CORE
VIH Puonc Access
Author Manuscript

# Altaicalarins A-D, Cytotoxic Bisabolane Sesquiterpenes from Ligularia altaica 

Qi Wang ${ }^{\dagger}$, Tzu-Hsuan Chen ${ }^{\ddagger}$, Kenneth F. Bastow ${ }^{\ddagger}$, Kuo-Hsiung Lee ${ }^{*}, \S$, and Dao-Feng Chen ${ }^{*}$, $\dagger$<br>†Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China<br>$\ddagger$ Division of Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568 USA<br>§Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568 USA


#### Abstract

Four new bisabolane sesquiterpenes, altaicalarins A-D (1-4) and three known analogues (5-7) were isolated from the roots and rhizomes of Ligularia altaica. The structures were elucidated by spectroscopic methods including 2D NMR techniques, and the structure of $\mathbf{1}$ was confirmed by single-crystal X-ray diffraction. The isolated compounds were also evaluated for cytotoxic activity against human lung carcinoma (A-549), human breast adenocarcinoma (MCF-7), epidermoid carcinoma of the nasopharynx $(\mathrm{KB})$, and vincristine-resistant nasopharyngeal (KBVIN) cell lines, and 1 was found to show significant cytotoxicity with $\mathrm{EC}_{50}$ values of $3.4,0.8,1.0$, and $0.9 \mu \mathrm{~g} / \mathrm{mL}$, respectively.


#### Abstract

Ligularia altaica DC. (Asteraceae) is widely distributed in the Altaica mountains of China, and its roots and rhizomes are used as a folk medicine in the Xinjiang region, China for easing breathing, stimulating blood flow, reducing inflammation, stopping cough, and eliminating phlegm. ${ }^{1}$ In prior investigations, flavonoids, triterpenes, sterols, benzofurans, and eremophilane sesquiterpenes were reported. $2^{-} 4$ As part of our program to discover anticancer agents from Chinese herbs, a phytochemical investigation of the roots and rhizomes of this plant led to the isolation and characterization of four new (1-4) and three known $[1 \beta, 8-$ diangloyloxy- $3 \beta, 4 \beta, 10,11$ - diepoxybisabol-7(14)-ene (5), ${ }^{5} 1 \beta$-acetoxy- $1 \beta, 8$ -diangloyloxy-10,11-dihydroxy-3,4- epoxybisabol-7(14)-ene (6), ${ }^{6}$ and bisabolone (7)7] bisabolane sesquiterpenes. Herein we report the isolation and structural elucidation of the new compounds, as well as their in vitro cytotoxicity evaluation of all isolates against human lung carcinoma (A-549), human breast adenocarcinoma (MCF-7), epidermoid carcinoma of the nasopharynx (KB), and vincristine-resistant nasopharyngeal (KBVIN) cell lines.


## Results and Discussion

An EtOH extract of the roots and rhizomes of L. altaica was suspended in $\mathrm{H}_{2} \mathrm{O}$ and partitioned successively with petroleum ether, EtOAc , and $n-\mathrm{BuOH}$. Repeated column chromatography

[^0]of the combined EtOAc and petroleum ether portions on silica gel and $\mathrm{RP}_{18}$ gel, followed by preparative TLC, yielded four new (1-4) and three known (5-7) bisabolane sesquiterpenes.

Compound 1 was obtained as a colorless solid and its molecular formula was determined as $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{6}$ with nine degrees of unsaturation by HREIMS ( $\mathrm{m} / \mathrm{z} 388.1897$ ). The IR spectrum showed absorption bands for $\mathrm{OH}\left(3423 \mathrm{~cm}^{-1}\right)$, ester carbonyl ( $1740 \mathrm{~cm}^{-1}$ ), and double bond ( $1694 \mathrm{~cm}^{-1}$ ) moieties. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Table 1 and Table 2) displayed the characteristic signals of an angeloyloxy group $\left[\delta_{\mathrm{H}} 6.08(1 \mathrm{H}, \mathrm{qq}, J=7.0,1.5 \mathrm{~Hz}), 1.97(3 \mathrm{H}, \mathrm{dq}\right.$, $J=7.0,1.1 \mathrm{~Hz}), 1.90(3 \mathrm{H}, \mathrm{dq}, J=1.5,1.1 \mathrm{~Hz}) ; \delta_{\mathrm{C}} 167.3(\mathrm{C}), 127.9(\mathrm{C}), 138.1(\mathrm{CH}), 15.7$ $\left.\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right)\right],{ }^{8}$ and an acetoxy group $\left[\delta_{\mathrm{H}} 2.30(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 170.3(\mathrm{C}), 20.7\left(\mathrm{CH}_{3}\right)\right]$, in accordance with the significant MS fragment peaks at $m / z 288[M-A n g O H]^{+}$and $m / z 246[M-$ AngOH-HOAc] ${ }^{+}$. Apart from these two ester groups, the ${ }^{13} \mathrm{C}$ NMR and DEPT spectra of $\mathbf{1}$ revealed 15 skeletal carbon signals, including three methyl, two methylene, three methine, seven quaternary carbons, and the typical carbon signals for a terminal double bond [ $\delta_{\mathrm{C}} 144.4$ (C) and $115.0\left(\mathrm{CH}_{2}\right)$ ]. The ${ }^{1} \mathrm{H}$ NMR data of $\mathbf{1}$ displayed signals accounting for 18 protons: two hydroxy groups $\left[\delta_{\mathrm{H}} 5.47,5.58\left(\right.\right.$ broad s)], one aromatic $\left[\delta_{\mathrm{H}} 2.11,3 \mathrm{H}, \mathrm{s}\right]$, two allylic $\left[\delta_{\mathrm{H}} 1.52\right.$, 1.65 (each 3 H s )] methyls, two methylenes, including one exocyclic methylene $\left[\delta_{\mathrm{H}} 5.09,5.30\right.$ (each $1 \mathrm{H}, \mathrm{br} \mathrm{s}$ )], and three methines, including an oxymethine proton $\left[\delta_{\mathrm{H}} 5.61, \mathrm{dd}, J=7.8,7.8\right.$ Hz ], a trisubstituted olefinic proton $\left[\delta_{\mathrm{H}} 5.07\right.$, dd, $J=7.4,1.5 \mathrm{~Hz}$ ], and an aromatic proton $\left[\delta_{\mathrm{H}} 6.36(1 \mathrm{H}, \mathrm{s})\right]$. HMBC correlations were found between the proton at $\delta_{\mathrm{H}} 5.07(1 \mathrm{H}, \mathrm{dd})$ with carbons at $\delta_{\mathrm{C}} 25.7(\mathrm{C}-12)$ and $17.8(\mathrm{C}-13)$, the protons at $\delta_{\mathrm{H}} 1.65(3 \mathrm{H}, \mathrm{s})$ and $1.52(3 \mathrm{H}, \mathrm{s})$ with the carbon at $\delta_{\mathrm{C}} 119.2(\mathrm{C}-10)$, and the proton at $\delta_{\mathrm{H}} 2.24(1 \mathrm{H}, \mathrm{dd})$ with carbons at $\delta_{\mathrm{C}} 119.2$ (C-10) and 134.1 (C-11), which proved the presence of a prenyl group (Figure 1). The above spectroscopic data were in agreement with those reported for an aromatic bisabolane sesquiterpene with an angeloyloxy group, an acetoxy group, and two hydroxy groups. ${ }^{9}$

Furthermore, in the HMBC spectrum of 1 (Figure 1), the correlations of the proton at $\delta_{\mathrm{H}} 5.61$ $(1 \mathrm{H}, \mathrm{d})$ with carbons at $\delta_{\mathrm{C}} 167.3$ (OAng, C-1'), 144.4 (C-7), 119.2 (C-10), 115.0 (C-14), and 32.2 (C-9) indicated attachment of the angeloyloxy group to $\mathrm{C}-8$, whereas the correlations of the proton at $\delta_{\mathrm{H}} 6.36(1 \mathrm{H}, \mathrm{s})$ with carbons at $\delta_{\mathrm{C}} 129.7(\mathrm{C}-1), 112.3(\mathrm{C}-3)$, and $146.5(\mathrm{C}-4)$ together with the correlations of the methyl protons at $\delta_{\mathrm{H}} 2.11(3 \mathrm{H}, \mathrm{s})$ with carbons at $\delta_{\mathrm{C}} 152.1$ (C-2), 112.3 (C-3), and 146.5 (C-4) indicated that the two hydroxy groups and an acetoxy group might be located at C-2, C-4, and C-1, respectively. However, the absolute configuration at $\mathrm{C}-8$ could not be determined. The structure of $\mathbf{1}$ was further confirmed by X-ray crystallography (Figure 2). Therefore, $\mathbf{1}$ was established as 1 -acetoxy-2,4-dihydroxy-8-angeloyloxybisabola-1,3,5,7(14),10(11)- pentaene, named as altaicalarin A.

The HREIMS of 2 gave $m / z 330.1825$ in accordance with the molecular formula $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{4}$ and eight unsaturation degrees. The IR spectrum showed absorptions for hydroxy ( 3260 $\mathrm{cm}^{-1}$ ), ester carbonyl ( $1703 \mathrm{~cm}^{-1}$ ), and double bond ( $1674 \mathrm{~cm}^{-1}$ ) moieties. Most of the NMR data of $\mathbf{2}$ were similar to those of $\mathbf{1}$ (Table 1 and Table 2), except that signals for an acetoxy group were absent. ${ }^{1} \mathrm{H}$ NMR signals for a pair of proton doublets $\left[\delta_{H} 6.63,6.48\right.$ (each $1 \mathrm{H}, \mathrm{d}$, $J=7.8 \mathrm{~Hz})$ ] and the HMBC correlations of the proton at $\delta_{\mathrm{H}} 5.83(\mathrm{H}-\mathrm{OH})$ with carbons at $\delta_{\mathrm{C}}$ $124.0(\mathrm{C}-3), 142.9(\mathrm{C}-4)$, and $140.5(\mathrm{C}-5)$, and of the proton at $\delta_{\mathrm{H}} 9.00(-\mathrm{OH})$ with carbons at $\mathrm{C}-4$ and $\mathrm{C}-5$, indicated that the two hydroxy groups should be located at $\mathrm{C}-4$ and $\mathrm{C}-5$, respectively (Figure 1). The configuration of $\mathbf{2}$ was the same as that of $\mathbf{1}$, because they both had a positive optical rotation. Thus, 2 was determined as 4,5-dihydroxy-8-angeloyloxybisabola-1,3,5,7(14),10(11)-pentaene, named as altaicalarin B.

Compound $\mathbf{3}$, colorless gum, has a molecular formula of $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{6}$ on the basis of HRESIMS data $\left(\mathrm{m} / z 413.1931[M+\mathrm{Na}]^{+}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Table 1 and Table 2) displayed signals for angeloyloxy and acetoxy groups. The ${ }^{13} \mathrm{C}$ NMR and DEPT spectra revealed 15 additional skeletal carbon signals: three methyl, three methylene, five methine, and four
quaternary carbons. To accommodate 8 degrees of unsaturation, compound $\mathbf{3}$ was proposed to have a monocyclic sesquiterpene skeleton with a terminal double bond $\left[\delta_{\mathrm{H}} 5.12,5.26\right.$ (each $1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \delta_{\mathrm{C}} 113.0\left(\mathrm{CH}_{2}\right)$ and $147.5(\mathrm{C})$ ], an epoxy group [ $\delta_{\mathrm{H}} 3.45(1 \mathrm{H}, \mathrm{dd}, J=4.3,4.3 \mathrm{~Hz})$; $\left.\delta_{\mathrm{C}} 64.5(\mathrm{CH}), 61.4(\mathrm{C})\right]$, a carbonyl group ( $\delta_{\mathrm{C}} 201.3$ ), an angeloyloxy group, and an acetoxy group. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY 2D-NMR data indicated the two main structural sequences, $-\mathrm{CH}-\mathrm{CH}_{2}-$ $\mathrm{CH}-\mathrm{CH}-$ and $-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}-$, which can be further connected with other fragments based on the following HMBC correlations: H-15/C-4; H-2/C-3; H-5/C-4, C-7; H-8/C-7; H-12, H-13/ C-10 (Figure 3). Thus, $\mathbf{3}$ was determined as a bisabolane sesquiterpene. ${ }^{10}$

In the HMBC spectrum of $\mathbf{3}$, correlations of the proton at $\delta_{\mathrm{H}} 5.70(1 \mathrm{H}, \mathrm{d})$ with carbons at $\delta_{\mathrm{C}}$ $169.7(\mathrm{OAc}), 201.3(\mathrm{C}-4)$, and $43.8(\mathrm{C}-6)$, and of the proton at $\delta_{\mathrm{H}} 5.10(1 \mathrm{H}, \mathrm{dd})$ with carbons at $\delta_{\mathrm{C}} 166.8$ (OAng, C-1'), 147.5 (C-7), 118.9 (C-10), 113.0 (C-14), and 32.0 (C-9) indicated that the acetoxy and angeloyloxy groups are attached to $\mathrm{C}-5$ and $\mathrm{C}-8$, respectively. The HMBC correlations of the proton at $\delta_{\mathrm{H}} 3.45(1 \mathrm{H}, \mathrm{d})$ with carbons at $\delta_{\mathrm{C}} 31.8(\mathrm{C}-1), 61.4(\mathrm{C}-3)$, and 43.8 (C-6) indicated that the epoxy group should be assigned at $\mathrm{C}-2$ and $\mathrm{C}-3$. The location of the carbonyl group at C-4 was established by HMBC correlations of the protons at $\delta_{\mathrm{H}} 1.45(3 \mathrm{H}$, s) and $5.70(1 \mathrm{H}, \mathrm{d})$ with carbon at $\delta_{\mathrm{C}} 201.3(\mathrm{C}-4)$.

The stereo-structure of $\mathbf{3}$ was deduced from the ${ }^{1} \mathrm{H}$ NMR coupling constants and the ROESY spectrum (Figure 3). When H-6 is assumed to be in an $\alpha$-orientation, ${ }^{11} \mathrm{H}-5$ should be $\beta$-axial due to a large ${ }^{3} J_{5,6}$ value $\left(12.9 \mathrm{~Hz}\right.$ ), and the proton at $\delta_{\mathrm{H}} 2.25$ should be $\mathrm{H}-1$ and $\alpha$-oriented due to a smaller ${ }^{3} J_{1,6}$ value ( 8.2 Hz ). In the ROESY spectrum, the obvious correlation of $\mathrm{H}-2$ with $\mathrm{H}-1 \alpha$ and $\mathrm{H}-15$ revealed that the epoxy group should be $2 \beta, 3 \beta$-oriented. The relative configuration at C-8 could not be determined from the spectroscopic data. Thus, the structure of $\mathbf{3}$ was determined as $5 \alpha$-acetoxy- 8 -angeloyloxy- $2 \beta, 3 \beta$-epoxybisabola-7(14),10(11)-dien-4one, named as altaicalarin C.

The molecular formula of 4 was determined as $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{9}$ based on the HRESIMS ( $\mathrm{m} / \mathrm{z}$ $\left.527.2250[M+\mathrm{Na}]^{+}\right)$. The IR spectrum indicated the presence of ketone $\left(1755 \mathrm{~cm}^{-1}\right)$ and ester carbonyl groups ( $1720 \mathrm{~cm}^{-1}$ ), and a double bond ( $1647 \mathrm{~cm}^{-1}$ ). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Table 1 and Table 2) displayed signals for one acetoxy and two angeloyloxy groups. Apart from the three ester groups, the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectra (Figure 3) of 4 indicated that the basic skeleton of compound $\mathbf{4}$ was similar to that of $\mathbf{3}$, except for an epoxy group $\left[\delta_{\mathrm{H}} 2.76(1 \mathrm{H}, \mathrm{t}, J=5.8 \mathrm{~Hz}) ; \delta_{\mathrm{C}} 60.8(\mathrm{CH}), 58.3(\mathrm{C})\right]$ at $\mathrm{C}-10$ and $\mathrm{C}-11$ in 4 , rather than a corresponding trisubstituted double bond in 3 .

The locations of the two epoxy groups at $\mathrm{C}-2, \mathrm{C}-3$ and $\mathrm{C}-10, \mathrm{C}-11$ were confirmed by HMBC correlations of the proton at $\delta_{\mathrm{H}} 3.45(1 \mathrm{H}, \mathrm{s})$ with carbons at $\delta_{\mathrm{C}} 71.6(\mathrm{C}-1), 61.4(\mathrm{C}-3)$, and 48.5 (C-6), and of the proton at $\delta_{\mathrm{H}} 2.76(1 \mathrm{H}, \mathrm{dd})$ with carbons at $\delta_{\mathrm{C}} 72.6(\mathrm{C}-8), 33.5(\mathrm{C}-9)$, and 24.6 (C-12). The HMBC correlations of the proton at $\delta_{\mathrm{H}} 5.70(1 \mathrm{H}, \mathrm{d})$ with carbons at $\delta_{\mathrm{C}} 169.4$ $(\mathrm{OAc}), 199.5(\mathrm{C}-4)$, and $48.5(\mathrm{C}-6)$, the proton at $\delta_{\mathrm{H}} 5.50(1 \mathrm{H}, \mathrm{d})$ with carbons at $\delta_{\mathrm{C}} 166.2$ (OAng), $65.6(\mathrm{C}-2), 61.4(\mathrm{C}-3)$, and $72.8(\mathrm{C}-5)$, and the proton at $\delta_{\mathrm{H}} 5.43(1 \mathrm{H}$, dd) with carbons at $\delta_{\mathrm{C}} 166.0$ (OAng), $145.5(\mathrm{C}-7)$, and $60.8(\mathrm{C}-10)$, indicated that the acetoxy group is at $\mathrm{C}-5$ and the two angeloyloxy groups are at $\mathrm{C}-1$ and $\mathrm{C}-8$. (Figure 3)

The relative configuration of the stereogenic centers of the cyclohexane ring in $\mathbf{4}$ was the same as those in $\mathbf{3}$, based on the ${ }^{1} \mathrm{H}$ NMR coupling constants $\left(J_{5,6}=11.7, J_{6,1}=7.8 \mathrm{~Hz}\right)$ and the ROESY correlations between $\mathrm{H}-1 / \mathrm{H}-2$ and $\mathrm{H}-2 / \mathrm{H}-15$. The relative configurations at $\mathrm{C}-8$ and $\mathrm{C}-10$ could not, however, be determined from the spectroscopic data Thus, the structure of 4 was determined as $1 \beta, 8$-diangeloyloxy-5 $\alpha$-acetoxy- $2 \beta, 3 \beta ; 10,11$-diepoxybisabola-7(14)-en-4one, named as altaicalarin D.

All isolates were evaluated for their in vitro cytotoxicity against human lung carcinoma (A-549), human breast adenocarcinoma (MCF-7), epidermoid carcinoma of the nasopharynx
(KB), and vincristine-resistant nasopharyngeal (KBVIN) cell lines according to a described procedure. ${ }^{12}$ The results are listed in Table 3 . The most potent compound, 1, exhibited significant cytotoxicity against all four cell lines with $\mathrm{EC}_{50}$ values of 3.4 (A549), 0.8 (MCF-7), $1.0(\mathrm{~KB})$, and 0.9 (KBVIN) $\mu \mathrm{g} / \mathrm{mL}$. Compound 2 , which differs from 1 in the number and position of the aromatic hydroxy and ester groups, showed only weak cytotoxicity against the latter three cancer cell lines. Among the compounds without an aromatic ring, 6-7 showed no activity ( $\mathrm{EC}_{50}>20 \mu \mathrm{~g} / \mathrm{mL}$ ) against the cell line panel, 3 showed weak activity against all four cell lines while $\mathbf{4}$ and $\mathbf{5}$ showed weak activity only against KBVIN. Generally, the compounds with a C-10-C-11 double bond (1-3) showed broader cytotoxicity compared with compounds with a C-10-C-11 epoxy group (4-5).

## Experimental Section

## General Experimental Procedures

Melting points were measured on an XT-4 micro-melting point apparatus and are uncorrected. Optical rotations were recorded on a JASCO P-1020 polarimeter at room temperature. UV spectra were measured on a Shimadzu UV-260 spectrophotometer in absolute MeOH. IR spectra were recorded on an Avatar 360 FT-IR ESP spectrometer in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Mass spectra were determined on an HP5989A mass spectrometer for EIMS, a Waters Micromass GCT mass spectrometer for HREIMS, and a Bruker Daltonics APEXШ 7.0 TESLA FTMS mass spectrometer for HRESIMS. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker DRX-400 spectrometer in $\mathrm{CDCl}_{3}$. Analytical and preparative TLC were run on silica gel plates $\left(\mathrm{GF}_{254}\right.$, Yantai Institute of Chemical Technology, Yantai, China). Spots were observed under UV light and visualized by spraying with $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$, followed by heating. Column chromatography was performed on silica gel (200-300 mesh and 300-400 mesh; Qingdao Marine Chemical Factory, Qingdao, China) and Lichroprep $\mathrm{RP}_{18}$ gel ( $40-60 \mu \mathrm{~m}$, Merck, Darmstadt, Germany). X-ray crystallographic analysis was carried out on a Bruker Smart Apex CCD diffractometer with graphite-monochromated Mo $\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA$ ). The structure was solved by direct methods using the program SHELXS. Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were located by geometry and riding on the related atoms during refinements with a temperature factor of 1.2 or 1.5 times of the latter's.

## Plant Material

The roots and rhizomes of L. altaica were collected in August 2005 on the Altaica mountains (altitude 2000 m ) in Xinjiang, China. The identity of the plant material was verified by Professor Ping Yan at Shihezi University and a voucher specimen (WQ-LA-05-2) has been deposited in the Herbarium of Materia Medica, Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai, People's Republic of China.

## Extraction and Isolation

The dried and powdered materials ( 5.0 kg ) were extracted three times with $95 \% \mathrm{EtOH}$ at reflux temperature and filtered. The filtrate was evaporated in vacuo to give a residue ( 360 g ), a portion of which ( 350 g ) was suspended in $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~L})$ and partitioned successively with petroleum ether $(3 \times 1.5 \mathrm{~L})$ and $\mathrm{EtOAc}(3 \times 1.5 \mathrm{~L})$. The combined $\mathrm{EtOAc}(160 \mathrm{~g})$ and petroleum ether ( 50 g) extracts were chromatographed on Si gel ( $200-300$ mesh, $2 \mathrm{~kg}, 10 \times 120 \mathrm{~cm}$ ) column, eluted successively with petroleum ether-acetone (50:1, 30:1, 15:1, 9:1, 7:1, 5:1, 3:1, 2:1, 1:1) to yield fractions 1-6. Subsequently, fractions 1, 2, 3, 5 and 6 were subjected to silica gel CC with petroleum ether-EtOAc (80:1, 25:1, 15:1, 5:1, 3:1), respectively. Fraction $1(26 \mathrm{~g})$ yielded 7 ( 740 mg ). Fraction $2(28 \mathrm{~g})$ gave two fractions 2 a and 2 b . Fraction $2 \mathrm{a}(16 \mathrm{~g})$ was applied to silica gel CC with petroleum ether-EtOAc (30:1) to afford $5(287 \mathrm{mg})$, and fraction $2 \mathrm{~b}(6 \mathrm{~g})$ was chromatographed similarly, followed by CC on $\mathrm{RP}_{18}$ gel with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(80: 20)$ to give $2(25 \mathrm{mg})$. Fraction $3(27 \mathrm{~g})$ gave two fractions 3 a and 3 b . Fraction $3 \mathrm{~b}(7 \mathrm{~g})$ was applied to
silica gel CC with petroleum ether-EtOAc (9:1) to afford $4(68 \mathrm{mg})$. Fraction $5(25 \mathrm{~g})$ gave two fractions 5 a and 5 b . Fraction $5 \mathrm{a}(5 \mathrm{~g})$ was applied to silica gel CC with petroleum etherEtOAc (6:1) to give $6(262 \mathrm{mg})$, and fraction $5 \mathrm{~b}(6 \mathrm{~g})$ was applied to silica gel CC with petroleum ether-EtOAc (5:1), followed by prep TLC with petroleum ether-acetone (12:1) to give $\mathbf{3}(138 \mathrm{mg})$. Fraction $6(39 \mathrm{~g})$ afforded $\mathbf{1}(66 \mathrm{mg})$, after further purification over prep TLC with $\mathrm{CHCl}_{3}$-acetone (20:1).

1-Acetoxy-2,4-dihydroxy-8-angeloyloxybisabola-1,3,5,7(14),10(11)-pentaene (1)
—colorless blocks (acetone); mp. 122-123 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{22}+129(c 0.3, \mathrm{MeOH})$; IR $v_{\max }(\mathrm{KBr}): 3423$, 1740, 1694, 1644, 1434, 1239, $1098 \mathrm{~cm}^{-1} ;$ UV $\lambda_{\max }(\mathrm{MeOH}) \mathrm{nm}(\log \varepsilon): 284$ (sh), 211 (1.36); For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ spectroscopic data, see Table 1 and Table 2; EIMS $m / z 388[M]^{+}(2.6), 288[M-A n g O H]^{+}$(26.7), $246[M-A n g O H-A c O H]^{+}(97.0), 231$ (60.6), 177 (100), 83 (39.1), 55 (30.3); HREIMS $m / z 388.1897$ (calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{6}, 388.1886$ ); Crystal data: ${ }^{13} \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{6}, M_{\mathrm{r}}=388.44$, monoclinic, space group $C 2$, $\mathrm{a}=17.066$ (4) $\AA, \mathrm{b}=$ 6.9212 (15) $\AA, \beta=100.536$ (4) ${ }^{\circ}$, $\mathrm{c}=19.004$ (4) $\AA, V=2206.9$ (8) $\AA^{3}, Z=4, D_{\text {calc }}=1.169$ $\mathrm{Mg} / \mathrm{m}^{3}$. The final $R$ value were $\mathrm{R} 1=0.0564$ and $\mathrm{wR} 2=0.1220$ for 6925 observed reflections $[I>2 \sigma(I)]$.

4,5-Dihydroxy-8-angeloyloxybisabola-1,3,5,7(14),10(11)-pentaene (2)—colorless gum, $[\alpha]_{\mathrm{D}}^{22}+23.3(c 0.6, \mathrm{MeOH})$; IR $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3260,2921,1703,1674,1463,1257,739$ $\mathrm{cm}^{-1} ; \mathrm{UV} \lambda_{\max }(\mathrm{MeOH}) \mathrm{nm}(\log \varepsilon): 280(\mathrm{sh}), 210(1.26)$; For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right)$ spectroscopic data, see Table 1 and Table 2; EIMS m/z $330[M]^{+}(2.3), 230[M-$ AngOH $]^{+}$(33.7), $215[M-\mathrm{AngOH}-\mathrm{Me}]^{+}(42.3), 193\left[M-\mathrm{AngOH}-\mathrm{H}^{-} 2 \times \mathrm{H}_{2} \mathrm{O}\right]+(9.4), 161$ (100), 83 (68.8), 55 (87.1); HREIMS $m / z 330.1825$ (calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{4}, 330.1831$ ).

## 5 $\alpha$-Acetoxy-8-angeloyloxy-2 $\beta, 3 \beta$-epoxybisabola-7(14),10(11)-dien-4-one (3)—

 colorless gum, $[\alpha]_{\mathrm{D}}^{22}-26.3(c 0.5, \mathrm{MeOH})$; IR $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ : 1735, 1646, 1459, 1378, 1142, $736 \mathrm{~cm}^{-1}$; For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ spectroscopic data, see Table 1 and Table 2 ; EIMS $m / z 331$ (2.7), 228 (2.9), 173 (10.1), 97 (100); HRESIMS: $m / z 413.1931$ [ $M$ $+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{Na}, 413.1934$ ).$1 \beta, 8$-Diangeloyloxy-5 $\alpha$-acetoxy-2 $\beta, 3 \beta ; 10,11$-diepoxybisabola-7(14)-en-4-one (4) —colorless gum, $[\alpha]_{\mathrm{D}}^{22}+44.4(c 0.2, \mathrm{MeOH})$; IR $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ : 1757, 1720, 1647, 1457, 1378, 1230, 1148, 1040, $754 \mathrm{~cm}^{-1}$; For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ spectroscopic data, see Table 1 and Table 2 ; EIMS $m / z 405[M+\mathrm{H}-\mathrm{AngOH}]^{+}(2.7), 263[M+\mathrm{H}-2 \mathrm{AngOH}-$ $\mathrm{AcOH}]^{+}$(1.2), 219 (4.6), 83 (100); HRESIMS: $m / z 527.2250[M+\mathrm{Na}]^{+}$(calcd for $\left.\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{9} \mathrm{Na}, 527.2251\right)$.

## Growth Inhibition Assay

Drug stock solutions were prepared in DMSO and stored at $-70^{\circ} \mathrm{C}$. Upon dilution into culture medium, the final DMSO concentration was $\leq 1 \%$ DMSO (v/v), a concentration without effect on cell replication. The human tumor cell line panel consisted of lung carcinoma (A-549), breast adenocarcinoma (MCF-7), epidermoid carcinoma of the nasopharynx (KB), and vincristine-resistant nasopharyngeal (KBVIN). Etoposide was used as control. Cell culture and other procedures were the same as those reported previously. ${ }^{12}$ The $\mathrm{EC}_{50}$ value is the concentration that inhibited growth by $50 \%$ following two days of continuous exposure.

## Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

## Acknowledgments

This investigation was supported by grants from the State Key Program (2009ZX09502-013, 2009ZX09301-011) from the Ministry of Science and Technology, the National Natural Science Foundation for the Excellent Youth (30925042), People's Republic of China (to D. F. C.), Fudan University Graduate Innovation Foundation (CQF301812) (to Q. W.), and Grant CA-17625 from the National Cancer Institute, NIH (to K. H. L.).

## References and Notes

1. Chinese Folk Materia Medica. Vol. Vol. 2. Beijing: People Health Publishing House; 1990. National Institute for the Control of Pharmaceutical and Biological Products; p. 571-590.
2. Volkhonskaya TA, Khanminchun VM, Frolova OI. Rastitel'nye Resursy 1983;19:455-464.
3. Zhang CF, Wang Q, Zhang M. Chin. Pharm. J 2008;43:1697-1700.
4. Zhang CF, Wang Q, Zhang M. Chin. Med. Mater 2009;32:524-526.
5. Liu CM, Fei DQ, Wu QH, Gao K. J. Nat. Prod 2006;69:695-699. [PubMed: 16643057]
6. Liao JC, Yang L, Jia ZJ. Chemical Research in Chinese Universities 1999;15:67-69.
7. Andersen NH, Syrdal DD. Phytochemistry 1970;9:1325-1340.
8. Bohlmann F, Zdero C, Nagabushan R. Chem. Ber 1972;105:3523-3531.
9. Bohlmann F, Zdero C. Phytochemistry 1978;17:1591-1593.
10. Zhu Y, Yang L, Jia ZJ. J. Nat. Prod 1999;62:1479-1483. [PubMed: 10579856]
11. Onuki H, Yamazaki M, Nakamura A, Hana iR, Kuroda C, Gong X, Shen YM, Hirota H. J. Nat. Prod 2008;71:520-524. [PubMed: 18260639]
12. Cheng HH, Wang HK, Ito J, Bastow KF, Tachibana Y, Nakanishi Y, Xu Z, Luo TY, Lee KH. J. Nat. Prod 2001;64:915-919. [PubMed: 11473423]
13. Crystallographic data for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Center. Copies of the data can be obtained, free of charge, on application to the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44-(0)1223-336033 or e-mail: deposit@ccdc.cam.ac.uk).


Figure 1.
Key HMBC correlations of $\mathbf{1}$ and 2


Figure 2.
X-ray crystal structure of 1

$\therefore \mathrm{HMBC}$
$\therefore \mathrm{ROESY}$
$-{ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY

Figure 3.
Key HMBC, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, and ROESY correlations of $\mathbf{3}$ and $\mathbf{4}$








Table 1
${ }^{1} \mathrm{H}$ NMR ( 400 MHz ) Data of Compounds $\mathbf{1}-\mathbf{4}\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}, J\right.$ in Hz)

|  | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | - | 6.48, d (7.8) | 2.55, ddd (8.2, 7.4, 4.3) | 5.50, d (7.8) |
|  |  |  | 2.20, ddd (15.6, 8.2, 7.4) |  |
| 2 | - | 6.63, d (7.8) | 3.45, d (4.3) | 3.45, s |
| 3 | - | - | - | - |
| 4 | - | - | - | - |
| 5 | 6.36, s | - | 5.70, d (12.9) | 5.70, d (11.7) |
| 6 | - | - | 2.75 , ddd (15.6, 12.9, 8.2) | 2.93, dd (11.7, 7.8) |
| 7 | - | - | - | - |
| 8 | 5.61, dd (7.8, 7.8 ) | 5.09, dd (7.0, 7.0) | 5.10, dd (7.8, 6.2) | 5.43, dd (5.1, 5.1) |
| 9 a | 2.29, overlapped | 2.42, overlapped | 2.34 , dd (6.6, 6.6) | 1.87 , dd (5.9, 5.1) |
| 9 b | 2.24, dd (7.4, 7.4) | 2.40, overlapped | 2.34 , dd (6.6, 6.6) | $1.83, \mathrm{dd}(5.9,4.7)$ |
| 10 | 5.07, dd (7.4, 1.5) | 5.10, dd (7.4, 2.7) | 5.05, dd (7.1, 1.5) | 2.76, t (5.8) |
| 11 | - | - | - | - |
| 12 | 1.65, s | 1.66, s | 1.62 , s | 1.23, s |
| 13 | 1.52, s | 1.57, s | 1.68, s | 1.26, s |
| 14a | 5.30, br s | 5.30, br s | 5.26, br s | 5.40, br s |
| 14b | 5.09, br s | 5.15, br s | 5.12, br s | 5.31, br s |
| 15 | 2.11, s | 2.26, s | 1.45, s | 1.46, s |
| $\mathrm{H}-\mathrm{OH}$ | 5.47, $5.58, \mathrm{bl} \mathrm{s}$ | 5.83, 9.00, br s |  |  |
| OAc | 2.30, s |  | 2.03, s | 2.05, s |
| OAng |  |  |  |  |
| $3^{\prime}$ | $6.08, \mathrm{qq}(7.0,1.5)$ | $6.25, \mathrm{qq}(7.0,1.5)$ | 6.09, qq (7.0, 1.5) | 6.11, qq (7.0, 1.5) |
| $3 "$ |  |  |  | 6.17, qq (7.4, 1.5) |
| $4^{\prime}$ | 1.97, dq (7.0, 1.1) | $2.05, \mathrm{dq}(7.0,1.5)$ | 1.98, dq (7.0, 1.1) | $1.98, \mathrm{dq}(7.0,1.1)$ |
| $4 "$ |  |  |  | 1.98, dq (7.4, 1.5) |
| $5 '$ | $1.90, \mathrm{dq}(1.5,1.1)$ | $1.96, \mathrm{dq}(1.5,1.5)$ | 1.89, dq ( $1.5,1.1$ ) | $1.90, \mathrm{dq}(1.5,1.1)$ |
| 5" |  |  |  | $1.90, \mathrm{dq}(1.5,1.5)$ |

Table 2
${ }^{13} \mathrm{C}$ NMR (100MHz) Data of Compounds $\mathbf{1 - 4}\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right)$

|  | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 129.7 (s) | 120.2 (d) | 31.8 (t) | 71.6 (d) |
| 2 | 152.1 (s) | 121.6 (d) | 64.5 (d) | 65.6 (d) |
| 3 | 112.3 (s) | 124.0 (s) | 61.4 (s) | 61.4 (s) |
| 4 | 146.5 (s) | 142.9 (s) | 201.5 (s) | 199.5 (s) |
| 5 | 107.9 (d) | 140.5 (s) | 74.8 (d) | 72.8 (d) |
| 6 | 130.7 (s) | 123.2 (s) | 43.8 (d) | 48.5 (d) |
| 7 | 144.4 (s) | 147.3 (s) | 147.5 (s) | 145.5 (s) |
| 8 | 74.8 (d) | 76.5 (d) | 75.6 (d) | 72.6 (d) |
| 9 | 32.2 (t) | 33.2 (t) | 32.0 (t) | 33.5 (t) |
| 10 | 119.2 (d) | 119.1 (d) | 118.9 (d) | 60.8 (d) |
| 11 | 134.1 (s) | 134.7 (s) | 134.5 (s) | 58.3 (s) |
| 12 | 25.7 (q) | 25.7 (q) | 25.7 (q) | 24.6 (q) |
| 13 | 17.8 (q) | 17.9 (q) | 18.0 (q) | 18.8 (q) |
| 14 | 115.0 (t) | 114.8 (t) | 113.0 (t) | 114.8 (t) |
| 15 | 8.5 (q) | 15.4 (q) | 14.8 (q) | 14.3 (q) |
| OAc |  |  |  |  |
| $1^{\prime}$ | 170.3 (s) |  | 169.7 (s) | 169.4 (s) |
| $2^{\prime}$ | 20.7 (q) |  | 20.2 (q) | 20.2 (q) |
| OAng |  |  |  |  |
| 1 ' | 167.3 (s) | 169.8 (s) | 166.8 (s) | 166.0 (s) |
| $1{ }^{\prime \prime}$ |  |  |  | 166.2 (s) |
| $2^{\prime}$ | 127.9 (s) | 127.1 (s) | 127.8 (s) | 126.6 (s) |
| $2{ }^{\prime \prime}$ |  |  |  | 127.3 (s) |
| $3^{\prime}$ | 138.1 (d) | 140.9 (d) | 138.6 (d) | 139.6 (d) |
| $3 "$ |  |  |  | 140.9 (d) |
| $4^{\prime}$ | 15.6 (q) | 15.9 (q) | 15.7 (q) | 15.8 (q) |
| $4 "$ |  |  |  | 15.9 (q) |
| $5 '$ | 20.6 (q) | 20.3 (q) | 20.5 (q) | 20.5 (q) |
| $5{ }^{\prime \prime}$ |  |  |  | 20.4 (q) |

Table 3
Cytotoxicity Data of Compounds 1-7 ( $\mathrm{EC}_{50} \mu \mathrm{~g} / \mathrm{mL}$ )

| Compound | Cell Line |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | A549 | MCF-7 | KB | KBVIN |
| 1 | 3.4 | 0.8 | 1.0 | 0.9 |
| 2 | >20 | 10.8 | 11.8 | 15.9 |
| 3 | 11.4 | 7.7 | 10.4 | 7.6 |
| 4 | >20 | $>20$ | $>20$ | 18.9 |
| 5 | >20 | $>20$ | $>20$ | 11.4 |
| 6 | >20 | $>20$ | $>20$ | $>20$ |
| 7 | $>20$ | >20 | $>20$ | $>20$ |
| Etoposide | 0.4 | 16.4 | 3.9 | 8.8 |


[^0]:    *To whom correspondence should be addressed. Tel: +86-21-51980135. Fax: +86-21-51980017. dfchen@ shmu.edu.cn (D.F.C.) or khlee@unc.edu (K. H. L.).
    Supporting Information Available: NMR spectra of the new compounds 1-4, as well as crystallographic data of $\mathbf{1}$. This material is available free of charge via the Internet at http://pubs.acs.org.

