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Abstract

To characterize the role of neurotrophin receptors on macrophages, we investigated the ability of 

nerve growth factor (NGF) and its precursor, proNGF, to regulate human macrophage phenotype. 

The p75 neurotrophin receptor (p75NTR) and TrkA were concentrated within overlapping domains 

on membrane ruffles. NGF stimulation of macrophages increased membrane ruffling, calcium 

spiking, phagocytosis and growth factor secretion. In contrast, proNGF induced podosome 

formation, increased migration, suppressed calcium spikes and increased neurotoxin secretion. 

These results demonstrate opposing roles of NGF and proNGF in macrophage regulation 

providing new avenues for pharmacological intervention during neuroinflammation.
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1. Introduction

Macrophages are dynamic cells that can express a wide range of phenotypes driven by 

external cues. The phenotypes range from strong inflammatory responses designed for 

elimination of invading pathogens to anti-inflammatory, protective and wound healing 

activities essential for tissue repair. To highlight the different functional states, many studies 

have focused on characterizing the phenotypes of macrophages as classically or alternatively 

activated based on their receptor composition, secretion profiles, morphology and response 

to external cues. Classically activated inflammatory macrophages have been shown to arise 
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from interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), and 

lipopolysaccharide (LPS) stimulation leading to secretion of pro-inflammatory cytokines 

and chemokines, often with accompanying tissue damage. Alternative activation of 

macrophages is stimulated by interleukin-4 (IL-4), IL-10, transforming growth factor-β 

(TGF-β), or IL-13 and leads to the secretion of anti-inflammatory cytokines, chemokines, 

growth factors and other reparative factors(Laskin et al., 2011). In addition to these well 

characterized stimuli, macrophages in various tissues can be regulated by a wide array of 

external cues causing phenotypes that may intertwine these subgroups through mechanisms 

that are not fully understood.

A potentially important but poorly explored set of cues may be neurotrophic factors. 

Although it has been over two decades since the first studies identified neurotrophin 

interactions within the immune system,(Levi-Montalcini et al., 1996) our knowledge of their 

functions is limited. Multiple studies have documented expression of various neurotrophins 

and their receptors in macrophages suggesting that they may play a role in control of the 

innate immune system (Nakajima et al., 1998, Aronica et al., 2004, Artico et al., 2008, 

Barouch et al., 2001, Dowling et al., 1999, Elkabes et al., 1998, Levanti et al., 2001, Samah 

et al., 2008b, Tonchev et al., 2008). Relatively, few studies have looked closely at the 

functions of these receptors on macrophages. Most information regarding the functions of 

the neurotrophin receptors comes from studies in the nervous system where neurotrophins 

are important factors for development, maintenance, survival and differentiation of 

neurons(Reichardt, 2006). The neurotrophin family includes nerve growth factor (NGF), 

brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4 

(NT-4). Neurotrophins bind to tyrosine protein kinases known as tropomyosin related kinase 

(Trk) receptors, TrkA (NGF), TrkB (BDNF and NT-4), and TrkC (NT-3) with high affinity. 

An additional member of the neurotrophin receptor family, the p75 neurotrophin receptor 

(p75NTR) is a member of the tumor necrosis receptor family and binds all neurotrophins 

with low affinity. The neurotrophin receptors function as homomeric or heteromeric 

complexes, providing opportunities for various signaling actions. The p75NTR in particular 

can interact with any of the Trk receptors where it facilitates receptor activation by 

increasing the affinity of mature neurotrophin binding.

The neurotrophins are synthesized as precursors (pro-neurotrophins) that must be processed 

by proteolysis to form the mature protein. All pro-neurotrophins (proNGF, proBDNF, 

proNT3, proNT4) bind the p75NTR when it associates with alternative co-receptors such as 

sortilin. Signaling of mature and pro-neurotrophins through their respective receptors often 

have opposing effects in target cells. Mature neurotrophin signaling has been associated with 

neuronal survival, growth and differentiation while proNGF signaling often leads to 

neuronal degeneration and apoptosis (Hempstead, 2009, Ibanez, 2002). These differences 

have led to the hypothesis that the balance of pro-neurotrophins versus mature neurotrophins 

may regulate the course of neurodegenerative diseases (Hempstead, 2009). Regulation of 

macrophage and microglial functions by neurotrophins may be particularly important in the 

nervous system where neurotrophin expression is high. In addition to neurons macrophages 

also secrete neurotrophins. Neurotrophin mRNA expression has been documented in 

microglial/macrophages in multiple sclerosis plaques (Dowling et al., 1999) as well as HIV-

infected macrophages (Samah et al., 2009). NGF has been shown to increase CXCR4 
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mediated migration of macrophage precursor cells, monocytes (Samah et al., 2008b) and to 

induce the secretion of plasminogen and urokinase-type plasminogen activator from 

microglia (Nakajima et al., 1998). No studies have yet compared the functional activation of 

these receptors by pro- versus mature neurotrophins. The following studies were designed to 

further characterize the expression of neurotrophin receptors on human monocytes and 

monocyte-derived macrophages (hMDM) and determine the functional role of mature versus 

pro-neurotrophins. We show that monocytes and macrophages express both p75NTR and 

TrkA within the same membrane domains and exhibit very different phenotypes in response 

to mature NGF and proNGF.

2. Materials and Methods

2.1 Isolation and culture of human monocyte-derived macrophages

Human buffy coat leukocytes were purchased and shipped within 24 hours after blood draw 

from healthy donors at the New York Blood Center (http://nybloodcenter.org/), a non-profit 

organization for the collection and distribution of blood for clinical and research purposes. 

All research use was screened by the center and no personal identifiers were sent with the 

shipment. Blood was diluted 1:1 with phosphate buffered saline (PBS) and was layered on 

top of Ficoll-Paque (GE Healthcare 17-1440-03). Blood/Ficoll-plaque was centrifuged at 

500 × g for 25 min and the peripheral blood mononuclear cells (PBMCs) were collected 

from the PBS/Ficoll-Paque interface. PBMCs were washed in red blood cell lysis buffer 

(Sigma R7757) to remove any red blood cell contamination. PBMCs were centrifuged at 

450 × g, the supernatant aspirated and the pellet re-suspended in Dulbecco's modified eagle 

medium (DMEM) with high glucose, 10% fetal bovine serum (Gibco 160000-044) and 20 

μg/ml gentamicin (Gibco 15750-60). Cells were aliquoted into low adhesion 6 well plates 

(Corning 3471) at a density of approximately 107 cells/well. PBMCs were cultured for 5-7 

days to allow monocyte attachment. Remaining white blood cells were washed, from the 

plate yielding a pure monocyte/macrophage culture. The adherent cells were differentiated 

into monocyte-derived macrophages (hMDM) using human GM-CSF (15 ng/ml) in 

complete DMEM for one week. Monocyte experiments were carried out within 1 hour of 

PBMC isolation to prevent cell attachment.

2.2 Primary cultures of rat forebrain

All animal work was done in accordance with NIH animal welfare guidelines and was 

approved by the University of North Carolina- Chapel Hill Institutional Animal Care and 

Use Committee (approval number 14-147.0). Timed gestational embryonic day 9 (E9) 

pregnant female Long-Evans rats were delivered from Charles Rivers and allowed to rest in 

UNC animal husbandry until the time of experiments. At gestational day E17, rats were 

sacrificed by anesthetizing with isoflurane until breathing and heart stopped. The uterus was 

removed, rinsed briefly in 70% ethanol and placed in HEPES-buffered Hank's balanced salt 

solution (HBSS) on ice. The brain was removed from each fetus, extensively washed, and 

the cortex/hippocampus was dissected from each brain and cleaned of dura-arachnoid 

membrane and visible vessels. The tissue was transferred to a 15 ml tube containing 5 ml 

calcium-magnesium free-HBSS + 2.4 U/ml dispase + 2 U/ml DNase I and incubated for 

25-30 min at 36° C. Tissue was triturated and allowed to settle for 2 min. The suspended 
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cells were transferred to a 50 ml culture tube containing 25 ml of minimum essential 

medium (MEM) with glutamine + 10% fetal bovine serum + 20 μg/ml gentamicin. After 

several rounds of trituration in 2-3 ml fresh calcium-magnesium free HBSS, dissociated 

cells were seeded at a density 20,000 cells/cm2 on poly-D-lysine-treated coverslips for 

imaging and staining or 50,000-100,000 cells/cm2 in 100 mm plastic dishes for Western 

blots. After 24 hours, cultures were transferred to Neurobasal medium with B27 supplement. 

The resulting cultures were >95% neurons at day 4 after seeding.

2.3 Immunostaining

Differentiated hMDM grown on poly-D-lysine coated coverslips were transferred to DMEM 

containing 1% FBS and stimulated for 1 or 24 hours using three different conditions: NGF 

human recombinant protein (100 ng/mL, Sigma N1408), proNGF human recombinant 

protein targeted to high affinity sites (1 ng/ml, Alamone N-280), or vehicle. The cells were 

gently washed and fixed in 2% paraformaldehyde in PBS. Cells were washed 3× in PBS and 

incubated in 3% normal goat serum for one hour. Incubation of primary antibodies was 

carried out overnight at 4° C. Cells were stained using antibodies to: p75NTR (Millipore cat 

#07-476, 1:500), TrkA (Santa Cruz cat #SC-80961, 1:500), TrkB (Millipore 07-225, 1:500), 

TrkC (Santa Cruz SC14025, 1:500) and sortilin (Millipore AB9712, 1:500). Cells were 

washed in PBS and incubated with species specific secondary antibodies conjugated to 

Alexa 488, 568 or 593 (Molecular Probes) in the dark for 1 hour at room temperature. 

Coverslips were then mounted using Fluoromount (Southern Biotech 0100-01) and digitally 

imaged on an Olympus XI71 microscope.

Analysis of stain intensity and morphology for individual cells or regions of interest within 

the cells was accomplished using Metamorph software. Co-localization of p75NTR foci with 

TrkA or sortilin staining was analyzed by staining one receptor red and the other green 

followed by thresholding by intensity of stain, computer identification of stained objects and 

then documentation of each object's central X/Y coordinate for each wavelength. Objects 

with X/Y coordinates that overlapped within 0.46 microns were scored as co-localized.

2.4 F-actin and live-dead stains

F-actin was stained using Alexa488 phalloidin (1:50, Molecular Probes) to show structural 

changes. Podosomes were visible in the hMDM as small, intensely fluorescent puncta 

whereas ruffles appeared as moderate to brightly stained extensions of the membrane. Cell 

viability was assessed by incubating cells with the live cell stain, calcein AM (1 μM, 

Invitrogen/Molecular Probes) and the dead cell nuclear stain, ethidium homodimer (1 μM, 

Invitrogen/Molecular Probes), for 30 min at 36°. Cells were washed with aCSF and imaged 

live. Healthy macrophages with bright green fluorescence were counted. The unstained 

“ghosts” of dead cells were often visible and were counted separately. The number of 

ethidium stained nuclei was counted to quantify dead cells with multinucleated cells counted 

as a single cell. Some ethidium stained cells were observed floating on the surface which 

were difficult to quantify. Thus, the count of live cells was preferentially used as the best 

index of cell survival. Some cultures were fixed with 2% paraformaldehyde and stained with 

100 nM bisbenzimide to assess total and condensed, fragmented, apoptotic nuclei.
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2.5 Western blots

Human monocyte-derived macrophages were stimulated with NGF or proNGF for time 

periods of 0, 10, 30, 60 min and 1 day. At the appropriate time, cells from two 60 mm or one 

100 mm dish were harvested using 1.5 ml lysis buffer (1× Ripa buffer (Thermo Scientific 

89900), 1 mM phenylmethylsulfonyl fluoride (PMSF, Pierce Chemicals PI 36978), 1:100 

Halt® protease inhibitor cocktail (Thermo scientific cat# 1861228). Protein concentration 

was measured by BCA assay (Thermo Scientific 23225). Protein lysate was resolved on 

SDS-Page gels (Biorad cat# 456-1034) and transferred to a nitrocellulose membrane (Biorad 

162-0112). The membranes were blocked in 2% Bovine Serum Albumin (BSA, Sigma 

BP1605-100), Odyssey Blocking Buffer (1:1 dilution, Licor 927-40000 for Odyssey) and 

PBS or milk plus 0.01%Tween (for film) for one hour at room temperature. The primary 

antibodies were incubated overnight at four degrees. The membranes were then washed in 

PBS+1% Tween and incubated in secondary antibody for one hour at room temperature. The 

membranes were washed again and imaged using the Odyssey or film imaging system. The 

primary antibodies used were 1:500 p75NTR (Millipore 07-476), 1:500 TrkA (Santa Cruz 

SC80961), 1:1000 Akt (Cell Signaling 9272S), 1:1000 pAkt (Millipore 05-1003). Secondary 

Antibodies were goat anti-rabbit 680RD (Licor 926-68071) and donkey anti-mouse 800CW 

(Licor 926-32212), for Odyssey. Film was processed using hoseradish peroxidase (HRP) 

conjugated secondary antibody and SuperSignal West Pico detection (Thermo Scientific, 

#34080). .

2.6 Phagocytosis of fluorescent beads

Human MDMs were stimulated overnight in 1% DMEM with NGF or proNGF. Fluorescent 

1 micron beads (Molecular Probes/Invitrogen F-8887) were placed into each well for 4 

hours at a concentration of 4.3 × 105/beads ml. Excess beads not phagocytosed by hMDMs 

were washed from the plate. The hMDMs were stained with the live cell stain calcein AM (1 

μM, 20 min) and digital images of the live cells were captured at a magnification of 674×. 

Some cells were then fixed in 2% paraformaldehyde and stained with phalloidin-Alexa488 

(1:50). Cells were individually traced and Metamorph software was used to measure the 

number of beads in each cell for each condition. The bead density was calculated by 

dividing the number of beads by the area of the cell. The average bead density was then 

calculated and compared between the treatment conditions.

2.7 RT-PCR

The hMDM were stimulated in DMEM with 1% FBS plus NGF or proNGF overnight. Cells 

were lysed using Trizol Reagent (Invitrogen 15596-026) and RNA was purified according to 

RNeasy protocol (Qiagen cat# 74104). Reverse transcription was carried out according to 

SuperScript III First-strand Synthesis Kit (Invitrogen cat# 18080-051). The reaction was 

performed using an ABI 7500 system (Applied Biosystems) and Absolute SYBR Green Rox 

mix (AB-1163/A). mRNA levels were determined by the cycle threshold. The results were 

normalized to GADPH. Primers used were TrkA (Forward: 5’ATG CTG CGA GGC CAG 

CGG CA 3’ Reverse:5’ CCT GAC AGG GTC AAG TCC TG 3’), TrkB (Forward: 5’ CTG 

GAC CAC GCC AAC TGA CAT 3’ Reverse: 5’ GCA TCG GGC CCG CCC TCC GAA 

3’), p75NTR (Forward: 5’ ATC TTG GCT GCT GTG GTT G 3’ Reverse: 5’ TGT AGA 
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GGT TGC CAT CAC CC 3’), GADPH (Forward: 5’ CCC ATC ACC ATC TTC CAG GA 

3’ Reverse: 5’ TTG TCA TAC CAG GAA ATG AGC 3’).

2.8 Transmigration Assay

Following an overnight stimulation of hMDMs with NGF or proNGF in DMEM with 1% 

FBS, cells were harvested by incubating in ice-cold calcium-, magnesium-free HBSS for 

approximately 20-30 minutes to facilitate release of the hMDM from the low adhesion plate. 

Cells were washed from the plate with a 1 ml Rainin pipette using the flow of medium from 

the tip of the pipette to dislodge any remaining cells. The hMDM were centrifuged at 80 × g 

for 5 min, the supernatant carefully aspirated and the soft pellet was re-suspended in DMEM 

containing 1% FBS. The cells were counted and seeded into 8.0 micron Matrigel invasion 

chambers (BD Biocoat cat# 354480) at a density of105 cells/chamber. Migratory behavior 

was measured by the number of cells entering the bottom chamber which also contained 

DMEM with 1% FBS. Cells in the bottom chamber were labeled with the fluorescent live 

cell marker calcein AM (Life Technologies, C3100MP, 1 μM 20 minutes) and counted at 1 

and 3 days after seeding.

2.9 Flow Cytometry

PBMCs and hMDMs were stimulated with NGF or proNGF in 1% DMEM for 1 hour 

(PBMCs) or overnight (hMDM). Cells were removed from low adhesion wells and 

centrifuged for 5 minutes at 450 × g. Cellular pellets were re-suspended and fixed in a 

Fluorfix solution (Biolegend 420801) for 20 minutes at room temperature. Fixed cells were 

then treated with permeabilization buffer (EBioscience 020-8333-56) and centrifuged for 

five minutes at 450 × g at 4° C. The wash step was repeated followed by re-suspension in 

100 μl of permeabilization buffer plus antibody (1.5 μl p75; Alomone Labs ANT-007-F and 

20μl; TrkA R&D Systems FAB1715P; 5μl CD 206 Biolegend 321114; 5μl CD16 Biolegend 

302008 and 5μl CD 163 Biolegend 333607) at room temperature for twenty minutes. The 

stained cells were washed three times in cell staining buffer (Biolegend 420201). Flow 

cytometry was performed on a FACS Calibur (Becton Dickinson, San Jose, CA) using direct 

immunofluorescence with at least 100,000 events. Monocytes were determined by 

populations of cells with high forward scatter and low side scatter. All cells were gated to 

remove debris. Three color staining analysis was utilized. Cells were analyzed according to 

side scatter and receptor bound fluorescence, and data was collected with logarithmic 

amplifiers. Fluorescence spillover compensation was estimated using single-stained and 

unstained samples with the Cell Quest software (BD). After collection, data was further 

analyzed with FlowJo software (TreeStar Inc., Ashland, OR).

2.10 Protein profiles of macrophage conditioned medium

The hMDMs were chronically stimulated for 3 days in 1% DMEM with NGF or proNGF. 

Medium was collected and centrifuged at 400 × g for 5 minutes to remove any floating cells 

in the medium. The cell free medium was added to a RayBiotech human antibody array 

L-507 and processed according to the RayBiotech Biotin Label-based human antibody array 

protocol. Slide arrays were scanned using an Agilent technologies DNA microarray scanner 

and the analysis was carried out using MetaMorph® software. Internal negative controls 

were used to establish basal fluorescence and variation across the array. The minimum 
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detectable fluorescence signal was set at 3.2 standard deviation units above the average 

background to give a probability of 0.001 that a protein signal would be identified as 

positive by chance. The linearity of signal detection was verified from internal positive 

standards. Since signal intensity varied between different arrays, protein expression was 

normalized to the total signal for all proteins on the array and expressed as a relative optical 

density value to indicate the strength of each signal. Expression of each protein was 

compared for NGF or proNGF versus matched untreated controls. A comparison of NGF 

versus proNGF was then run to determine if the pro and mature peptides activate different 

secretory pathways. Proteins on the array that met the cutoff for a significant change were 

clustered into functional groups using David software (Huang da et al., 2009b, Huang da et 

al., 2009a) and the relative enrichment of various functional classes determined taking into 

account the focused nature of the array. Based in part on this information, specific functional 

subgroups were analyzed in greater detail to determine which classes of proteins were 

preferentially modified by NGF or proNGF.

2.11 Neurotoxicity of macrophage-conditioned medium

Pilot studies indicated that a 30 minute stimulation of hMDM was sufficient to induce 

secretion of toxic factors which persisted for several hours after removal of the stimulus. 

Thus, the cells could be primed with neurotrophin, washed and the neurotrophin free 

medium subsequently tested for activity. Macrophages were stimulated with NGF or 

proNGF in serum free DMEM for 30 minutes. The medium was then replaced with serum 

free DMEM and the medium collected after 1 hour or 24 hours. The macrophage-

conditioned medium (MCM) was centrifuged at 2500 rpm for 10 minutes to remove any 

cells and then frozen in aliquots at −80° C. The neurotoxic activity of the medium was tested 

on primary rat neurons cultured on coverslips. Neurons at 6-12 days in vitro were loaded 

with the calcium indicator, Fluo-4 AM (2 μM, Molecular Probes, Inc., Eugene, OR) in aCSF 

(aCSF: NaCl 137 mM, KCl 5.0 mM, CaCl2 2.3 mM, MgCl2 1.3 mM, glucose 20 mM). After 

30 minutes, the coverslip was transferred to a specialized stage for imaging. Cells were 

maintained in aCSF and time lapse digital images were captured automatically by the 

MetaMorph® System. Images were captured every 6 seconds for 6 minutes to assess acute 

effects and every min for 60 minutes to assess delayed effects. Three pre-stimulation 

measurements were taken to establish basal levels of fluorescence at the beginning of each 

experiment. Neurons were stimulated with MCM at a 1:5 dilution. The increase in 

fluorescence intensity within each cell was then measured relative to the baseline 

fluorescence to correct for cell to cell differences in dye loading and intrinsic fluorescence. 

For most studies, cellular responses were averaged across all cells from at least triplicate 

runs to provide an indication of the “typical” response. In some cases individual cell 

response patterns are shown where the average masked important cell-specific profiles.

2.12 Macrophage calcium responses to NGF and proNGF

Macrophages cultured on coverslips were incubated with NGF or proNGF and the calcium 

indicator, Fluo-4 AM in aCSF for 30 minutes. Time lapse digital images were captured 

automatically and changes in fluorescence intensity within each cell measured as described 

above.
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2.13 Statistical analyses

Graphpad Prism software was used for data summaries and graphics. Parametric statistics 

were used to evaluate most changes induced by NGF or proNGF relative to matched or 

unmatched control samples depending on the experiment. In cases where the data were not 

normally distributed non-parametric statistics were used. Means ± standard error of the 

mean were calculated for at least three replicate experiments. T-tests were used for paired 

comparisons, analysis of variance with repeated measures for temporal data and Chi-square 

for the analysis of cell populations as indicated. A probability of <0.05 for rejection of the 

null hypothesis was considered significant.

3. Results

3.1 Macrophages display distinctly different morphological phenotypes in culture

In culture, hMDM exhibited different morphologies which were, in part, dependent on the 

culture and stimulation conditions. Examples of prevalent morphological features are 

summarized in Figure 1. Three major structural features were identified which were found to 

correlate with macrophage phenotype: 1) ruffled membranes on the surface and edges of the 

cell and cellular processes (Fig 1A, arrows), 2) “fried egg” morphology with finger-like 

projections along the outer edges of the membrane (Fig 1B, arrow) and 3) flat ameboid cells 

with few readily visible membrane specializations (Fig 1C). The full range of morphologies 

could often be seen in the same culture although under particular stimulus conditions a 

single morphological type typically predominated. Occasionally, individual cells would 

display a combination of the above features although a single feature would usually 

dominate. To provide insight into the potential functional role of these specializations, each 

morphological feature was related to particular macrophage phenotypes described below.

3.2 TrkA and p75NTR are co-localized to discrete domains on macrophages

To investigate the expression and localization of neurotrophin receptors, we stained hMDMs 

for each class of neurotrophin receptor. Strong focal expression of p75NTR (Fig 2A) and 

TrkA (Fig 2B) was seen in regions of the macrophages containing ruffles (Fig 2C, arrow) or 

finger-like membrane specializations (see Fig 6). Although both receptors were expressed 

within the same structural domain, p75NTR expression was typically more focal and 

surrounded by a more diffuse TrkA stain (Fig 2D). TrkA and p75NTR staining were also 

seen in small endosome-like structures throughout the cell (Fig 2D, arrowhead). TrkB 

immunoreactivity was low with little or no expression localized to ruffles (Fig 2E, arrow) 

and occasional staining in endosomal-like structures (Fig 2E, arrowhead). Staining for TrkC 

was consistently negative as were control hMDM stained with secondary antibody in the 

absence of primary antibody (Fig 2F). It is notable that the structural specializations were 

highly dynamic. Even washing the cells too aggressively could trigger changes in shape and 

morphology as well as the ability to detect foci of both p75NTR and TrkA. It was difficult to 

unambiguously identify staining in large flat cells that had no clear membrane 

specializations (Fig 2G, outline of cell marked with dashed lines). Overall, the percentage of 

macrophages with readily identifiable staining was 47.4% p75NTR-positive and 44.3% 

TrkA-positive. Macrophage expression of p75NTR and TrkA was confirmed by Western blot 

(Fig 2H). RT-PCR also verified mRNA transcript for p75NTR and TrkA with comparable 
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delta cycle thresholds for each receptor (11.54 ± 0.54 and 11.95 ± 0.84, respectively). 

Consistent with the staining results, weak or no significant mRNA expression was detected 

for TrkB or TrkC.

Since p75NTR and TrkA are potential signaling partners, the extent of co-localization of 

p75NTR and TrkA was determined in double-stained macrophages. At the whole cell level, 

56.3 ± 8.0% of the hMDM expressed both TrkA and p75NTR. However, to determine if 

TrkA and p75NTR were co-localized to the same microdomains, the overlap of the stained 

foci was determined with a resolution of ± 0.46 μm using MetaMorph® software. TrkA was 

co-localized to 15.7 ± 4.8% of the p75NTR foci (range 4.9 to 33.6%). Some of the co-

localization of p75NTR and TrkA was seen in small endosome-like structures. Thus, while 

p75NTR and TrkA were expressed in the same general location in most cells (e.g. Fig 2C) 

only a subset of the receptors overlapped.

3.3 p75NTR and TrkA are expressed on monocytes

Expression of p75NTR and TrkA on hMDM was confirmed with flow cytometry using a 

different set of antibodies. By flow cytometry, 53.0 ± 8.5% of the macrophages were p75+ 

and 14.1 ± 1.7% were TrkA+. To explore whether p75NTR and TrkA were also present on 

monocytes, the precursors of mature macrophages, we used flow cytometry to measure the 

expression on freshly isolated PBMCs from healthy donors. Cells were stained and analyzed 

from seven separate donors with similar results. On average, 59.2 ± 14.9% of the gated 

monocyte subset were p75+ and 29.5 ± 12.6% were TrkA+. The p75NTR expression was 

similar to the expression seen on the macrophages whereas TrkA expression was higher on 

the monocytes. The cellular co-localization of p75NTR and TrkA by flow indicated that, on 

average, 88.8% of the TrkA+ monocytes were also positive for p75NTR. This was slightly 

higher than the 56.3% cellular co-expression seen in the immunostained hMDM.

The above results established the expression of p75NTR and TrkA under normal culture 

conditions. The presence of both p75NTR and TrkA suggested that macrophages may be 

subject to the differential actions of NGF and proNGF as suggested for neurons. Therefore, 

we assessed responses to stimulation with NGF or proNGF to determine determined how 

these neurotrophins influence the phenotype and functions of the macrophages.

3.4 Survival versus death in human monocyte derived macrophages

To determine if neurotrophins support survival of macrophages as they do for neurons, 

hMDM were cultured in serum free medium in the presence or absence of various 

concentrations of NGF (0, 3, 10, 30 or 100 ng/ml). After 28-32 hours, hMDM were stained 

with the live cell marker, calcein AM, imaged, and normalized to control hMDM maintained 

in medium containing 10% FBS. The percentage of live, healthy hMDMs stimulated with 

NGF in culture medium lacking serum increased in a dose dependent manner from 38.1 ± 

10.7% at 0 ng/ml NGF to 101.2 ± 6.0% at 100 ng/ml NGF (Fig 3A) with an estimated EC50 

of 14.0 ng/ml. A separate set of hMDM maintained in medium containing 10% FBS and 

stimulated with each concentration of NGF showed no changes at any concentration with a 

mean survival of 100.6 ± 2.2% (relative to control hMDMS). In parallel with the survival 
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data, a dose-dependent decrease in ethidium homodimer staining was seen with maximal 

protection at 100 ng/ml NGF (not shown).

The pro-survival actions of NGF were consistent with the phosphorylation of Akt, a known 

pathway for NGF mediated survival in neurons. However, as illustrated in Fig 3B, 

stimulation with NGF or proNGF both resulted in a time-dependent increase in 

phosphorylation of Akt (33.2 ± 7.0% and 69.0 ± 31.2%, maximal increase respectively, 

p=0.032) relative to controls, followed by recovery (Fig 3B). This suggested that 

neurotrophin receptors p75NTR and TrkA both mediate pro-survival functions on hMDMs.

Since signaling of pro-neurotrophins through the p75NTR receptor can promote cell death in 

neurons, we stained hMDMs stimulated with neurotrophins overnight with the dead cell 

marker ethidium homodimer and then fixed the cells in 2% paraformaldehyde before 

staining with the nuclear stain bisbenzimide to identify all nuclei as well as apoptotic nuclei. 

On average, 10.1 ± 1.4% of the hMDM nuclei stained positive for ethidium homodimer. 

This value did not change significantly after overnight treatment with 1 ng/ml proNGF (9.6 

± 1.2%) or 100 ng/ml NGF (12.2 + 2.2%) (Fig 3C). Condensed and/or fragmented nuclei 

represented 7.2 ± 1.1% of the total population in the vehicle-treated cells and also did not 

change with proNGF or NGF treatment (6.5 ± 1.0% and 7.3 ± 1.2%, respectively; Fig 3D).

3.5 Expression of the p75NTR and TrkA in monocytes and macrophages stimulated with 
NGF or proNGF

To investigate whether neurotrophin stimulation of human monocytes or macrophages 

would alter neurotrophin receptor expression, we stimulated hMDM with 100 ng/ml NGF or 

1 ng/ml proNGF for 24 hours and analyzed receptor expression by flow cytometry (Figure 

4A). Untreated cells were 53.0 ± 8.5% p75+ and 14.1 ± 1.7% TrkA+. NGF stimulation of 

hMDMs resulted in a small but significant decrease in p75NTR expression relative to both 

controls (−20.4 ± 7.3%, p=0.046) and proNGF (−22.5%, p=0.053). Expression of TrkA was 

not significantly affected (−11.2 ± 16.8%). Treatment with proNGF did not have a 

significant effect on p75NTR or TrkA expression (+2.6 ±.08% and +0.6 ±13.6%, 

respectively).

Freshly isolated PBMCs were also stimulated with NGF or proNGF for 1 hour and total 

gated monocytes were analyzed. Untreated cells were 59.2 ± 14.9% p75+ and 29.5 ± 12.6% 

TrkA+. NGF and proNGF did not affect p75NTR or TrkA total expression (Figure 4B). 

However, as illustrated in Figure 5, monocytes positive for p75NTR (Fig. 5A) or TrkA (Fig. 

5B) could be subdivided into two subpopulations expressing low and high receptor content. 

NGF stimulation slightly increased the proportion of TrkAhigh expressing monocytes (Fig 

5C) compared to both matched controls (+14.1 ± 21.6% p=0.021) and proNGF (21.6% 

p=0.02). ProNGF stimulation did not affect the p75high or TrkAhigh populations (Fig 5C).

3.6 Co-localization of the p75NTR and TrkA on hMDM is influenced by NGF and proNGF

At the cellular level by flow cytometry we did not see a significant difference in p75NTR/

TrkA co-expressing cells; however we sought to understand whether regional co-

localization of p75NTR and TrkA immunoreactivity within individual hMDM was sensitive 

to neurotrophin stimulation. Cultured hMDMs were double stained for p75NTR and TrkA 
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and the overlap of the staining (Figure 6A) was analyzed at a resolution of 0.46 μm (Merged 

inset). In the absence of stimulation, an average of 15.7 ± 4.8% of p75NTR staining co-

localized to TrkA foci (Fig 6B). When the hMDM were exposed to NGF or proNGF, co-

localization of TrkA with p75NTR increased significantly to 60.0 ± 2.4% and 30.4 ± 5.1%, 

respectively, (p<0.001 for both). The co-localization of p75NTR and TrkA induced by NGF 

was twice that of proNGF (p<0.001) indicating a preferred mobilization of these receptors to 

the same domain by NGF. The double-labeled profiles were typically seen in ruffled regions 

and small endosome-like structures as described above (Figure 2).

3.7 Sortilin receptor expression on hMDM

A well-recognized action of proNGF in some cell types is fostered by the interaction 

between p75NTR and the sortilin receptor. To determine if sortilin receptors were also 

present on human macrophages, we evaluated its expression by immunostaining. Sortilin 

was expressed at moderate levels on hMDMs, typically in small focal regions associated 

with ruffles (Figure 7A). A low level of diffuse stain was often seen throughout the cell. 

High to moderate sortilin expression was seen in approximately 43% of the cells whereas 

57% of cells showed weak staining. Since the focal expression of sortilin on ruffles was 

similar to p75NTR expression (green), double staining was performed to co-localize the 

p75NTR and sortilin receptors (Figure 7A, co-localized and Figure 7B). On average 16.3 ± 

1.4% of the p75+ foci overlapped with sortilin (arrows). However, the degree of overlap 

within each cell varied widely from 0 to 100%. Most cells (86%) had less than 20% overlap 

of the two receptors. Treatment of the hMDM with NGF or proNGF had differential effects 

on sortilin expression and co-localization with p75NTR. NGF increased the co-localization of 

p75NTR with sortilin by 104% (Fig. 7B, p<0.001) relative to controls and 42.6% relative to 

proNGF (p<0.001; arrows, Fig 7B). ProNGF also significantly increased co-localization 

relative to controls by 49.8% (p<0.001, Fig 7B). Treatment with NGF and proNGF had 

similar effects on co-localization of the receptors at 24 hrs indicating that the effects were 

relatively rapid and persistent. Total sortilin expression, based on the fluorescence stain 

intensity, was slightly (−10%) yet significantly reduced by NGF (Fig. 7C, p<0.001) but 

increased 36.8% by proNGF relative to controls (Fig 7C, p<0.001) and 50.8% relative to 

NGF (p<0.001). As noted above, these conditions did not lead to an increase in cell death 

suggesting that interactions with sortilin may serve other functions.

3.8 Neurotrophin modification of macrophage structure

To view changes in macrophage structure as a result of neurotrophin stimulation, cultured 

hMDM were stimulated with NGF or proNGF for a period of 1 hour or 24 hours followed 

by fixation in 2% paraformaldehyde and staining for F-actin with phalloidin-Alexa488. 

Structural changes were seen within the first hour after stimulation. Examples of the 

appearance of the hMDMs are illustrated in Figure 8A. F-actin (green) is shown as well as 

the presence of red fluorescent beads which were used to measure phagocytosis (Fig 9A). 

Vehicle-treated control cultures initially contained a mixture of cells with podosome-like 

structures (22.9% of cells, Fig 8A, podosome rich), focal ruffles (37.0% of cells, Fig 8A, 

ruffled), or no distinctive membrane specializations (40.1% of cells, Fig 8A, no 

specializations). Cells with podosomes often exhibited a highly polarized expression of 

podosomes (Fig 8A, polarized). In untreated cultures similar numbers of ruffled versus 
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podosome-containing cells were seen with an average ruffled:podosome ratio ranging from 

0.94 to 1.61. After 1 hour in the presence of 100 ng/ml NGF, 27.8% of the cells 

predominantly expressed ruffles and 10.5% podosomes yielding an increased ruffled to 

podosome ratio of 2.65 ± 0.06 (Fig 8B, p<0.001, compared to controls). This was largely 

due to a decrease in the expression of podosomes. Stimulation with NGF for 24 hrs resulted 

in a similar ruffled to podosome ratio of 2.14 ± 0.06_(Fig 8B, p<0.001 NGF vs. control or 

proNGF) although in this case there was a large increase in the number of hMDM with 

ruffles. After exposure to proNGF for 1 hour the opposite pattern was seen with 44.7% of 

the cells expressing podosomes and 24.2% ruffles decreasing the ruffled to podosome ratio 

to 0.54 ± 0.14 (Fig 8B, p<0.001, vs. Control or NGF). However 24 hour stimulation with 

proNGF did not affect the ruffled to podosome ratio relative to controls (Fig 8B, 0.83 ± 0.17 

vs. 0.94 ± 0.20, respectively). The effect of NGF on ruffle formation was further illustrated 

by a concentration-dependent increase in the number of cells with ruffles from 36.4 ±4.2% 

at 0 ng/ml NGF to 79.7 ± 7.3% at 100 ng/ml NGF (Fig 8C). The increase in ruffled cells 

seen after 100 ng/ml NGF stimulation (62.0±0.46 %, Fig 8D, p=0.028) was blocked by 

inhibiting TrkA signaling with a specific inhibitor, GW 441756 (Fig 8D, p=0.01 NGF vs 

NGF+ GW 441756). Inhibiting p75NTR signaling with a neutralizing antibody prior to NGF 

stimulation increased the number of cells with ruffles by 35.7% compared to NGF 

stimulated cells (Fig 8D; p<0.05). This data indicated that NGF drives the formation of actin 

rich ruffled structures via TrkA but not p75NTR signaling in hMDM. In contrast to NGF, 

podosome formation was increased from 22.57+2.99% in control cells to 44.67+4.04% with 

proNGF stimulation(Fig 8E; p<0.05). Incubation of hMDM with a p75NTR neutralizing 

antibody prior to stimulation with proNGF, completely reversed the effects on podosome 

formation (p<0.05). Addition of the p75NTR antibody to normal cultures also strongly 

inhibited the formation of podosomes (p=0.05). Together these effects indicate that p75NTR 

is strongly linked to podosome formation. However, proNGF- induced podosome formation 

was also suppressed by inhibiting TrkA signaling with the specific inhibitor GW 441756 

although many cells in this group failed to express either ruffles or podosomes.

Treatment with either NGF or proNGF increased the relative number of cells with polarized 

podosome-like structures after 1 and 24 hours. When ranked based on the degree of 

polarization from 1 (no polarity) to 5 (highly polarized - podosomes concentrated in one 

quadrant of the cell), controls had little polarization (1.25 ± 0.04). After 24 h, NGF- and 

proNGF-treated cells showed increased polarization (1.71 ± 0.12, p=0.0248 and 2.27 ± 

0.12%, p<0.001, respectively, Fig 8F. The degree of polarization was significantly greater 

for proNGF versus NGF (p<0.001). This trend was particularly evident in the relative 

number of cells in the 3-5 polarization categories: 3.38%, 20.17% and 35.09% for control, 

NGF and proNGF, respectively.

3.9 Phagocytosis of fluorescent beads

Macrophages are important in removal of cellular debris and infectious agents through 

phagocytosis and the appearance of ruffles has been associated with calcium-dependent 

phagocytic activity (Kruskal, 1987). To verify that the ruffled morphological phenotype was 

associated with phagocytic activity, we measured the phagocytosis of 1 micron fluorescent 

beads over a period of 4 hours. Cells were stained with calcein AM for live cell imaging 
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and/or fixed and stained with phalloidin to determine ruffled vs non-ruffled cells (e.g. Fig 

8A). Cells containing ruffled specializations phagocytosed more beads (Fig 9A) than non-

ruffled cells (64,295 ± 2,825 and 31,552 ± 5,861 beads/mm2, respectively * p<0.001).

3.10 MDM transmigration across a matrigel barrier

As podosomes have been implicated in migration and invasion, we investigated the roles of 

NGF and proNGF during macrophage migration. Macrophages were incubated in DMEM 

+1% FBS with or without proNGF or NGF. An aliquot of 105 cells from each condition was 

added to the upper well of an 8.0 micron matrigel invasion chamber for 1 or 3 days with 

similar medium in the lower well. NGF did not change migration relative to untreated 

controls. ProNGF had no effect on migration after 1 day but significantly increased the 

transmigration of hMDM relative to controls (104.8% increase, p=0.051) and NGF treated 

cells (149% increase, p=0.011) by day 3 (Fig 9B). Thus, the transmigration of the cells was 

consistent with the expression and polarization of podosomes by proNGF.

3.11 NGF and proNGF regulate intracellular calcium spiking activity in macrophages

Calcium signaling has been linked to various types of activity in macrophages. Macrophages 

responded to both NGF and proNGF with increases in intracellular calcium but the patterns 

were different. A plot of the average calcium responses (61-92 cells/condition), illustrated in 

Figure 10A, showed that both NGF and proNGF provoked a small acute response (Fig 10A, 

arrow) that was not seen in vehicle-treated macrophages. Over time, both the untreated and 

NGF-treated macrophages showed a gradual increase in intracellular calcium that was not 

apparent in the presence of proNGF (Fig 10A). The average acute increase in calcium was 

32.5 ± 3.4 fluorescence units in hMDM stimulated with NGF and 34.3 ± 8.0 in hMDM 

stimulated with proNGF (Fig 10C, p's < 0.001 relative to control, 1.2 ± 1.9). A gradual rise 

in intracellular calcium over time was seen in 39.1% of the control hMDM. Many fewer 

cells showed a gradual accumulation in the presence of NGF (16.9%) and the gradual rise 

was almost absent in the presence of proNGF (1.6%)(p<0.001, Chi square). These average 

response profiles, however, obscured the presence of brief calcium spikes that occurred at 

random intervals. Comparison of the spiking patterns in individual cells showed 

considerable variation in the magnitude and frequency of the calcium responses. Examples 

of the various patterns seen are provided in Figure 10B. To quantify the different response 

patterns, we examined the acute responses (Fig 10C) and spiking frequency (Fig 10D). The 

average acute calcium increase was significantly greater than controls for both NGF and 

proNGF (Fig 10C). Calcium spikes were seen in 39.1% of the unchallenged hMDM and 

39.8% of NGF-treated cells but was reduced to 16.4% in the presence of proNGF 

(p=0.0027, Chi square). Analysis of the individual cell calcium spike frequencies indicated 

that NGF increased calcium spikes (Fig. 10D,p= 0.013 vs aCSF) whereas proNGF decreased 

calcium spikes (p < 0.031 vs aCSF) . Thus, both the number of cells showing calcium 

changes and the spike frequency were altered in different directions by NGF versus 

proNGF. The effect of NGF on calcium spiking was blocked by the TrkA inhibitor GW 

441756 (Fig 10D; p=0.0002 vs NGF) although a basal level of spiking remained indicating 

that NGF facilitated spike activity but may not be the source of the spikes. Similarly, 

blockade of the p75NTR by a neutralizing antibody prior to application of proNGF resulted 

in a high level of spike activity that exceeded basal activity (Fig 10D; p<0.0001 vs proNGF), 
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indicating not only that the effect of proNGF was mediated through the p75NTR but also that 

there was intrinsic suppression of spike activity via the p75NTR.

3.12 Effects of NGF and proNGF on protein secretion

Macrophages secrete a wide array of proteins in response to external cues that reflect the 

diversity of responses of these cells. To understand the full range of the secretory profiles, 

macrophages were stimulated with NGF or proNGF for 3 days to allow accumulation of 

proteins in the macrophage conditioned medium (MCM). The medium was then analyzed in 

duplicate for cytokine, chemokine and growth factor content using the Ray Biotech L-Series 

Human Antibody Array L-507. Medium from cells challenged with NGF or proNGF were 

compared to the untreated MCM and to each other to assess individual effects and potential 

differences between the two peptides. Pre-treatment and post-treatment samples were tightly 

matched with correlations of protein content ranging from r=0.982 to r= 0.995 indicating 

that most proteins did not change. Using the 99.8% confidence limit as a cutoff, 9% (46 out 

of 507 proteins) of the proteins were significantly changed by proNGF and 10% (53 out of 

507) significantly changed by NGF. A summary of proteins changed by NGF or proNGF is 

provided in Table 1. Stimulation of secretion was twice as likely than suppression 

suggesting preferential activation of secretory pathways by each peptide. While the number 

of positive proteins was similar, NGF and proNGF induced different secretory patterns from 

the cells with only 10 proteins overlapping. Of these ten proteins, five (GDF, HB-EGF, 

CXCR2, CCR9, CCR7) changed in opposite directions leaving five for which NGF and 

proNGF produced similar effects. Four proteins were increased by NGF and proNGF 

compared to controls (GCSF-R, IL-17F, IL-29, MIP-1β). One protein, IL-13, was decreased 

compared to controls for both proNGF and NGF, although the suppression was greater for 

proNGF.

To understand the differences in the secretory profiles between NGF and proNGF, proteins 

were segregated into categories by function using the Database for Annotation, 

Visualization and Integrated Discovery (DAVID version 6.7(Huang da et al., 2009b, Huang 

da et al., 2009a), a bioinformatics tool. Six major functional groups were identified with the 

following Benjamini scores reflecting strength of association: response to injury (4.8 × 

10−13) > inflammatory response (1.4 × 10−9) >, chemotaxis (1.1 × 10−6), secretion (4.1× 

10−6) > immune regulation (8.5 × 10−4), cytokine production (2.0 × 10−4) and angiogenesis 

(7.1 × 10−3). Significant “hits” for categories such as cytokine production would be 

expected due to the nature of the array, (cytokine panel) but the very high association seen 

for response to injury and chemotaxis indicated a close relationship between the 

neurotrophins and these functions. In addition to the above categories, it is worth noting that 

DAVID also identified bone processes as a significant functional group for NGF but not 

proNGF. Conversely, adhesion/virus-associated processes was a relevant functional group 

for proNGF but not NGF.

Although similar functional groups were identified by DAVID for both NGF and proNGF, 

the minimal overlap of the proteins indicated that the pro and mature forms were regulating 

the pathways in different ways. To provide a more detailed examination of the patterns of 

protein secretion after NGF or proNGF stimulation, the positive proteins were grouped into 
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four major clusters (growth factors, cytokines, chemokines and other proteins) with up to 

seven functional families within each group. Of the four major clusters, growth factors were 

most highly represented (40/98; 40.8%) followed by cytokines (28/98; 28.6%), chemokines 

(19/98; 19.4%) and other proteins (11/98; 11.2%). Within the growth factor cluster, seven 

families were assessed (neurotrophic factors, EGF, TGF, FGF, CSF, IGF and angiogenic 

factors). NGF and proNGF induced very different growth factor secretory profiles, 

summarized in Table 1. Most of the time a growth factor was altered by one but not the 

other peptide. The most notable effects of NGF, illustrated in Figure 11, were on proteins 

within the TGF family where the largest increases were seen in TGF-β3, GDF11, neurturin 

and follistatin and decreases in GDF3, GDF5 and GDF8. ProNGF increased GDF5, chordin-

like 2 and GDF9 and decreased BMPR-IA and GASP-1. Other notable changes (Table 1) 

included increases in FGF-18, FGF-19, IGFI soluble receptor and ErbB2. In contrast, the 

most notable changes following stimulation with proNGF were within the family of 

angiogenic factors illustrated in Figure 12. Increases were seen in factors associated with 

suppression of angiogenesis: thrombospondin, thrombospondin-1, angiostatin. Decreases 

were seen in factors that promote angiogenesis: angiopoieitin, angiopoietin-like 1. No 

angiogenic proteins were significantly changed with NGF stimulation. Overall, this pattern 

suggested that proNGF stimulation of hMDMs induced an anti-angiogenic environment 

whereas NGF may regulate a variety of growth functions.

Chemokine secretion (Table 1) was also differentially regulated by NGF and proNGF. 

Opposing effects (NGF-induced increases, proNGF-induced decreases) were seen for 

CXCL16, CCR9, CXCR2 and CCR7. Increases in MCP-1, CXCL14, MCP-3, CCL27, MIP 

2 and CCR4 were seen after stimulation with proNGF relative to NGF. NGF and proNGF 

both increased secretion of MIP-1β and CXCR1.

In the cytokine group (Table 1), IL17C, IL-17F, IL-17BR, IL-23, IL-23R, IL-24, IL-26, 

IL-27, IL-28A and IL-29 were increased by NGF relative to control or proNGF. IL-4R, 

IL-17F, IL-18R and IL-29 were increased by proNGF. Notably, IL-13 was decreased by 

both NGF and proNGF while IL-10 was decreased by NGF. Many of these proteins are in 

the IL-17 family and the changes induced for IL-17 related cytokines by NGF or proNGF 

are summarized in Figure 13. This pattern suggested that the neurotrophins play a role in the 

secretion of cytokines that regulate immune responses via IL-17 mediated pathways.

The most notable of other proteins altered by NGF or proNGF (Table 1, Fig 14) were the 

MMPs. The relative differences in MMP secretion in response to NGF or proNGF are 

illustrated in Figure 14 where a distinct dichotomy is seen between the actions of NGF 

versus proNGF. NGF selectively induced the release of MMP-7, MMP-8 and MMP-11 

whereas MMP-9 secretion was increased after proNGF stimulation. MMP-1 did not meet the 

cutoff relative to controls but showed a significant differential increase for NGF relative to 

proNGF.

Since macrophages are commonly categorized as classically activated (M1) or alternatively 

activated (M2)(Laskin et al., 2011), we examined markers typically used to distinguish these 

phenotypes. M1 markers were TNF-α, IL-12p70, Il-6, Il-23 IFN-γ, IL-1α,β and IP10. M2 

markers were IL-4, IL-10, IL-13, TGF-β (1, 2, 3 & 5), and MCP-1. Changes in the M1 and 
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M2 cytokines, plotted from high to low, are illustrated in Figure 15. The dashed lines show 

the confidence limits for positive or negative changes. The pattern of increases and 

decreases did not reveal a clear inflammatory or anti-inflammatory profile for NGF or 

proNGF with most cytokines showing no change. The most notable effect of NGF was a 

decrease in IL-1 (M1) and IL-10 and IL-13 (M2). The only increase was for TGF-β3. 

Stimulation with proNGF did not affect the M1 cytokines. For the M2 cytokines an increase 

in MCP-1 and a decrease in IL-13 were the only notable effects.

The lack of a clear M1-like or M2-like effect of NGF and proNGF on inflammatory or anti-

inflammatory proteins was paralleled by the absence of acute changes in the activation 

markers CD16 and CD163 analyzed by flow cytometry (not shown). However, a small 

decrease in cells expressing CD206high was seen in monocytes treated with either NGF or 

proNGF for 1 hour (19.1% in controls to 12.3% NGF and 10.9% proNGF, p=0.03) 

suggesting a small shift away from the M2 phenotype.

3.13 Neurotoxic activity of the hMDM

A prominent response of macrophages to inflammatory stimuli is the secretion of factors 

that are toxic to neurons (Pulliam et al., 1991, Giulian et al., 1990, Xiong et al., 2000, 

O'Donnell et al., 2006, Tovar et al., 2013, White et al., 2011). Since neurotrophins are 

prominent in the nervous system we evaluated the ability of the neurotrophins to modulate 

toxic activity in the macrophage conditioned medium (MCM). Cells were stimulated with 

NGF or proNGF for 30 min, washed and medium from the conditioned cells was collected 

after 1 or 24 hours. Toxicity of the MCM was tested on rat cortical/hippocampal neurons 

pre-loaded with the calcium indicator dye Fluo-4. Previous studies have shown that 

macrophages activated by inflammatory stimuli release factors that injure neurons via a 

destabilization of intracellular calcium (Meeker et al., 2012, Bragg et al., 2002). The effects 

of the pre-conditioned MCM on calcium regulation are illustrated in Figure 16. MCM from 

hMDM pre-treated with proNGF resulted in a large acute calcium rise followed by partial 

recovery and then a delayed calcium increase which correlated with the appearance of cell 

damage in the form of focal varicosities. MCM from cells pre-treated for 30 minutes with 

NGF showed a larger acute calcium response but no significant delayed rise relative to 

untreated hMDM. Conditioned medium collected 24 hours after a 30 minute neurotrophin 

pre-treatment showed negligible calcium responses for both NGF and proNGF (2.2-11.3% 

of the maximum rise seen in the 1 hour samples) indicating that the toxic effect decays over 

time. Removal of the NGF or proNGF was necessary for the decay of activity since 

continuous treatment with NGF or proNGF for 24 hour resulted in similar toxic effects from 

the proNGF treated cells. Medium collected after prolonged stimulation with NGF showed 

some toxic activity albeit at a reduced level relative to proNGF. Thus, proNGF provokes the 

secretion of neurotoxic substances from the macrophages whereas NGF offered partial 

protection.
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4. Discussion

Trk and p75NTR expression on hMDM

Since the early observation that neurotrophins may regulate the immune response(Levi-

Montalcini et al., 1996) only a handful of studies have explored neurotrophin receptor gene 

transcript expression or immunoreactivity in cells of monocyte lineage (Aronica et al., 2004, 

Artico et al., 2008, Barouch et al., 2001, Dowling et al., 1999, Elkabes et al., 1998, Levanti 

et al., 2001, Nakajima et al., 1998, Samah et al., 2008b, Tonchev et al., 2008). These studies 

showed neurotrophin receptor expression on macrophages but the specific receptor profiles 

varied depending on the tissue and conditions (Hikawa et al., 2002, Nakajima et al., 1998, 

Garaci et al., 1999a). In our study of monocytes and hMDM, we found that 47-59% were 

immunoreactive for p75NTR and 29-44% for TrkA. TrkB was expressed at a much lower 

level and we observed no significant staining of TrkC. Receptor expression on both 

macrophages and monocytes varied from cell to cell suggesting that different phenotypes 

may be dynamically expressed in vitro and in vivo depending on local influences.

In neurons, p75NTR can form homodimers or heteromeric complexes with Trk receptors and 

other signaling partners such as sortilin. The strong co-localization of p75 NTR with both 

TrkA and sortilin in actin rich ruffled regions on the outer extremities of the cells indicated 

that these receptors are poised for interactions. In addition, the presence of both p75NTR and 

TrkA indicated that macrophages might be susceptible to differential signaling with NGF 

and proNGF. A large literature on the actions of NGF and proNGF in neurons has 

highlighted the opposing effects of the pro-form versus mature neurotrophin (Hempstead, 

2009). Prominent among these effects are the ability of proNGF to induce apoptosis in 

neurons when p75NTR associates with sortilin (Harrington et al., 2004, Nykjaer et al., 2004) 

and the ability of NGF engagement with TrkA/p75NTR to promote survival (Reichardt, 

2006). The current studies indicate that, like neurons, separate signaling pathways exist for 

the regulation of innate immune responses.

NGF and proNGF induce different functional macrophage phenotypes

NGF has been shown to increase SDF-dependent migration in human monocytes(Samah et 

al., 2008a), enhance TNF production in mouse macrophages after lipopolysaccharide (LPS) 

stimulation(Barouch et al., 2001) and increase macrophage viability during HIV 

infection(Garaci et al., 1999b). These studies indicate that NGF plays a role in trafficking 

and survival of macrophages. Consistent with these functions we found that NGF increased 

the co-localization of TrkA and p75NTR in hMDM, promoted phosphorylation of Akt, and 

increased survival in serum free medium. NGF also induced TrkA-dependent ruffling of the 

actin cytoskeleton in the macrophages. Although the role of p75NTR and TrkA accumulation 

at these membrane specializations is not well understood, Patel et al. (2008) suggested that 

the ruffling of the membrane was associated with phagocytic activity (Patel and Harrison, 

2008). Indeed, the ruffled cells in our studies showed significantly more phagocytic activity 

than non-ruffled cells. Other studies in macrophages and microglia have shown that 

increases in intracellular calcium were necessary for cytokine and chemokine release 

(Hoffmann et al., 2003) and that calcium spikes, in particular, were correlated with ruffled 

actin structures and increased phagocytosis (Myers and Swanson, 2002, Kruskal and 
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Maxfield, 1987, Ohsawa et al., 2000). Consistent with this data, NGF caused an acute 

calcium rise followed by increased calcium spiking in macrophages. The NGF-induced 

increase in spike frequency was blocked by the TrkA inhibitor GW but basal spiking activity 

remained indicating that TrkA activation facilitated spike activity but was unlikely to be the 

source of the spikes. The role of the calcium spikes is not known but their relationship to 

expression of membrane ruffles and increased phagocytosis suggest a role in these functions.

The effects of proNGF on hMDM function differed substantially from the effects of NGF. 

No effects were seen on neurotrophin receptor co-localization relative to controls following 

stimulation with proNGF indicating that the pro-neurotrophin does not promote interactions 

between p75NTR and TrkA. However, expression of sortilin and its colocalization with 

p75NTR was increased in the presence of proNGF. Sortilin has been described on rat 

peritoneal macrophages and bone marrow derived macrophages (Wong et al., 2010) and a 

microglial cell line, C13NJ (Martin et al., 2005). In neurons, sortilin/p75NTR signaling after 

engagement with proNGF often leads to apoptosis of the cell (Nykjaer et al., 2004). 

However, in the macrophages, proNGF did not induce cell death. Instead, proNGF, like 

NGF, increased phosphorylation of Akt. A similar effect was seen in the C13NJ microglial 

cells where stimulation with neurotensin, another endogenous ligand of sortilin, resulted in 

Akt-dependent extension of actin rich filopodia and migration (Martin et al., 2003, Martin et 

al., 2005). Although the sortilin-mediated death pathway has been studied extensively in 

neurons, sortilin participates in other cellular processes such as sorting of proteins in the 

Golgi compartment (Nykjaer et al., 2004) and anterograde transport of neurotrophin 

receptors to enhance neurotrophin signaling (Vaegter et al., 2011). While we cannot totally 

rule out a potential role in cell death, our results suggest that sortilin receptors may have 

alternative functions in macrophages.

ProNGF was also closely tied to changes in the cytoskeleton but, in contrast to NGF, 

induced the expression of podosomes. This effect was evident at low concentration of 

proNGF and was reversed by the p75NTR neutralizing antibody indicating that the proNGF 

effect was mediated through binding to the p75NTR. The podosomes often accumulated in 

one quadrant of the cell suggesting a polarization that might be associated with migration. 

This possibility was supported by the transmigration of an increased number of proNGF-

treated hMDM across the transwell Matrigel barrier. Podosome bearing cells showed less 

phagocytic activity and fewer calcium spikes relative to NGF-treated and control cells. The 

reversal of calcium spike supression with a p75NTR neutralizing antibody indicated that the 

actions of proNGF were mediated through the p75NTR. These differences support an 

antagonistic relationship between NGF and proNGF in the control of macrophages 

functions.

Differences in hMDM secretory profiles induced by NGF and proNGF

Secretion of proteins is a primary macrophage function in response to various external cues. 

Of the 507 proteins assessed in this study, approximately 20% changed in response to NGF 

or proNGF. NGF and proNGF induced very different secretory responses indicating that 

each induces a distinctively different macrophage phenotype. The highest scoring functional 

groups using the bioinformatics tool DAVID were response to injury, inflammatory 
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response, chemotaxis and secretion, all consistent with the structural and functional changes 

in the cells. Many studies have categorized macrophages into two or three distinct groups 

based on their secretory profiles and receptor content (Laskin et al., 2011). However, 

categorizing the response based on classical pro-inflammatory (M1) and anti-inflammatory 

(M2) cytokines provided little insight into the actions of the neurotrophins as neither peptide 

induced a clear M1 or M2 secretory profile. We also failed to see changes in surface 

receptors CD16 or CD163 although NGF stimulation produced a slight downregulation of 

CD206, an M2 marker in monocytes. The changes seen in proteins within many different 

functional groups reinforce a growing number of studies emphasizing the wide variety of 

phenotypes that extend beyond the traditional categories (Ransohoff and Perry, 2009). Our 

study in particular indicated that specific protein changes tended to segregate into four 

functional groups: growth factors, IL-17 family cytokines, angiogenic factors and matrix 

metalloproteases.

GrowthFactors—The functional group most affected by proNGF and NGF was growth 

factors. This response highlights the potential importance of neurotrophins in the control of 

protective and restorative properties of macrophages in disease processes (Murray and 

Wynn, 2011). While macrophages/microglia have previously been shown to secrete 

neurotrophic factors (Nakajima et al., 1998, Garaci et al., 1999b) our profile indicated that 

growth factors in the TGF-β family including TGF-β3, growth and differentiation factors 

(GDF3, 5, 8, 9 and 11) and neurturin were affected predominantly by NGF. The few that 

were changed by proNGF were invariably in the opposite direction as NGF, again 

highlighting the opposing actions of the pro and mature forms of the peptide. These proteins 

are thought to play a role in growth and differentiation of the nervous system although 

studies of the GDFs in particular have been limited. The high levels of expression indicate 

that GDF secretion is an area worthy of further exploration.

Angiogenic Factors—Other growth factors that were almost exclusively affected by 

proNGF were proteins that control angiogenesis. ProNGF increased angiostatin, 

thrombospondin and thrombospondin -1, factors that inhibit angiogenesis while also 

decreasing factors that promote angiogenesis, angiopoietin and angiopoietin-like 1. Many 

studies have reported a positive role for NGF (Nico et al., 2008) and a negative role for the 

p75NTR(Krygier and Djakiew, 2002) in angiogenesis however proNGF's role is less well 

understood. Together these resultsidentify a novel role for proNGF in the induction of anti-

angiogenic activity.

IL-17 Cytokines—IL-17 cytokines share structural features with NGF (Zhang et al., 2011) 

and are involved in host defense against extracellular bacterial and fungal infection(Curtis 

and Way, 2009) as well as the pathogenesis of autoimmune inflammatory diseases(Zhu and 

Qian, 2012). The IL-17 family of cytokines was affected predominantly by NGF. Increases 

were seen in the secretion of IL-17C, IL-17F and IL-23R. We have found no previous 

reports of IL-17 secretion in response to NGF although studies have noted increases in both 

IL-17 and NGF at sites of wounding(Carvalho et al., 2008) A reciprocal relationship 

between IL-17 and NGF has been suggested by some studies. IL-17 stimulation of human 

PBMCs has been shown to upregulate NGF mRNA levels and PBMCs isolated from 
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relapsing-remitting multiple sclerosis patients had reduced levels of NGF after IL-17 

stimulation (Urshansky et al., 2010). This relationship is likely to be a fruitful area which 

could reveal new insights into regulation of neuroinflammation.

Matrix Metalloproteinases—The dichotomy between the actions of NGF versus 

proNGF persisted for the MMP family of proteins. NGF induced secretion of MMP-7 may 

be of particular importance. In vitro, MMP-7 has been shown to induce atrophy of neuronal 

synapses via inhibition of vesicle recycling (Szklarczyk et al., 2007). While this would 

suggest that MMP-7 secretion in response to NGF is deleterious, a study by Le et al. (Le and 

Friedman, 2012) indicated that the MMP-7 had a protective function during kainic acid-

induced seizures by converting proNGF to NGF. More work is needed to clarify the role of 

macrophage-derived MMP-7. In contrast to NGF, ProNGF increased MMP-9 secretion from 

macrophages. The secretion of MMP-9 by macrophages is thought to be mediated in part by 

podosomes (Buccione et al., 2004) which is consistent with proNGFs ability to induce 

podosome formation. Increases in MMP-9 have also been seen in the CSF in many 

neurodegenerative diseases where macrophage infiltration and/or microglial activation often 

play a key role in the etiology of neuronal damage such as Alzheimer disease and HIV 

associated dementia (Block et al., 2007). Given the many functions of monocytes and 

macrophages, the differential regulation of MMPs by NGF and proNGF may have 

widespread relevance to CNS pathogenesis, tumorigenesis, atherosclerosis and other 

diseases (Xia et al., 2013, Malemud, 2006).

The neuropathology of these neuroinflammatory diseases has been linked in some cases to 

the secretion of soluble factors that are toxic to neurons (Pulliam et al., 1996, Giulian et al., 

1996) although the actions of these factors is still poorly understood. A decrease in the ratio 

of NGF to proNGF in degenerative diseases such as Alzheimer disease has been suggested 

as an underlying factor that contributes to disease progression (Capsoni et al., 2011, Tiveron 

et al., 2013, Al-Shawi et al., 2007). Our studies showed that the balance of pro- and mature 

forms may also differentially influence the secretory response and toxic activity of 

macrophages/microglia. ProNGF supported the secretion of toxins that destabilize neuronal 

calcium in much the same fashion as seen in MCM from virally activated macrophages 

(Meeker et al., 2012), whereas NGF facilitated growth factor secretion and neuroprotection. 

Though these studies could not identify the neurotoxins secreted from hMDMs that is 

responsible for the neuronal calcium dysregulation, these differences have important 

implications for the control of macrophage activity by neurotrophins and indicate that 

p75NTR and TrkA signaling pathways may be fertile ground for the development of 

strategies to regulate macrophage phenotypes that impact neurodegenerative diseases.

5. Conclusions

These studies provide an initial characterization of the ability of neurotrophins to influence 

the phenotype of macrophages and for the first time show that, like neurons, macrophages 

are poised to respond to pro- and mature neurotrophins in different ways. . NGF and 

proNGF induce changes in the actin cytoskeleton which favor ruffling of the membranes or 

formation of podosomes, respectively. Ruffles, induced by NGF, appear to be a focal point 

for the expression of p75NTR and TrkA and correlate with phagocytosis, calcium spiking, 
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phosphorylation of Akt and the release of growth factors, IL-17 related cytokines and 

various MMPs. In contrast, proNGF facilitated podosome formation, the secretion of anti-

angiogenic factors, MMP-9 and factors that induce toxicity in neurons. These differences 

offer the potential for development of neurotrophin-based therapeutic approaches that adjust 

the balance between beneficial and deleterious macrophage functions.
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Highlights

1. Neurotrophin receptors p75NTR and TrkA are expressed on monocytes and 

macrophages

2. NGF and proNGF differentially regulate macrophage phenotypes; no evidence 

of M1/M2

3. NGF promotes membrane ruffling, calcium spiking and growth factor secretion.

4. ProNGF induces podosome formation, migration and neurotoxin production

5. Novel therapeutic avenue for macrophage control during neuroinflammation
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Figure 1. 
Varied appearance of human monocyte-derived macrophages (hMDM) in culture. A-C. 

Bright field images of hMDMs in culture illustrating ruffled membranes (A, arrows), flat, 

fied egg-like morphology with finger like folds in the outer membrane (B, arrow) and flat 

ameboid appearance with few membrane specializations (C). Scale bar = 20 μm in all 

images.
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Figure 2. 
Neurotrophin receptors p75NTR and TrkA were concentrated in discrete domains on human 

macrophages. A-C. A single macrophage stained for p75NTR (A, red), TrkA (B, green) 

illustrating the localization of immunoreactivity to ruffled areas . C. DIC image overlay 

showing the merged receptor stain for p75NTR(red) and TrkA (green) associated with 

membrane ruffles on the surface of the macrophage. D. Highly magnified view of the outer 

edge of a macrophage showing p75NTR (red) immunoreactivity surrounded by more diffuse 

labeling of TrkA (green). Immunoreactivity for p75NTR and/or TrkA was seen in endosome 

like structures (arrowhead) at these foci as well as throughout the cell. E. Immunoreactivity 

for TrkB was typically weak with little expression at membrane specializations (arrow). 

However, a few cells showed immunoreactivity in endosome-like structures (arrowhead). F. 

hMDMs stained with secondary antibody in the absence of specific primary antibody 

showed no significant immunoreactivity. G. hMDM with no expression of p75NTR or TrkA 

within the cell or along the outer membrane (membrane border identified with a dashed 

line). The cell is adjacent to a stained cell illustrating the variable nature of the expression of 

p75NTR and TrkA. H. Western blot of hMDM lysate confirming immunoreactive bands at 

75 kDa and 140 kDa for p75NTR and TrkA, respectively.
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Figure 3. 
Neurotrophins promote cell survival in hMDMs. A. NGF increases survival of hMDMs in a 

dose-dependent fashion (0 ng/ml,3 ng/ml,10 ng/ml,30 ng/ml and 100 ng/ml) with an 

estimated EC50 =14.0 ng/ml. B. Time course (0,10, 30, 60, 240 min) of changes in the ratio 

of pAKT: total AKT levels after addition of 100 ng/ml NGF or 1 ng/ml proNGF. 

Phosphorylation (activation) of AKT determined from quantification of bands in western 

blots was increased with NGF or proNGF in each of five different runs followed by recovery 

although magnitude and timing of peak response varied between runs. Results are expressed 

as mean ± sem. treatment effect over time (p=0.03, two-way ANOVA and Wilcoxin signed 

rank test of peak response, p's = 0.031). C. Live cultures of treated or untreated hMDM were 

stained with the dead cell marker, ethidium homodimer. The total number of dead cell nuclei 

stained with ethidium was low and was not changed after 1 day stimulation with 100 ng/ml 

NGF or 1ng/ml proNGF. D. The same cultures of hMDMs were fixed and counterstained 

with the nuclear stain bis-benzamide to reveal apoptotic nuclei. The number of condensed, 

fragmented apoptotic nuclei was very low and did not change after stimulation with 

100ng/ml NGF or 1ng/ml proNGF.
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Figure 4. 
Neurotrophin receptor expression on hMDM and monocytes quantified by flow cytometry. 

Receptor expression of TrkA and p75NTR was assessed by flow cytometry analysis on 

cultured hMDM (A) and freshly prepared human PBMCs (B). A. hMDM stimulated with 1 

ng/ml proNGF or 100 ng/ml NGF for 1 day had no effect on TrkA expression. NGF 

stimulation slightly reduced p75NTR expression. B. Human monocytes stimulated with 100 

ng/ml NGF or 1ng/ml proNGF for 1 hr showed no significant change in cells expressing 

p75NTR or TrkA. **p=0.046 relative to control and p=0.053 relative to proNGF.
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Figure 5. 
Monocytes expressed high and low levels of p75NTR and TrkA. A. Representative histogram 

of p75NTR low and high populations seen in monocytes (dashed lines) relative to unstained 

cells (solid line). B. Representative histogram of TrkA low and high populations (dashed 

lines) seen in monocytes relative to unstained cells (solid lines). C. Monocytes stimulated 

with 100 ng/ml NGF or 1 ng/ml proNGF for 1 hr had no effect on the proportion of p75high 

expressing monocytes. NGF stimulation induced a small but significant increase in 

monocytes with high expression of TrkA. ** p=0.021 relative to controls and p=0.02 

relative to proNGF.
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Figure 6. 
Neurotrophin Receptors p75NTR and TrkA are co-localized to the same microdomains on 

hMDMs. A. Immunoreactivity of TrkA (green), p75NTR(red) and co-localized foci of 

p75NTR and TrkA (yellow, merged) found on finger-like membrane specializations of 

hMDMs. At higher magnification (inset) the partial overlap of p75NTR and TrkA can be 

seen indicating that the two receptors are closely associated but only occasionally within the 

same microdomain. B. The proportion of TrkA labeling co-localized to p75NTR at a 

resolution of 0.46 μm was increased after 24 h treatment with 100 ng/ml NGF compared to 

control and 1 ng/ml proNGF (** p's < 0.001). A smaller yet significant increase in co-

localization of TrkA and p75NTR was seen with proNGF (*p<0.001).
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Figure 7. 
Sortilin Receptors are expressed and co-localize with p75NTR on hMDMs. A. Example of 

focal immunostaining for sortilin (Red) and p75NTR (Green) in control hMDM and hMDM 

treated with 100 ng/ml NGF or 1 ng/ml proNGF for 1 h. Many p75NTR foci were not co-

localized with sortilin. B. Overlap of p75NTR and sortilin staining was quantified as in 

Figure 5. NGF (100 ng/ml) and proNGF (1 ng/ml) stimulation increased sortilin co-

localization with p75NTR (6A arrows) compared to control (**p<0.001 relative to control). 

C. Sortilin immunoreactivity expression intensity was increased after 1 h stimulation with 1 

ng/ml proNGF but not 100 ng/ml NGF (**p<0.001 relative to control or NGF; 6A, ProNGF 

arrow). Results are expressed as mean ± sem.
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Figure 8. 
Morphological changes in hMDMs are regulated by neurotrophins. A. hMDMs stained with 

the F-actin marker phalloidin (Green) following phagocytosis of 1micron latex beads (Red). 

Four morphologies were often seen in cultures: hMDMs rich in podosomes (podosome rich, 

arrow), hMDMs containing focal ruffles (ruffled, arrows), hMDMs with no significant 

membrane specializations (no specializations) and polarized hMDM with podosomes 

concentrated at one end of the cell (polarized, arrow). Small red fluorescent beads are visible 

reflecting phagocytosis summarized below. B. The expression of ruffles versus podosomes 

in hMDMs changed in opposite directions in response to100 ng/ml NGF or 1 ng/ml proNGF 

as summarized by the ratio of ruffled cells to cells predominantly expressing podosomes. An 

increase in ruffled cells by NGF was seen after 1 and 24 h **, p<0.001 vs Control and 

proNGF. An increase in podosome rich cells was seen 1 h after treatment with proNGF vs 

control (*,p<0.001) but was not sustained. C. Dose response increase in the percentage of F-

actin rich ruffled hMDMs after overnight stimulation with various concentrations of NGF 

(0, 3, 10, 30 and 100 ng/ml). D. The distribution of cells with ruffles versus podosomes was 

significantly increased by NGF (100ng/ml). Specific inhibition of TrkA signaling with GW 

441756 in the presence of 100 ng/ml NGF decreased the percentage of cell with ruffles 

compared to both controls and NGF alone. Blockade of p75NTR signaling with a 

neutralizing antibody prior to NGF stimulation further increased the percentage of ruffled 

Williams et al. Page 33

J Neuroimmunol. Author manuscript; available in PMC 2016 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cells. Treatment with p75NTR neutralizing antibody alone increased ruffled cells whereas the 

TrkA inhibitor GW 441756 had no effect (a; p<0.001 vs control, b; p<0.001 vs NGF, Chi 

square analyses). E. ProNGF increased podosome formation in culture. Inhibiting p75NTR 

signaling with a neutralizing antibody (p75Ab) or inhibition of TrkA with GW 441756 

suppressed podosome expression (a; p<0.001 vs control, b; p<0.001 vs proNGF, Chi square 

analyses). The p75NTR neutralizing antibody also suppressed podosome formation under 

normal conditions. F. To assess polarization of the hMDMs, cultured cells containing 

podosomes were scored from 1(no polarity) to 5 (high podosome density localized to one 

quadrant of the cell). NGF (100 ng/ml) increased polarization of hMDM after 1 h 

(**p=0.0248 NGF vs Control), and 24 h (**,p<0.001 NGF vs Control) of stimulation. 

ProNGF (1 ng/ml) induced a greater polarization compared to NGF after both 1h (p<0.001 

proNGF vs Control, and p<0.001 proNGF vs NGF) and 24hrs, (*,p<0.001 proNGF vs 

Control and p=0.001 proNGF vs NGF).
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Figure 9. 
Regulation of phagocytosis and migration by NGF and proNGF. A. Phagocytosis of 1 μm 

fluorescent latex beads by hMDMs with ruffled morphologies was significantly greater than 

non-ruffled hMDMs *p<0.001. B.The ability of hMDMs to transmigrate through a matrigel 

barrier was increased after 3 days stimulation with 1 ng/ml proNGF compared to controls or 

100 ng/ml NGF. **P=0.051 vs. Control, p=0.011 vs. NGF.
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Figure 10. 
Mature NGF and proNGF have different effects on macrophage calcium regulation. A. 

Incubation of hMDM with 100 ng/ml NGF induced a small acute calcium response followed 

by a gradual accumulation over time that paralleled the accumulation in aCSF controls. In 

contrast, incubation of hMDM with1 ng/ml proNGF induced an acute calcium response 

similar to NGF but failed to stimulate calcium accumulation over time. B. Calcium traces 

for individual cells illustrating representative patterns of calcium spikes for control, 100 

ng/ml NGF and 1 ng/ml proNGF treated hMDMs. C. NGF (100ng/ml) and proNGF (1 

ng/ml) treatment of hMDMs induced an acute calcium rise after stimulation (*; p's < 0.001, 

NGF vs. control and proNGF vs. control). D. NGF increased individual calcium spike 

frequency (a;p=0.013 vs aCSF). Inhibition of TrkA signaling with the specific inhibitor 

GW441756 blocked NGF calcium spiking (b;p<0.05 vs NGF). ProNGF also suppressed 

calcium spiking compared to aCSF (a;p=0.031 vs aCSF). Inhibiting p75NTR with a 

neutralizing antibody reversed proNGF suppression of calcium spiking (c;p<0.05 vs 

proNGF).
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Figure 11. 
Changes in TGF-β family proteins in macrophage conditioned medium induced by NGF or 

proNGF. Values represent the change in fluorescence signal intensity on the protein array 

for NGF or proNGF treated cells relative to matched control medium collected prior to 

stimulation. Differential effects of 100 ng/ml NGF versus 1 ng/ml proNGF were seen for 

most proteins. Significance limit for the difference scores was ±9207 fluorescence units.
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Figure 12. 
Changes in angiogenesis family proteins in macrophage conditioned medium induced by 

NGF or proNGF. Values represent the change in fluorescence signal intensity on the protein 

array for cells treated with 100 ng/ml NGF or 1 ng/ml proNGF relative to matched control 

medium collected prior to stimulation. Only proNGF induced changes in this family of 

proteins. Significance limit for the difference scores was ±9207 fluorescence units.
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Figure 13. 
Changes in IL-17 family proteins in macrophage conditioned medium induced by NGF or 

proNGF. Values represent the change in fluorescence signal intensity on the protein array 

for 100 ng/ml NGF or 1 ng/ml proNGF treated cells relative to matched control medium 

collected prior to stimulation. Differential effects of NGF and proNGF were seen for most 

proteins except IL-17F where both NGF and proNGF increased expression. IL-23 showed a 

large differential between NGF vs. proNGF but each individual change ase not significant 

relative to controls. Significance limit for the difference scores was ±9207 fluorescence 

units.
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Figure 14. 
Changes in MMP family proteins in macrophage conditioned medium induced by NGF or 

proNGF. Values represent the change in fluorescence signal intensity on the protein array 

for cells treated with 100 ng/ml NGF or 1 ng/ml proNGF relative to matched control 

medium collected prior to stimulation. NGF increased MMP-7, 8, and 11 whereas proNGF 

induced a selective increase in MMP-9. A borderline increase in MMP-1 was induced by 

NGF (significant differential relative to proNGF). Significance limit for the difference 

scores was ±9207 fluorescence units.
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Figure 15. 
Release profile of proteins typically associated with M1 (inflammatory) or M2 (anti-

inflammatory) macrophage polarization in response to NGF or proNGF. The dashed line 

represents the magnitude of change needed to be considered significant. NGF (100ng/ml) 

suppressed the release of several proteins (IL-1α,β, IL-10 and IL-13) and increased TGF-β3. 

ProNGF (1ng/ml) affected the release of only two proteins, an increase in MCP-1 and a 

decrease in IL-13. Overall, there was no strong trend toward either an M1 or M2 phenotype. 

Significance limit for the difference scores was ±9207 fluorescence units (dashed lines).
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Figure 16. 
NGF and proNGF have opposing effects on the secretion of neurotoxic factors by hMDM. 

Toxic effects on neuronal calcium regulation were monitored by measuring acute (every 6 s 

for 6 min) and delayed changes in intracellular calcium (every min for 60 min) with Fluo-4. 

A-B. Conditioned medium from hMDMs after stimulation with 100 ng/ml NGF or 1 ng/ml 

proNGF was collected and placed onto cultured rat cortical neurons to assess calcium 

dysregulation. Macrophages were pretreated with neurotrophins to establish a change in 

phenotype and then washed and incubated for 1 h in serum free DMEM to generate the 

macrophage conditioned medium (MCM). A. Addition of MCM at a dilution of 1:5 resulted 

in an acute increase in calcium for both proNGF and NGF treated cells. NGF caused a larger 

acute increase compared to proNGF. However, the delayed accumulation of calcium which 

correlates with the development of structural pathology was induced by MCM from proNGF 

treated cells but not NGF-treated cells. Basal calcium levels are illustrated for neurons 

treated with aCSF. B. Conditioned medium collected 1 day after treatment failed to provoke 

significant changes in intracellular calcium. Data points are mean ± sem.
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Table 1

Soluble protein changes in macrophage conditioned medium in response to NGF or proNGF.

Major Families SubFamilies Common Name Protein Name ProNGF NGF

Growth Factors

Neurotrophin

beta- Nerve Growth Factor beta-NGF −1906 11832

Ciliary neurotrophic factor CNTF −18712 −879

Ciliary neurotrophic factor receptor alpha CNTF R alpha −2373 7573

GDNF family receptor alpha-2 GFR alpha-2 −25026 1454

GDNF family receptor alpha-3 GFR alpha-3 −5592 6571

GDNF family receptor alpha-4 GFR alpha-4 4081 9819

Neurturin Neurturin 855 9621

Angiogenic

Angiogenin Angiogenin 10434 −879

Angiogenin-1 Angiopoietin-1 −12531 −409

Angiopoietin-like 1 Angiopoietin-like 1 −70270 2873

Angiostatin Angiostatin 37867 36

Thrombospondin Thrombospondin (TSP) 22839 −879

Thrombospondin-1 Thrombospondin-1 32165 −879

Thrombospondin-2 Thrombospondin-2 −14164 −3587

Osteoactivin Osteoactivin / GPNMB 8 15189

EGF

Receptor tyrosine-protein kinase erbB-2 ErbB2 −803 13109

Cripto-1 Cripto-1 −966 −11589

Heparin-binding Epidermal like growth 
factor

HB-EGF 15410 −10820

Neuregulin 2 NRG2 14881 −879

Neuregulin 3 NRG3 26006 5257

Sensory and motor neuron-derived factor/
Neuregulin 1 Isoform

SMDF / NRG1Isoform 385 9711

TGF

Bone morphogenic protein 3 BMP-3 −856 8762

Bone morphogenic protein receptor-1A BMPR-IA / ALK-3 −13242 3412

Chordin-Like 2 Chordin-Like 2 18113 −317

Follistatin Follistatin 151 13139

Growth/ differentiation factor 3 GDF3 −2856 −20946

Growth/ differentiation factor 5 GDF5 20785 −20505

Growth/ differentiation factor 8 GDF8 4214 −10327

Growth/ differentiation factor 9 GDF9 9003 −3250

Growth/ differentiation factor 11 GDF11 670 16710

Transforming growth factor-beta 3 TGF-beta 3 539 9859

Bone morphogenic protein receptor-1B BMPR-IB / ALK-6 −1841 7282

FGF

Fibroblast growth factor receptor 4 FGF R4 −15624 187

Keratinocyte growth factor FGF-7 / KGF 1430 −14409

Fibroblast growth factor-13 1B FGF-13 1B −10447 −337

Fibroblast growth factor-18 FGF-18 1507 28892
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Major Families SubFamilies Common Name Protein Name ProNGF NGF

Fibroblast growth factor-19 FGF-19 −4230 11039

Fibroblast growth factor-11 FGF-11 −5817 −12787

CSF

Granulocyte colony-stimulating factor GCSF 14252 −2688

Granulocyte colony-stimulating factor 
receptor

G-CSF R / CD 114 16035 9283

IGF Insulin-like growth factor 1 Soluble 
Receptor

IGF-I SR −649 8704

Inflammatory

Inflammatory

Interferon-gamma IFN-gamma −1563 9178

Interleukin-1 alpha IL-1 alpha 7040 −21787

Interleukin-26 IL-26 −6437 27520

Interleukin-27 IL-27 −2125 11950

Soluble glucoprotein 130 sgp130 −566 −10926

Oncostatin M OSM −23091 −910

Interleukin-1 beta IL-1 beta −1625 −10394

Anti-Inflammatory

Interleukin-4 receptor IL-4 R 66873 −879

Interleukin-10 IL-10 4650 −19883

Interleukin-13 IL-13 −22859 −11407

Interleukin-13 receptor alpha 1 IL-13 R alpha 1 −1344 10114

Interleukin-10 receptor alpha IL-10 R alpha −771 −9682

Interleukin-22 IL-22 9719 −1403

Interleukin-24 IL-24 −1352 34953

Interleukin-28A IL-28A −2606 31042

Interleukin-29 IL-29 28702 26242

TNF

Tumor necrosis factor receptor superfamily 
member 5

CD40 liagand / TNFSF5 / 
CD154

12839 2302

Lymphotoxin beta receptor Lymphotoxin beta R / 
TNFRSF3

−514 14473

Tumor necrosis factor ligand superfamily 
member 13

April 10082 863

Il-17

Interleukin-17B receptor IL-17B R −1742 25671

Interleukin-17C IL-17C −1552 17632

Interleukin-18-binding protein a IL-18 BPa −2343 −12256

Interleukin-18 receptor alpha IL-18 R alpha (IL-1 R5) 37642 −4101

Interleukin-21 receptor IL-21 R 1289 −13178

Interleukin-23 IL-23 −6551 6152

Interleukin-23 receptor IL-23 R 143 22000

Galectin-4 Galectin-4 −18362 0

Interleukin-17F IL-17F 10426 17047

Chemokines Chemokines

Interleukin-8 IL-8 −10328 −879

Monocyte Chemoattractant Protein-1 MCP-1 12636 −879

Monocyte Chemoattractant Protein-3 MCP-3 18210 −620

Macrophage inflammatory protein-1b MIP-1b 24631 13195
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Major Families SubFamilies Common Name Protein Name ProNGF NGF

Macrophage inflammatory protein-2 MIP 2 34862 −514

C-C chemokine receptor type 4 CCR4 39880 1276

C-C chemokine receptor type 7 CCR7 −36858 25721

C-C chemokine receptor type 9 CCR9 −25369 12536

C-C chemokine ligand 27 CTACK / CCL27 25312 −879

C-X-C chemokine ligand 14 CXCL14 / BRAK 12268 −2114

C-X-C chemokine ligand 16 CXCL16 −16041 8315

C-X-C chemokine receptor type 1 CXCR1 / IL-8 RA 25821 7695

C-X-C chemokine receptor type 2 CXCR2 / IL-8 RB −32262 27759

C-X-C chemokine receptor type 6 CXCR6 524 13340

C-X-C chemokine ligand 1 GRO 3051 −13418

Human CC chemokine-4 HCC-4 / CCL16 −2532 −16397

Lymphotactin Lymphotactin/ XCL1 −1283 −13629

Monokine induced by gamma interferon MIG −14265 −879

C-X-C chemokine ligand 1 GRO-a 704 9793

Other

MMP

Matrix metalloproteinase-7 MMP-7 350 17410

Matrix metalloproteinase-8 MMP-8 −2563 10171

Matrix metalloproteinase-9 MMP-9 31915 −879

Matrix metalloproteinase-11 MMP-11 (Stromelysin-3) −3399 9606

Matrix metalloproteinase-1 MMP-1 −965 8110

Adhesion
Intercellular Adhesion Molecule-1 ICAM-1 9536 −2207

Sialic acid-binding Ig-like lectin-9 Siglec-9 −7361 −16393

Misc.

Leukemia inhibitory factor receptor alpha LIF R alpha −4998 5291

Inhibin B Inhibin B −443 15725

Growth and differentiation factor-associated 
serum protein 1

GASP-1 / WFIKKNRP −12014 1903

Shaded values represent significant changes in protein secretion by NGF or proNGF relative to matched control medium. Values are expressed as 
relative fluorescence units. Nine proteins showed strong differentials for NGF versus proNGF although no individual changes were seen relative to 
control (unshaded).
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