(y, 0), ut = ∂u/∂t, have been
introduced. For y > 0 we have U(y) = 0, V(y) = 0. The original problem has boundary conditions
given by vx(0, t) = sin t and limy→∞ vx(y, t) = 0. Through the same Riemann representation the
boundary conditions can be transformed into initial conditions for y < 0 by assuming V(y) = 0
and solving the Fredholm integral equation of the second kind

(50)

(51)

(52)

for U(y). The solution to this integral equation for c = 1, λ = 4 is shown in Fig. 4. The solution
exhibits exponential growth as y → −∞, which is to be expected since the initial condition at
some y < 0 is attenuated by viscosity until it reaches the y = 0 boundary condition line. High
accuracy is essential therefore in numerical solution of (equation 50), but this can be achieved
by using a Nystrom method and Gauss-Lobatto quadrature (for details see [21]).

The comparison in Fig. 5 of the telegraphers equation solution (equation 48) to the Ferry half-
plane solution (equation 22) (for c = 1, λ = 4), shows the expected behavior with an initially
large start-up error followed by asymptotic convergence of the telegraphers equation solution
to the Ferry solution (equation 22). The error between the two models can be characterized
using (equation 24). The shear wave speed for the UCM model is c while that for the Ferry
solution is 1/β. Hence the relative error in shear wave speed is

(53)
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Note that the error is large for small λ, i.e. the shorter the elastic relaxation time (or,
equivalently, the more rigid the medium), the greater the error. The spatial attenuation length
is 1/α for the Ferry model and 2λc for the UCM model. The relative error in attenuation length
is therefore

(54)

and again is larger for small λ. The very large error between the initial transient which is
correctly captured by the telegraphers equation solution and that of the asymptotic in time Ferry
solution is shown in Fig. 6.

As mentioned, the tangential stress τxy satisfies the same telegraphers equation. However the
boundary values at y = 0 are not known initially. However, we have transformed the half-plane
boundary value problem into an initial value problem on the entire y-axis, an approach which
now pays dividends since we can apply the first equation in (equation 42) everywhere to obtain

(55)

This is an ordinary differential equation along constant t lines and we know that τxy(y → ∞,
t) = 0. Hence τxy can be computed as

(56)

where we have taken into account that u = 0, ∂u/∂t = 0 for s > y + ct. Comparisons of the UCM
model τxy with those from the Ferry solution are shown in Fig. 7. Notice that the differences
in τxy are much greater than those in vx.

In conclusion we obtain an exact solution of the nonlinear UCM model expressed as a
convolution integral. The solution explicitly captures the nonlinear phenomenon of normal
stress generation in shear, which one computes independently from a linear evolution of the
velocity and shear stress, uncoupled from the normal stresses. This behavior has experimental
implications, in that nonlinear behavior cannot be detected by monitoring velocity or shear
stress. In order to ascertain nonlinear behavior experimentally, the first normal stress
difference, which reduces to τxx, has to be measured. To test the accuracy of the UCM model,
those measurements can be compared to the model results. In the simulations below, we present
normal stresses generated from the boundary-controlled plate motion; the model predicts bulk
strain thresholds to reach a certain normal stress level for given UCM parameters.

4 High resolution numerical solution
4.1 Numerical algorithm

For the more general nonlinear constitutive laws of Giesekus type with shear-thinning (a ≠ 0),
closed-form solutions do not exist, so numerical methods are employed. A primary purpose of
this study is to provide a basis for inverse characterization of nonlinear viscoelastic properties.

Mitran et al. Page 19

J Nonnewton Fluid Mech. Author manuscript; available in PMC 2009 December 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Hence it is desirable to minimize any artificial dissipation and dispersion that might arise in a
numerical computation, which is the baseline for matching with experimental data through
parameter fitting. For this purpose, we apply a high-resolution algorithm [17] for hyperbolic
PDEs as implemented in the CLAWPACK [18] or BEARCLAW packages [22]. We present the salient points
of the numerical method here for completeness. It is a finite volume, Godunov-type method in
which the jumps between adjacent finite volume cell averages are propagated in accordance
with local wave speeds. Consider an uniform discretization of the interval [0, H] with step size
h. The cell center coordinates are yj = (j − 1/2)h for j = 1, 2, …, m, and the cell edge coordinates
are yj−1/2 = (j − 1)h, j = 1, 2, …, m + 1, with h = H/m.

The cell finite volume average is

The evolution equation (11) can be rewritten as

(57)

with  the convective operator and  the source term operator. Equation (57) is split into two
stages using Strang splitting,

The source term operator part of the splitting is qt = q, a system of ODE's which is advanced
in time using a second-order Runge-Kutta scheme. For the convective part, we first represent
jumps between adjacent cells as propagating waves. The jump at the j − 1/2 interface

, is decomposed on the eigenbasis 

Note that only the r3, r4 eigenmodes from (equation 35) are propagating, hence nw = 2 waves

 are required. The α coefficients required are

with Q1, Q3 the 1, 3 components of Q. Cell average values are updated by
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along with second-order corrections (for complete details, see [17]). The method is adaptive
and second order in space and time.

4.2 Validation
To ensure accuracy of the method, numerical convergence studies and comparisons with the
known analytical results (equation 30), (equation 48) were carried out. A typical numerical
convergence result is presented in Table 1. The overall scheme exhibits an asymptotic
convergence rate of 1.6.

Turning now to comparisons with the previous analytical results, formula (equation 30) is valid
for a linear viscoelastic fluid after transients have died out. For small values of the boundary-
controlled bulk strain parameter γ, the numerical results obtained by solving the nonlinear
system (equation 11) for a = 0 should be close to those from the linear case (equation 30). This
is indeed verified computationally and validates the numerical approach. Fig. 8 shows velocity
profiles for a layer of thickness H = 16, hence γ = 1/16 ≪ 1. In order to make such a comparison
the parameters of the linear model must be related to those of the nonlinear model. In the
nonlinear UCM model one chooses a Reynolds number Re, a polymer viscosity ηp and the
Deborah number λ. We obtain the  parameter in the linear solution (equation 30)
by using formulas (equation 21) to compute η′, η″.

There is the possibility of a phase error due to transient effects. To allow for this the comparison
should be made at t ≫ 1. The time history of the velocity at the layer midpoint y = H/2 is shown
in an inset on Fig. 8 for λ = 1, Re = 1. After roughly 20 lower plate cycles the velocity shows
periodic behavior. A time slice of the vx(y) dependence is chosen (tn = 129.912 in Fig. 8). To
eliminate any remnant phase error due to transients, the time at which to evaluate vx using
(equation 30) is determined by solving the equation

(58)

with  denoting the velocity determined in the numerical procedure at time tn. The phase
error goes to zero as time increases, but slowly. For the parameters above, the solution of
(equation 58) is t = 129.928 ≅ tn. The error between the numerical solution and the analytical
result is shown in an inset on Fig. 8.

4.3 Experiment design guidelines from numerical results
An important aspect in the design of an experiment for viscoelastic characterization is to ensure
controllable boundary conditions and to qualitatively understand the variation of the flow
variables across the channel height H under various boundary conditions. We now apply the
numerical algorithm presented above to show the effect of some experimentally relevant
boundary conditions. We investigate the problem of inverse viscoelastic characterization using
the numerical algorithm in the following section. In order to assess the effect of boundary
conditions, fluid parameters are kept constant at H = 10, ηp = 1, λ = 4, Re = 1, a = 0 and τyy =
0. Results are presented in Fig. 9-10 by showing superimposed plots of vx(y, tn), τxx(y, tn),
τxy(y, tn) at times tn = nΔt, n = 0, 1, …, 10, Δt = 0.8. Also shown are subsequent time positions
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of tracer beads initially placed at X(y, 0) = 0. Since τyy = 0 in these simulations the normal stress
difference is directly given by τxx, N1 = τxx − τyy = τxx.

Open-cell experiment—In an open-cell experimental setup the viscoelastic fluid is typically
in contact with the surrounding air which is assumed to exert a negligible tangential stress upon
the viscoelastic layer. The top boundary at y = 0 is assumed to be flat. Hence the boundary
condition τxy(H, t) = 0 is set. Results for are shown in Fig. 9. Note that the nonlinear interaction
terms in the UCM model lead to large values of τxx, larger than those for τxy near the plate.

Stationary upper plate—A closed-cell experimental setup is advantageous in ensuring
isolation of the sample and surrounding medium. Typical results are shown in Fig. 10 when
the upper plate is kept at zero velocity vx(H, t) = 0. An interesting observation is that the velocity
and stress profiles are very similar to those obtained in the open-cell experiment. The main
difference is the much smaller range of motion exhibited by tracer beads when the upper plate
is stationary by comparison to the open-cell experimental setup. If signal-to-noise ratio of tracer
bead positions becomes a concern at low strain thresholds, then the open-cell setup is
preferable.

5 Implications for inverse viscoelastic characterization
The theoretical results presented above provide new formulas in the linear finite depth case,
nonlinear UCM case, and accurate numerical simulation algorithms for the nonlinear finite
depth case. Especially for experimental measurements involving small samples, in which of
necessity the depth is comparable to shear wavelengths, it is crucial to employ the finite depth
formulas deduced above rather than trying to fit to the infinite depth shear wave (equation 22).
In subsequent work we shall use theses new tools to deduce viscoelastic parameters from bead
tracking data in the presence of experimental noise. For this paper we want to illustrate the
effects that would arise from attempting to fit measurements to inappropriate models even if
there were no experimental error whatsoever.

Instead of experimentally measured data we shall use bead positions generated from numerical
simulations of a specific viscoelastic model. The goal then is to infer linear and nonlinear
viscoelastic properties from this “experimental data set”, and to assess the magnitude of errors
made as well as the dominant source of error. Typically least-squares procedures are employed
to fit measured bead trajectories to theoretical formulas in order to obtain the complex viscosity
η*(ω) (or complex shear modulus G*(ω)). We adopt this procedure to provide fair
measurements of relative error.

If the same model is used both to generate the data and to carry out parameter fitting, then
errors arise only from generation of model solutions or the numerical least-squares procedure.
We use this as a check to ensure the procedure is accurate. Further errors in viscoelastic
characterization arise if the data is fit to a different model, e.g. if the Ferry infinite depth
formulas are used to characterize measurements made on a linear viscoelastic fluid in a finite-
depth cell. We present errors that arise from finite depth and nonlinear effects.

One unusual feature of these effects in the present non-dimensional formulation is that there
is no frequency dependence. This is because we have restricted attention to a single-mode
Maxwell type fluid.

5.1 Finite depth effects, linear viscoelastic model
Consider a viscoelastic fluid of depth H set into motion from rest by harmonic oscillation of a
lower plate and upon which is placed a stationary upper plate (vH = 0). We wish to ascertain
the error made in deriving viscoelastic parameters (η* or G*) by fitting observed velocity
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profiles to the Ferry semi-infinite solution (equation 22), rather than the correct, finite-depth
solution given in (equation 30). Consider the following best-case experimental scenario:
measurements are made at a large number of points, say m = 40, across the fluid depth and at
small time increments, Δt = 2π/n (e.g. n = 36 measurements per plate oscillation period). The
bead positions generated by the finite-depth solution (equation 30) with complex viscosity

 are used to construct a least-squares fit to the Ferry tracer bead position profile
from whence another estimate of the complex viscosity  is obtained. The least
squares sum is

(59)

The error function e(y, t, H, δF, δH) is presented in Fig. 11-13. As expected when H increases
the bead position error decreases (Fig. 11). Recall the link between complex viscosity and
Maxwell fluid parameters, η′ = ηp/(1 + λ2), η″ = ηpλ/(1 + λ2). We can increase the magnitude
of the complex viscosity η* by increasing ηp and vary the phase of η* by varying λ but setting
ηp = 1 + λ2 always. When the absolute value of the complex viscosity increases, the error
increases and furthermore becomes quasi-linear over the depth (Fig. 12). This makes the
identification of parameters ill conditioned. As the relaxation time of the fluid λ becomes larger,
the magnitude of the error remains essentially the same (Fig. 13). At small λ the identification
of η* will be more difficult since there are fewer oscillations of the shear wave within the depth
H (Fig. 13).

Plots of the error in identification of η* as presented above are useful, but limited to single
values of the complex viscosity. To obtain an overall picture of the error made in identification
of viscoelastic parameters we introduce the complex mapping δF (δH), δF: ℂ → ℂ. This
provides a measurement of the error in fitting the true finite-depth solution to the semi-infinite
Ferry solution, and can also serve to correct the Ferry δF value. It is preferable to use δ rather
than the complex viscosity η* for two reasons: 1. δ = α + iβ is directly related to experimentally
measured quantities, the penetration depth 1/α and the shear wavelength 2π/β; 2. The inversion
η* = i Re/δ amplifies errors made when δ is small and hence relatively small errors in δ give
large changes in η*.

A useful technique, common in the studies of conformal mappings, is to present the δF (δH)
mapping as a deformation of the αH = j Δα =constant and βH = kΔβ =constant lines (j, k are
integers and Δα, Δβ are the spacings with which we sample δH space). If no error is made, an
initially Cartesian (αH, βH) grid would be transformed into itself identically. The deviation
from a Cartesian map of the (αF, βF) lines serves as an indication of the error made in using
the Ferry formula in the least squares fit to obtain the complex viscosity. To cover as wide of
range of values as possible the mappings are presented in logarithmic coordinates. Typical
results for H = 2, 5 are presented in figures 14, 15. The purely viscous case  is
shown for reference. As expected errors decrease as α increases - the shear wave is more
attenuated and the boundary condition at H has less influence. Note however that large values
of α in bead tracking experiments imply small bead displacements, which are difficult to track.
For smaller values of α the wavelength 2π/β is poorly identified. The region of poor
identification is smaller for smaller H as expected.

For certain regions it is even possible to use the δF (δH) mapping to correct an erroneous
estimate made by fitting to the Ferry semi-infinite solution. This would be of interest in
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reinterpreting archived experimental data. Fig. 16 shows a sequence of values obtained by
fitting to the infinite depth formula and arrows to the correct values (α, β) for that particular
fluid.

It is apparent that very large errors are made when trying to deduce viscoelastic parameters
from bead tracking data if the fit is carried out on the infinite depth formula rather than the
correct, finite depth model.

5.2 Onset on non-linear effects
We now consider how non-linear effects influence viscoelastic characterization. Velocity
profiles for a viscoelastic fluid placed between an oscillatory lower plate and a stationary upper
plate are generated by numerically solving system (equation 11). The numerically-generated
velocity profiles contain non-linear effects from (equation 11). In order to quantify the onset
of nonlinearity we shall do a least-squares fit of the numerical velocity data to the linear finite-
depth formula (equation 30) to obtain the parameters (α, β) characterizing the shear wave. We
present typical results of the fitting procedure, highlighting the role of the bulk strain γ = 1/H
and Giesekus parameter a which controls shear thinning. At low values of γ (e.g. γ < 0.1) the
fitting procedure reproduces the numerical parameters used in the simulations – this was used
to validate the least squares algorithm used.

Moderate bulk strain, UCM fluid (γ = 0.25, a = 0)—Results are presented in Fig. 17. At
this moderate bulk strain value the fitting procedure works very well for small Deborah
numbers λ (λ ≤ 1). As the Deborah number is increased the results become markedly worse
with errors in parameter identification greater than 100% at λ = 16.

Large bulk strain, UCM fluid (γ = 0.5, a = 0)—When the bulk strain is large, the fitting
procedure fails at all values of λ (Fig. 18).

Moderate bulk strain, Giesekus fluid (γ = 0.25, a = 0.5)—For moderate bulk strains
on a shear-thinning fluid we notice a systematic overestimate of α even while β is captured
rather well (Fig. ??). This is the expected behavior. The penetration depth of wave propagating
into the fluid 1/α is underestimated by the linear viscoelastic model hence the α values are
higher.

6 Conclusions
For purposes of inverse characterization experiments in low volume samples of biological
fluids (such as pulmonary airway surface liquids, our motivation for this work), we have
extended the Ferry shear wave analysis to include finite-depth within linear viscoelasticity,
and then to include nonlinearity with constitutive laws of Maxwell type. The linear models are
exactly solvable, allowing for an explicit measure of errors in the inverse characterization of
a known viscoelastic material due solely to finite depth effects. At frequencies and bulk strains
typical for conditions encountered by the airway surface liquid in the lung, errors in the
recovery of storage and loss moduli are enormous when fitting to inappropriate theoretical
models. For viscoelastic fluids that can safely be assumed to be behave linearly, fitting to the
newly derived finite depth formula (equation 30), which accounts for counterpropagating shear
waves and stress modes, is shown to work well. If the fluid behaves nonlinearly as controlled
bulk strain from the driven plate is ramped up, either due to convective nonlinearity or shear
thinning, then inverse recovery of viscoelastic parameters by fitting to the extended finite-depth
linear formulas induce significant errors.

These modeling tools have been developed in context with a new device, a micro, parallel-
plate rheometer, which allows both types of velocity controls on the opposing flat interface to
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the driven plate. The present paper has illustrated recovery of linear and nonlinear viscoelastic
parameters as well as predictions of onset of nonlinear effects at threshold values of the imposed
strain from the driven plate. In a future article, we will apply these modeling tools to
experiments on biological liquids.
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Figure 1.
Left: Schematic of oscillatory Couette flow and notation used to describe the deviatoric stress
on an infinitesimal fluid element. The x-axis is parallel to the plate motion, the y-axis is the
cross-channel direction. Right: Schematic of biological configuration in which multiple cilia
impose an oscillatory motion on the bottom of a layer of viscoelastic fluid (e.g. mucus in
pulmonary applications).
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Figure 2.
Comparison of viscoelastic penetration (1/α) and wave lengths (2π/β) to the viscous values (1/
α0, 2π/β0)
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Figure 3.
Geometry of characteristics of system (equation 11) near the boundaries, highlighting
characteristics coming from inside the computational domain (w3 at y = 0, and w4 at y = H)
and non-propagating characteristic variables w1, w2.

Mitran et al. Page 29

J Nonnewton Fluid Mech. Author manuscript; available in PMC 2009 December 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Solution U(y) to (equation 50) for λ = 4, c = 1. The solution gives initial values U(y) = u(y, 0)
obtained by transformation of boundary condition at y = 0, u(0, t) = 2et/(2λ)sin t. A Nystrom
method based upon Gauss-Lobatto qudrature with n = 251 nodes was used to discretize
(equation 50). Exponential growth is observed for y → −∞. Insets show sharp resolution near
the y = 0 boundary obtained by numerical method.
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Figure 5.
Comparison at t = 60 of telgrapher's equation solution (48, dots) to Ferry solution (22, line) for
λ = 4, c = 1. The inset shows the absolute error in the velocity vx(y, 60)
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Figure 6.
As in Fig. 5 but for c = 1, λ = 0.25. At small λ the Ferry steady state solution exhibits very large
errors with respect to the true initial transient.
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Figure 7.
Comparison of τxy from Ferry solution (28, line) with that from the telgrapher's equation
solution (56, dots).
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Figure 8.
Comparison of numerical result for vx(y, 130) (dots) to analytical prediction by (equation 30).
Insets show absolute error at t = 130 and time history of vx(H/2, t) to indicate time needed for
transients to pass.
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Figure 9.
Numerical results for zero top shear stress, τxy(H, t) = 0, boundary condition.
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Figure 10.
Numerical results for stationary top plate boundary condition, vx(H, t) = 0.
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Figure 11.
Error in bead positions between finite depth (equation 30) and infinite depth (equation 22)
solutions (Re = 1, η′ = η″ = 1). Top row H = 1, 5. Bottom row H = 10, 15.
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Figure 12.
As in Fig. 11. Constant H = 10. Top row η′ = η″ = 0.05, 0.5. Bottom row η′ = η″ = 5, 50.
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Figure 13.
As in Fig. 11. Constant H = 10. Top row λ = 0.5, 1. Bottom row λ = 5, 10. ηp = 1 + λ2 in all
cases.
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Figure 14.
The mapping δF (δH) for H = 2, Re = 1. The dot represents the purely viscous case

. Large errors in viscoelastic characterization arise for α < 10−0.25.
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Figure 15.
As above for H = 5.
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Figure 16.
A plot of δF (δH) for H = 5, Re = 1 with arrows indicating how to correct erroneous (αF, βF)
values to the true viscoelastic fluid values (αH, βh), assuming linear viscoelasticity.
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Figure 17.
Comparison of shear wave identified by fitting to the linear, finite depth formula (equation 30),
(circles) to parameters used to generate data numericall (squares). Bulk strain γ = 1/H = 0.25.
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Figure 18.
As above, but for higher strain γ = 1/H = 0.5. Nonlinear effects are so strong that fitting to
linear model leads to meaningless results.
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Table 1

Numerical convergence results. The relative error ε is that in the velocity vx at y = H/2 computed
with my subintervals and at time t = 12.96. The exact solution is taken to be vx computed with
my = 320 subintervals. (Re = 1, λ = 2, H = 1, VH = 0)

my 20 40 80 160

lg h -1.30 -1.60 -1.90 -2.20

lg ε -0.85 -1.20 -1.58 -2.06
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