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Abstract
Age influences behavioral decisions such as reproductive timing and effort. In photoperiodic
species, such age effects may be mediated, in part, by the individual's age-accrued experience with
photostimulation. In female European starlings (Sturnus vulgaris) that do not differ in age,
experimental manipulation of photostimulation experience (photoexperience) affects
hypothalamic, pituitary, and gonadal activity associated with reproductive development. Does
photoexperience also affect activity in forebrain regions involved in processing a social cue, the
song of males, which can influence mate choice and reproductive timing in females? Female
starlings prefer long songs over short songs in a mate-choice context, and, like that in other
songbird species, their auditory telencephalon plays a major role in processing these signals. We
manipulated the photoexperience of female starlings, photostimulated them, briefly exposed them
to either long or short songs, and quantified the expression of the immediate-early gene ZENK
(EGR-1) in the caudomedial nidopallium as a measure of activity in the auditory telencephalon.
Using an information theoretic approach, we found higher ZENK immunoreactivity in females
with prior photostimulation experience than in females experiencing photostimulation for the first
time. We also found that long songs elicited greater ZENK immunoreactivity than short song did.
We did not find an effect of the interaction between photoexperience and song length, suggesting
that photoexperience does not affect forebrain ZENK-responsiveness to song quality. Thus,
photoexperience affects activity in an area of the forebrain that processes social signals, an effect
that we hypothesize mediates, in part, the effects of age on reproductive decisions in photoperiodic
songbirds.

Keywords
age and aging; Akaike Information Criterion (AIC); birdsong; experience; photoperiodism

INTRODUCTION
According to life-history theory, an individual's age should affect its reproductive decisions.
For example, the size or number of offspring should increase with the mother's age
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(Williams, 1966; Clutton-Brock, 1988). Numerous investigators have observed this and
other effects of age on reproductive decisions and attributed the proximate control of these
effects to age-accrued experiences that may influence how individuals subsequently respond
to reproductive cues in the environment (Williams, 1966; Pugesek, 1981; Sæther, 1990;
Forslund and Part, 1995; Sockman et al., 2006).

In some species, one experience that might help to mediate age-related change in
reproductive decisions is experience with the process of photostimulation (photoexperience).
The vast majority of temperate-zone bird species are photoperiodic, in that their behavioral
and physiological responses to annual cycles in photoperiod enable the adaptive timing for
the onset and cessation of reproductive activity (Nicholls et al., 1988; Hahn et al., 1997;
Dawson et al., 2001). In most such species, young hatch under the long photophases of
spring or summer in the photoperiodic state known as photorefractoriness (Williams et al.,
1987; Williams et al., 1987), which is characterized as an insensitivity to the stimulatory
effects of a long photophase (Hahn et al., 1997). Exposure to the short photophases of fall
and winter then sensitizes them to the stimulatory effects of the long photophases they will
experience the following spring, at which point they are said to be photostimulated (Dawson
et al., 2001). Continued exposure to long photophases eventually leads back into a state of
photorefractoriness (Nicholls et al., 1988), and the cycle continues.

In birds, first-year, inexperienced breeders often breed later in the season and have lower
reproductive output than older, experienced breeders (Sæther, 1990; Rowe et al., 1994;
Forslund and Part, 1995). One key difference between a first-year, photoperiodic breeder
and one with prior breeding experience is their photoexperience; first-year breeders are
naïve to photostimulation the first time they experience it, whereas older breeders have had
prior experience with this process (i.e., are experienced) (Sockman et al., 2004).

When photoexperience is experimentally manipulated in female European starlings (Sturnus
vulgaris) that do not differ in age, experienced individuals, like older individuals in natural
populations, have more rapid and robust reproductive development than naïve individuals
have (Sockman et al., 2004). Within four weeks of photostimulation (for the first time in
naïve individuals and for the second time in experienced individuals), experienced
individuals show greater body mass, higher concentrations of luteinizing hormone and
vitellogenin circulating in the blood plasma, larger ovarian follicles, and a higher index of
secretion of gonadotropin releasing hormone (GnRH) than naïve individuals show
(Sockman et al., 2004). Thus, photoexperience influences the rate or magnitude of the
hypothalamic, pituitary, and gonadal activity that characterizes the annual onset of
reproductive development, possibly forming, in part, a basis for age-related differences in at
least one reproductive decision, that of reproductive effort or timing.

Even in highly photoperiodic species, such as the European starling (Dawson, 2007), non-
photoperiodic, ecological and social cues are also important in stimulating reproductive
development (Wingfield and Farner, 1980; Wingfield, 1983). In female songbirds, one such
social cue is male song, an acoustic signal important in species recognition, mate choice, and
timing of reproduction (Hinde and Steel, 1978; McGregor, 1991; Ball and Bentley, 2000;
Ball et al., 2006; Maney et al., 2007). Numerous studies on a variety of species have yielded
considerable insight into how the songbird brain processes song cues (for review, see Ball et
al., 2006; Sockman, 2007). Specifically, auditory input ascends from the periphery to the
nucleus mesencephalicus lateralis pars dorsalis, which projects to the thalamic relay nucleus
ovoidalis. Ovoidalis sends strong projections to Field L, an area of the songbird auditory
telencephalon that is homologous to the mammalian primary auditory cortex. Field L
projects to two adjacent areas of the auditory telencephalon analogous to the mammalian
non-primary auditory cortex, the caudomedial mesopallium (CMM) and the caudomedial
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nidopallium (NCM), which themselves reciprocally connect (Vates et al., 1996) and show
high-level, experience-dependent plasticity in the representation of learned songs (Gentner
and Margoliash, 2003).

By quantifying the expression of the immediate-early gene ZENK (the avian homologue of
and an acronym for zif-268, egr-1, NGFI-A, and Krox-24) after brief exposure to song
stimuli, several investigators have demonstrated the important role the CMM and NCM play
in processing song cues (for review, see Ball et al., 2006; Sockman, 2007). ZENK
expression tends to be higher in individuals exposed to conspecific song than in those
exposed to heterospecific song (Mello et al., 1992; Mello and Clayton, 1994). In the
European starling, females prefer long songs over short songs in a mate-choice context
(Eens et al., 1991; Mountjoy and Lemon, 1996; Eens, 1997; Gentner and Hulse, 2000), and
long songs induce greater ZENK expression in the CMM and NCM than short songs do
(Gentner et al., 2001; Sockman et al., 2002; Sockman et al., 2005; Sockman, 2007). These
and similar results generated in other songbird and even non-songbird species (e.g., Eda-
Fujiwara et al., 2003; Maney et al., 2003; Leitner et al., 2005) reveal a type of forebrain
responsiveness to song variation that is relevant to mate-choice. Moreover, in the white-
crowned sparrow (Zonotrichia leucophrys), ZENK expression in the CMM and NCM is
positively correlated with the strength of the female's mate-choice behavior in response to
the song to which she is exposed, suggesting a role for these areas of her brain in the
reproductive decision of mate choice (Maney et al., 2003).

In European starlings, experience can affect activity of the auditory forebrain, in that the
quality of the song environment to which the female has been recently exposed influences
ZENK expression in the CMM and NCM (Sockman et al., 2002; Sockman et al., 2005;
Sockman, 2007). Given (1) the important role photoexperience can play in the
hypothalamic, pituitary, and gonadal activity that characterizes the annual onset of
reproductive development (Sockman et al., 2004), (2) the potential role activity in the
auditory forebrain might play in reproductive decisions (for review, see Sockman, 2007),
and (3) the effects of some types of experience on activity in the auditory forebrain
(Sockman et al., 2002; Gentner and Margoliash, 2003; Sockman et al., 2005; Sockman,
2007), we asked in this study whether photoexperience might influence neural activity in the
auditory telencephalon of female starlings, as measured by ZENK expression. We predicted
that, relative to naïve females, females experienced with photostimulation have elevated
ZENK expression in the auditory forebrain. We also asked whether photoexperience
influences the responsiveness of the female auditory forebrain to song quality, as measured
by the difference between the ZENK response to long and to short songs (i.e., we asked
whether photoexperience interacts with song length to influence forebrain ZENK
expression).

METHODS
The Institutional Animal Care and Use Committee at Johns Hopkins University (Baltimore,
U.S.A.), where we held the animals, approved the procedures described in this study. Many
of the procedures were thoroughly described in a previous publication (Sockman et al.,
2004). Below we summarize these procedures and also detail those specific to the present
study. The previous (Sockman et al., 2004) and present study made use of the same
individual birds.

Capture, Housing, and Initial Photosensitization
We captured European starlings in September 2001 on a farm near Baltimore, Maryland,
U.S.A., determined by their brown speckled plumage that they had all hatched that spring or
summer (Kessel, 1951), and held them on a daily photoperiod of 8 hours light and 16 hours
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dark (8L 16D) (Fig. 1). Throughout the study we provided them with ad libitum access to
food and water. In mid-November, we anesthetized (ca. 5 mg secobarbitol injected i.m.) and
sexed them by laparotomy.

Photo-Experience Manipulation
Twelve weeks after capture and onset of 8L 16D, we randomly paired 32 females in 16,
individually lit and ventilated sound-attenuation chambers, half on 8L 16D (naïve group)
spatially interspersed in one room with the other half on 16L 8D (experienced group) (Fig.
1). Approximately 5 wk into this phase, one female in the experienced group died and was
excluded from analysis. We periodically handled each individual in each group to determine
the status of her feather molt and, as part of another study (Sockman et al., 2004), to weigh
her and collect a blood sample.

Eight weeks of 8L 16D is typically sufficient to ensure starlings are photosensitive (Dawson,
1991), and 12 wk of 16L 8D is typically sufficient to drive starlings photorefractory
(Dawson and Goldsmith, 1983). However, we confirmed photorefractoriness in the
experienced group and lack of photorefractoriness in the naïve group by their differences in
the progress of molt, the onset of which presages photorefractoriness due to the fact that
both molt and photorefractoriness may be regulated by the same physiological mechanism
(Dawson, 1998; Dawson and Sharp, 1998). All experienced and no naïve females initiated
molt well in advance of the end of this photo-experience phase of the experiment (Sockman
et al., 2004).

Photosensitization followed by Photostimulation of All Females
Twelve weeks after transfer to the chambers (and transfer to 16L 8D for the experienced
group), we removed all females from the chambers and placed them in open wire cages
together in one room on 8L 16D (Fig. 1). After 8 wk, we changed the photoperiod to 16L 8D
to simultaneously photostimulate naïve individuals for the first time and experienced
individuals for the second time in their lives. To summarize, after holding half the females
(naïve group) on a winter-like photoperiod (8L 16D) for 32 wk and passing the other half
(experienced group) through a complete, simulated annual photocycle (8L 16D for 12 wk,
16L 8D for 12 wk, and then 8L 16D for 8 wk), we simultaneously photostimulated all of
them. We then exposed them to male song (Fig. 1).

Song-Stimulus Manipulation
We exposed females to male song at a time in their photoperiodic cycle when they were
likely to still be very responsive to reproductive stimuli, that is, at a time when hypothalamic
neurons were still secreting GnRH. In first-year female starlings, mean hypothalamic GnRH
concentrations do not decline (i.e., females do not begin regression of the hypothalamo-
pituitary-gonadal axis) before 6 wk after transfer from 8L 16D to 18L 6D (Dawson et al.,
1985). On 16L 8D, GnRH concentrations would decline even later. However, due to inter-
individual variation (from photo-experience or other factors) and to be sure that
measurements occurred when photo-induced hypothalamo-pituitary-gonadal capacity was
still ascending, we exposed females to song stimuli after about 4 wk of photostimulation.
Below are the details of the song exposure.

Beginning 3 wk and 6 days following photostimulation, one experienced and one naïve
female were placed together in one of four sound attenuating chambers. Thirty minutes later,
we exposed them to a 30 min short-song stimulus played through a speaker within the
chamber and 60 min later anesthetized (6.5 mg secobarbitol injected i.m.) them and
collected their brains for ZENK immunocytochemistry (Fig. 1). Thirty min after placing the
first pair in the first chamber, we placed another pair in the second chamber and proceeded
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as described above, except we exposed them to a long-song stimulus instead of a short-song
stimulus. We continued staggering female pairs every 30 min, alternating between short-
song and long-song stimuli for each pair, until we had exposed eight pairs to song and
collected their brains (2 pairs per chamber, each chamber balanced with respect to song
stimulus). We repeated these procedures the following day on the remaining individuals.

Song Stimuli
Details of the song recordings have been described previously (Gentner and Hulse, 2000). A
large library of complete songs was recorded from two laboratory-housed males, each
directing song at a female. From each male's songs, 12 exemplars were selected, which,
based on length, were divided into two sets of six: a long-song set and a short-song set, with
mean song lengths of 55.2 and 26.0 sec, respectively, for one male and 55.6 and 25.4 sec for
the other. Song sets were repeated in each file and enough silence inserted between songs to
ensure that neither total song nor total silence duration differed between the long- and short-
song sets. We exposed half the female pairs to the song sets from one male and half to those
from the other. Because we used recordings from only two males, we cannot extend our
conclusions to long and short songs in general (Kroodsma et al., 2001; Wiley, 2003).
However, because a previous study showed that females in a mate-choice context preferred
each of these exact long-song sets to each of these exact short-song sets (Gentner and Hulse,
2000), results are based on responses to stimuli known to differ in their attractiveness to
females.

Immunocytochemistry and ZENK (EGR-1) Quantification
After sectioning brains on a cryostat at 40 μm in the sagittal plain, we performed
immunocytochemistry for the protein ZENK as previously described by Sockman et al.
(2002) (Fig. 1). Briefly, this immunocytochemistry procedure involved initially treating the
acrolein-fixed tissue with a sodium borohydride solution, blocking endogenous peroxides
with a hydrogen peroxide solution, and suppressing endogenous avidin and biotin binding
activity with a blocking kit, before incubating for 40-48 hr at 4°C in the primary antibody,
which we have previously validated for use in female European starlings (Sockman et al.,
2002). We followed this with an incubation with biotinylated goat anti-rabbit secondary
antibody to which an avidin-biotin horseradish peroxidase complex bound and which we
colored with a nickel-enhanced diaminobenzidine tetrahydrachloride solution. We washed
tissue in solutions of PBS or PBS with Triton-X-100 detergent (Thermo Fisher Scientific,
Inc., Waltham, MA, U.S.A., Cat. No. BP151-500) between steps.

All image capture and quantification was conducted blind to the treatment of the animals.
Using Köhler Illumination on a Leica DM4000 Digital Research Microscope with Leica
DFC480 color digital camera, brightfield images of 683- × 512-μm areas were collected
from the CMM and a dorsal (NCMd) and ventral (NCMv) region of the NCM (Fig. 2).
These were magnified 320 times as 8-bit gray-scale images on an Apple Macintosh G5 dual-
processor computer connected by firewire to the microscope camera. Of these brain areas,
we present analyses of NCMd only, because of a bleached appearance and therefore lack of
immunoreactivity (both specific and non-specific) in the CMM and NCMv of several
females. There were no such problems for any of the females in any locations in the NCMd,
which we henceforth refer to as the NCM. We do not know the reason for the histological
problem, but it may have been due to limited penetration of the acrolein and therefore
insufficient fixation of the regions that are furthest from the brain's surface (i.e., CMM and
NCMv).

ZENK-immunoreactivity (ZENK-ir) was quantified in every fourth-cut section of tissue
from near the midline to approximately 1120 μm bilateral, resulting in seven anatomical
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locations (sagittal sections) per hemisphere spanning previously described boundaries of
NCM (Gentner et al., 2001). Using the software ImageJ (version 1.34s, National Institutes of
Health), we determined — for one individual — a mean gray value for background (i.e.,
nonspecific) immunoreactivity, a threshold gray value for specific immunoreactivity, and a
ratio between these two values to be used as a factor by which to multiply each of the other
individuals' mean background gray values. This provided a threshold gray value for each
individual that was adjusted according to the individual's mean background gray value. We
then used an automatic ImageJ routine to determine the proportion of pixels that was above
the individual's threshold gray-value. For analyses, we used the mean of the two
hemispheres for each of the seven locations.

Analysis
Our data consisted of a combination of fixed (photoexperience, song stimulus, location) and
hierarchically nested random (individual, song-exposure pair, and photoexperience pair)
effects, each of which may differ from the others in its correlation structure. Therefore, we
used a mixed-model framework (using the software Stata IC 10.0 for the Macintosh, Stata
Corporation, College Station, Texas, U.S.A.), which is readily amenable to complex data
sets with combinations of fixed and hierarchically structured random effects (Burton et al.,
1998; Goldstein et al., 2002; Rabe-Hesketh and Skrondal, 2005). This mixed-modelling
approach has the added advantage of estimating parameters with maximum likelihood
procedures (we used restricted maximum likelihood), which are often more accurate and
more powerful than the traditional least squares estimates used in analyses of variance and
other linear models (e.g., Goldschmidt and Timm, 2003; Whitman, 2003; Orton and Lark,
2007). Specifically, we analyzed ZENK-ir as a function of photoexperience, song stimulus,
location, and all their interactions, with measurement nested within individual female,
individual female nested within photoexperience pair, and photoexperience pair nested
within song pair, each as a random coefficient on location.

The goal of our analyses was as much to model our data efficiently, using the best subset of
the predictors and interactions mentioned above, as it was to test statistical hypotheses.
Traditional model selection (e.g., forward- or backward-stepping) procedures rely on
arbitrary criteria (e.g., a P value less than or greater than 0.05 or 0.10) for the inclusion or
exclusion of a factor. We opted for a more objective assessment of model fit by taking an
information theoretic approach, in which we calculated the Akaike Information Criterion
(AIC) (Burnham and Anderson, 2002) value for a null model containing only an intercept
and for each model in which we added the different combinations of the predictors of
interest and their interactions. A model's AIC value reflects its goodness of fit relative to its
number of parameters, using the loglikelihood of the model while penalizing for each
parameter. If the increase in loglikelihood offsets the increase in complexity with the
addition of a parameter, then the AIC value declines, indicating a more efficient model. We
calculated an AIC value for every combination of predictor and interaction, with the single
stipulation that a model must contain all the lower order terms within any included higher
order term. In other words, we did not test a model that contained an intercept,
photoexperience, and the interaction between photoexperience and song stimulus, without
also including song stimulus as a main effect (because it is part of the included interaction
term). We then report the results from the statistical hypothesis tests conducted for only
those predictors remaining in the single model with the lowest AIC value (i.e., the AIC-best
model) (see Table 1). For additional information on using this mixed, multi-level modelling
and information theoretic approach, see Sockman et al. (2008).
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RESULTS
We observed robust ZENK-ir in the NCM, regardless of photoexperience or song-stimulus
treatment (Fig. 2). Nonetheless, there was considerable variation between individuals in
NCM ZENK-ir. The most efficient model (i.e., that with the lowest AIC value) explaining
this variation was one containing an intercept and the factors photoexperience, song
stimulus, and location. AIC did not support the addition of any of the three possible two-way
interaction terms or the three-way interaction in the model (Table 1).

NCM ZENK-ir showed a general decline with increasing distance from the midline (Table
1, Fig. 3). However, we did not detect an effect of either photoexperience or song stimulus
on the slope of this decline, as indicated by the lack of AIC support for the interactions
between photoexperience and location, song and location, or photoexperience, song, and
location together. Despite this general decline in ZENK-ir, we did observe some variation
between the responses of individual females in this location effect. This between-female
variation may be due to the true relationship between ZENK-ir and location or to the
precision with which we matched locations (section numbers) between females, given the
vagaries of sectioning heterogeneous tissue on a cryostat.

Exposure to the long-song stimulus induced greater NCM ZENK-ir than exposure to the
short-song stimulus did (Table 1, Fig. 4). We found no evidence that this difference between
responses to the two song stimuli was influenced by the lateral location in the NCM or by
the individual's photoexperience, given the lack of AIC support for the inclusion of these
interaction terms in the model. We also found that photoexperience affected NCM ZENK-ir
(Table 1, Fig. 5). Females with prior experience with photostimulation showed greater
ZENK-ir in the NCM than did females experiencing photostimulation for the first time.
Again, we found no evidence that this difference was dependent on song stimulus or
location, as indicated by the lack of AIC support for inclusion of these interaction terms in
the model.

DISCUSSION
The proximate mechanisms by which age and experience influence reproductive decisions
are poorly understood, but recent studies implicate a role for photostimulation experience
(photoexperience) in photoperiodic species. Previously, we had shown in the European
starling that photoexperience affects the hypothalamic, pituitary, and gonadal activity
associated with the annual onset of reproductive development (Sockman et al., 2004). Here
we provide evidence that photoexperience also influences activity in an area of the brain
important in processing conspecific song, a supplementary, social cue likely influencing a
host of reproductive decisions, including timing of reproduction, mate recognition, and mate
choice (Hinde and Steel, 1978; McGregor, 1991; Ball and Bentley, 2000; Ball et al., 2006;
Maney et al., 2007). Specifically, photoexperience elevated expression of the immediate
early gene ZENK in the NCM of female starlings.

We have not provided evidence that photoexperience affects forebrain responsiveness to
song itself, given that we did not include a no-song group in our experiment. Thus, although
the ZENK expression we document could be song induced, it could also be independent of
the song exposure. Still, given that ZENK expression in female white-crowned sparrows is
correlated with the strength of mate-choice behavior (Maney et al., 2003), the elevated
levels due to photoexperience are intriguing and may be related to changing responsiveness
to song when females are making reproductive decisions or to a changing song-independent
baseline level, which might influence the probability of ZENK expression reaching some
hypothetical behaviorally relevant threshold when she eventually does hear song.
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A limitation on the number of animals at our disposal and our primary interest in whether
photoexperience influences forebrain responsiveness to song quality precluded the inclusion
of a no-song group in this experiment. We did find that the preferred long songs give rise to
greater ZENK expression in the auditory forebrain than do the less-preferred short songs,
thus replicating two other studies in European starlings (Gentner et al., 2001; Sockman et
al., 2002). However, we did not find that photoexperience influences the difference between
ZENK expression in response to the preferred songs and that in response to non-preferred
songs (i.e., we did not find compelling evidence for an effect of the interaction between
photoexperience and song quality). Thus, we do not have evidence that photoexperience
affects forebrain responsiveness to stimulus variation relevant to mate-choice. If ZENK
expression in the female auditory forebrain is functionally tied to the particular choice of
mate, then our lack of effect of the interaction between photoexperience and song quality
leads to the prediction that photoexperience has little or no effect on which male a female is
likely to chose based on his song alone (Sockman, 2007; Sockman and Salvante, 2008).

Based on the studies described below, the most likely mechanism by which photoexperience
elevates ZENK expression in the auditory forebrain of female songbirds is one mediated by
estradiol concentrations circulating in the blood plasma and possibly norepinephrine
secretion in the auditory forebrain. Accordingly, we propose that experienced females have
greater concentrations of estradiol circulating in their blood plasma and that estradiol acts on
receptors in the auditory forebrain or in areas projecting to the auditory forebrain to
influence ZENK expression through a noradrenergic-dependent process. Previously
(Sockman et al., 2004), we showed that photoexperience elevates an index of secretion of
GnRH, secretion of luteinizing hormone, ovarian follicle diameter, and circulating
concentrations of the primary yolk-precursor protein, vitellogenin, the synthesis of which is
estrogen-dependent (Christians and Williams, 1999; Williams, 1999; Williams, 1999).
Although we did not measure estradiol in that study, it is very likely that, given the effects
listed immediately above, estradiol was also elevated by photoexperience (Sockman et al.,
2004).

Maney and colleagues have recently conducted a series of studies on female white-throated
sparrows (Zonotrichia albicollis) that strongly implicates a requirement of high estradiol
levels for the song-induced elevation of ZENK expression in the auditory forebrain (Maney
et al., 2006; LeBlanc et al., 2007) and in other areas of the brain, including a network of
nuclei involved in social behavior (Maney et al., 2008). Conspecific song elevates ZENK
over frequency-matched tones in females with experimentally or naturally elevated estradiol
concentrations but not in females with low estradiol concentrations (Maney et al., 2006;
Maney et al., 2008). This ZENK-potentiating effect of estradiol may be mediated by
catecholamine secretion in the auditory forebrain (LeBlanc et al., 2007; Lynch and Ball,
2008), in that experimental elevation of estradiol also elevates norepinephrine levels in the
caudomedial mesopallium compared to control females with low estradiol levels [Sanford et
al., unpubl data]. Moreover, in canaries (Serinus canaria), chemical lesion of forebrain
noradrenergic fibers reduces song-induced elevation of ZENK in parts of the auditory
forebrain (Lynch and Ball, 2008). It is possible that photoexperience elevates estradiol
concentrations, which then elevate norepinephrine levels in the auditory forebrain and that
norepinephrine modulates ZENK expression in response to song. This hypothesis would be
consistent with data showing that the quality of the prevailing song environment, which also
modulates song-induced ZENK expression in the female auditory forebrain (Sockman et al.,
2002; Sockman et al., 2005), itself modulates norepinephrine secretion in the auditory
forebrain (Sockman and Salvante, 2008) and with the hypothesis that norepinephrine and
perhaps other monoamines play key roles in modulating song-induced reproductive
decisions based on the context of the physical, ecological, or social environment (Ball et al.,
2006; Sockman, 2007; Lynch and Ball, 2008; Sockman and Salvante, 2008). Still, we
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currently lack direct evidence that the effects of photoexperience on forebrain ZENK
expression are mediated by estradiol and norepinephrine, and, thus, at this point, this
mechanism is merely a hypothesis.

Previously, we have published evidence that degree of photosensitivity (also likely
influencing plasma estradiol concentrations) may influence ZENK expression in the
auditory forebrain of female starlings (Sockman et al., 2002). Due to the design of that
experiment, we could not rule out other factors such as the passage of time. In the presently
described experiment, however, we can rule out other factors (with a probability reflected in
our P values) as being solely responsible for the difference between our two
photoexperience groups. Thus, regardless of the mechanisms or behavioral ramifications,
our findings may be the first to demonstrate an effect of photoperiodic experience on gene
expression in the forebrain of any organism and, in particular, on gene expression in the
auditory forebrain of an organism that relies heavily on auditory cues when making
reproductive decisions.
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Figure 1.
Experiment procedure. Because one female died during the photoexperience manipulation,
one female “pair” in the song-stimulus manipulation was composed of only one female. For
graphical simplicity, the two levels of the photoexperience manipulation and the two levels
of the song-stimulus manipulation are depicted as spatially segregated. However, in the
experiment, the replicates of one level of each manipulation were spatially interspersed with
the replicates of the other level of each manipulation.
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Figure 2.
(A) Photomicrograph of a sagittal section of the female European starling auditory
telencephalon, depicting the location (rectangle) for quantification of ZENK-
immunoreactivity. (B) Representative photomicrographs of ZENK-immunoreactivity for
each of the four treatment groups. CMM, caudomedial mesopallium; NCM, caudomedial
nidopallium; d, dorsal; v, ventral; r, rostral; c, caudal.
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Figure 3.
ZENK-immunoreactivity in the caudomedial nidopallium of female European starlings
relative to the distance from the midline. The dark line reflects the mean response of
individual birds (light lines).
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Figure 4.
ZENK-immunoreactivity in the caudomedial nidopallium of female European starlings
relative to the type of song stimulus to which they were exposed. Both means and means
adjusted to the response to other factors in the statistical model (photoexperience) are
depicted, together with 95% confidence whiskers.
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Figure 5.
ZENK-immunoreactivity in the caudomedial nidopallium of female European starlings
relative to photoexperience (naïve vs. experienced). Both means and means adjusted to the
response to other factors in the statistical model (song stimulus) are depicted, together with
95% confidence whiskers.
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Table 1

AIC values and parameter estimates for the modeling of ZENK-ir in the caudomedial nidopallium of adult
female European starlings

Predictor AIC Estimate Standard error P value

Intercept −892.113 0.1424 0.0049 < 0.001

Photo −907.392 0.0288 0.0051 < 0.001

Song −903.521 0.0145 0.0053 0.006

Location −935.611 −0.0132 0.0011 < 0.001

Photo × Song −926.661

Photo × Location −914.129

Song × Location −900.121

Photo × Song × Location −889.889

ZENK-ir is the proportion of the quantified area of the caudomedial nidopallium that was immunoreactive for the immediate early gene ZENK.
Photo is the photoperiodic experience, coded 0 for naïve and 1 for experienced. Song is the song stimulus, coded 0 for short songs and 1 for long
songs. Location is an integer from 1-7 referring to the sagittal tissue section (1: approximately 160 μm from the midline; 7: approximately 1120 μm
from the midline). Each AIC value applies to a model containing the predictor to its left and all predictors above it. For example, the AIC value of
−926.661 applies to a model containing an intercept, photoperiodic experience, song stimulus, location, and the interaction between photoperiodic
experience and song stimulus. Not shown but also assessed with AIC were numerous additional models, such as those in which predictors were
introduced in alternate sequences (e.g., song stimulus before photoperiodic experience). None of these models were better (had a lower AIC value)
than the lowest shown above. Estimates, standard errors, and P values are provided for those parameters in the final model only (i.e., the model
with the lowest AIC value).
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