

NIH Public Access

Author Manuscript

Published in final edited form as: J Nat Prod. 2006 October; 69(10): 1445-1449. doi:10.1021/np060252z.

Dehydrozingerone, Chalcone, and Isoeugenol Analogs as In Vitro Anticancer Agents#

Jin Tatsuzaki[†], Kenneth F. Bastow[‡], Kyoko Nakagawa-Goto[†], Seiko Nakamura[†], Hideji Itokawa[†], and Kuo-Hsiung Lee^{*,†}

Natural Products Research Laboratories, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7360, USA Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7360, USA

Abstract

Twenty-eight compounds related to dehydrozingerone (1), isoeugenol (3), and 2-hydroxychalcone (4) were synthesized and evaluated in vitro against human tumor cell replication. Except for isoeugenol analogs 27-35, most compounds exhibited moderate or strong cytotoxic activity against KB, KB-VCR (a multi-drug resistant derivative), and A549 cell lines. In particular, chalcone 15 showed significant cytotoxic activity against the A549 cell line with an IC₅₀ value of 0.6 μ g/mL. Furthermore, dehydrozingerone analog 11 and chalcones 16 and 17 showed significant and similar cytotoxic activity against both KB (IC₅₀ values of 2.0, 1.0, and 2.0 µg/mL, respectively) and KB-VCR (IC₅₀ values of 1.9, 1.0, and 2.0 μ g/mL, respectively) cells, suggesting that they are not substrates for the p-glycoprotein drug efflux pump.

> Dehydrozingerone (1), isolated from ginger (*Zingiber officinale*), 1,2 is a well known phenolic natural product with anti-inflammatory, antioxidant, and antitumor promoting activities.³ It is the structural half analog, as well as biosynthetic intermediate,⁴ of curcumin (2), which possesses various remarkable bioactivities such as cytotoxic effects on cancer cell lines⁵⁻⁸ and induction of apoptotic cell death in human promyelocytic leukemia HL-60 and human oral squamous carcinoma HSC-4 cells.⁹ Dehydrozingerone (1), isoeugenol (3) and 2hydroxychalcone (4) (Figure 1) have similar structures (acetyl, methyl and benzoyl, respectively, attached to a styrene skeleton). Both 3 and 4 are also prominent bioactive compounds.^{10,11} Thus, we expected that **1**-analogs should show a wide range of pharmacological activities. In spite of the interesting and simple structure of 1, we found only a few literature reports on analog syntheses and structure-activity relationships (SAR),^{12,13} although we recently reported the cytotoxic effects of curcumin analogs.^{7,14,15}

> It is known that the presence of a prenyl or geranyl group on flavonoids, including chalcones, can lead to a remarkable increase in bioactivity. 16,17 As dehydrozingerone (1) is structurally related to chalcones, the introduction of a prenyl or geranyl group on any position of 1 might also increase activity. In fact, most prenylflavonoids and geranylflavonoids as well as related compounds are known to have potent cytotoxic effects.¹⁸⁻²¹ Furthermore, with respect to cancer research, a prenyl moiety has been demonstrated to be essential for chemopreventive

[#]Antitumor Agents 249. For part 248, see L. Wei, A. Brossi, S. L. Morris-Natschke, K. F. Bastow, and K.H. Lee, "Chemistry and Antitumor Activity of Tylophorine-related Alkaloids," Studies in Natural Product Chemistry: Bioactive Natural Products, Vol. 34, in press.

^{*}To whom correspondence should be addressed. Tel: 919–962–0066. Fax: 919–966–3893. E-mail: khlee@unc.edu. Natural Products Research Laboratories

^{*}Division of Medicinal Chemistry and Natural Products

activity in many compound types.²²⁻²⁴ Therefore, we herein report the syntheses and cytotoxic activities of dehydrozingerone analogs, including investigation of prenyl substitution.

Results and Discussion

As shown in Scheme 1, dehydrozingerone (6–13) and chalcone (14–17) analogs with various substitution patterns on the benzylidene ring were easily obtained from substituted benzaldehydes (5) reacted with the appropriate ketone (acetone for 6–13, acetophenone for 14–17) using an aldol condensation.¹² Alkylation/allylation of the phenol of 1 or 3 was achieved by a standard procedure²⁵ using an alkyl/allyl halide to give the corresponding phenoxy analogs 18–26 and 27–35, respectively, as shown in Scheme 2.

Derivatives **6–35** were evaluated as inhibitors of human tumor cell replication using three human tumor cell lines, nasopharyngeal carcinoma KB, multi-drug resistant expressing p-glycoprotein KB-VCR, and lung carcinoma A549.²⁶, ²⁷ Curcumin (**2**) and doxorubicin were used as positive controls. The results are shown in Table 1.

Most analogs, except isoeugenol analogs 27–35, showed moderate or strong cytotoxic activity against all three cell lines. Comparison of the corresponding dehydrozingerone (1, 6–8) and chalcone (14–17) analogs showed that the latter compounds were more potent in each case. Because the chalcones have a phenyl rather than methyl in the unsaturated ketone, these data suggest that this phenyl group is important for optimal activity. Chalcone 15 showed significant activity against the A549 cell line with an IC₅₀ value of 0.6 μ g/mL. Furthermore, the dehydrozingerone analog 11 and chalcones 16 and 17 showed significant cytotoxic activity against both KB (IC₅₀ values of 2.0, 1.0, and 2.0 μ g/mL, respectively) and KB-VCR (IC₅₀ values of 1.9, 1.0, and 2.0 μ g/mL, respectively) cells. The similar potencies against the parental and drug-resistant cell lines suggested that these compounds were not substrates for the p-glycoprotein drug efflux pump.

The substitution pattern on the benzylidene ring had some influence on potency. In particular, among the dehydrozingerone analogs, compounds with an *ortho*-hydroxy group were more active than compounds with *meta*- or *para*-hydroxy substituents [compare 6 (2'-OH, 3'-OMe), 8 (2'-OH, 4'-OMe), and 11 (2'-OH, 3'-OEt) with 1 (3'-OMe, 4'-OH), 7 (3'-OH, 4'-OMe), and 10 (3'-OEt, 4'-OH)]. Compound 12 (2'-OH, 3'-F) also exhibited significant activity, showing that fluorine could be substituted for an alkoxy group. In addition, substitution of 3'-fluoro for 3'-hydroxy (compare 13 with 7) was beneficial.

The dehydrozingerone derivatives **18–26** showed cytotoxic activity, while the corresponding isoeugenol derivatives **27–35** were inactive. This result supported the supposition that the ketone on C-3 (numbering for dehydrozingerone) is important for anticancer properties.²⁸ Phenoxydehydrozingerone analogs **18** (C-4'-prenyloxy) and **21** (C-4'-geranyloxy) showed higher activity than dehydrozingerone itself and were as or more active than the other alkylated compounds **19**, **20**, **22–26**. With a longer farnesyl group, analog **22** showed decreased potency relative to **18** and **21**. This result supported those of prior investigations showing that prenylated and/or geranylated flavonoids were more active than farnesylated compounds. ^{17,19} Derivative **26**, which has a saturated isoamyl rather than unsaturated prenyl group, showed equal and significant activity against KB and KB-VCR cells with IC₅₀ values of 3.6 and 3.2 µg/mL, respectively. However, the prenylated analog (**18**) was about twice as potent against the drugresistant cell line (3.8 µg/mL, KB versus 2.0 µg/mL, KB-VCR).

In conclusion, chalcone **15** showed the highest *in vitro* potencies with IC_{50} values ranging from 0.6 to 2.4 µg/mL. The ketone at the C-3 and phenyl at the C-4 positions are necessary for optimal cytotoxic activity. Compounds with hydroxyl at the *ortho* position of the benzylidene

moiety generally showed increased activity. Among alkylated **1**-analogs, alkylation of the phenolic OH with prenyl or geranyl resulted in the highest potency.

Experimental Section

Melting points were measured with a Fisher Johns melting point apparatus without correction. The proton nuclear magnetic resonance (¹H-NMR) spectra were measured on a Varian Gemini 2000 (300 MHz) NMR spectrometer with TMS as the internal standard. All chemical shifts are reported in ppm. Mass spectra were obtained on a TRIO 1000 mass spectrometer. Analytical thin layer chromatography (TLC) was performed on Merck pre-coated aluminum silica gel sheets (Kieselgel 60 F 254). Column chromatography was performed on a CombiFlash Companion system using RediSep normal phase silica columns (ISCO, Inc., Lincoln, NE). In case, according to the circumstances, Inc. Silica gel (200–400 mesh) from Natland (Durham, NC) was used for column chromatography. All other chemicals were obtained from Aldrich, Inc. unless otherwise noted.

General Procedure for Aldol Reaction¹²

The appropriately substituted benzaldehyde **5** was dissolved in acetone, and 1 sodium hydroxide was added to the solution with continuous stirring. Stirring was continued overnight. Excess acetone was removed under reduced pressure. Upon acidification with 1 HCl, the reaction mixture was extracted with CHCl₃ or CH₂Cl₂, and then solution was dried over anhydrous Na₂SO₄. Solvent was removed and the yellow solid obtained was recrystallized from EtOAc to give **6–13**. Similarly, for the preparation of **14–17**, benzaldehyde **5** was dissolved in MeOH with acetophenone, and 5 potassium hydride was added to the solution with continuous stirring. Stirring was continued overnight. MeOH was removed under reduced pressure. After acidification with 1 HCl, the crude mixture was extracted with CH₂Cl₂, and the solution was dried over anhydrous Na₂SO₄. Solvent was removed and the solid obtained was purified with CombiFlash chromatography (EtOAc-hexane) to provide **14–17**.

E-1-(2-Hydroxy-3-methoxy-phenyl)-but-1-en-3-one (6)

Starting with o-vanillin (5 g, 0.03 mol), acetone (40 mL), and 1 \times NaOH (50 mL); yield 2.0 g (30%); powder, mp 79–80 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.84 (d, 1H, *J* = 16.5 Hz, 1-H), 7.12 (dd, 1H, *J* = 6.6, 2.7 Hz, 5'-H), 6.90–6.84 (m, 2H, 4'- and 6'-H) 6.81 (d, 1H, *J* = 16.5, 2-H) 6.16 (s, 1H, OH) 3.92 (s, 3H, OCH₃), 2.40 (s, 3H, 4-H); MS *m/z* 277 [M+Na]⁺

E-1-(3-Hydroxy-4-methoxy-phenyl)-but-1-en-3-one (7)

Starting with 3-hydroxy-4-methoxybenzaldehyde (1 g, 6.6 mmol), acetone (8 mL) and 1 N NaOH (10 mL); yield 1.2 g (94%); powder, mp 96–97 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.42 (d, 1H, *J* = 16.2 Hz, 1-H), 7.15 (d, 1H, *J* = 1.5 Hz, 2'-H), 7.06 (dd, 1H, *J* = 8.3, 2.1 Hz, 5'-H), 6.86 (d, 1H, *J* = 8.3 Hz, 6'-H), 6.59 (d, 1H, *J* = 16.2 Hz, 2-H), 5.70 (s, 1H, OH), 3.93 (s, 3H, OCH₃), 3.36 (s, 3H, 4-H); MS *m*/z 193 [M+H]⁺

E-1-(2-Hydroxy-4-methoxy-phenyl)-but-1-en-3-one (8)

Starting with 2-hydroxy-4-methoxybenzaldehyde (1 g, 6.6 mmol), acetone (8 mL), and 1 N NaOH (10 mL); yield 497 mg (39%); powder, mp 129–130 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.78 (d, 1H, *J* = 16.3 Hz, 1-H), 7.34 (d, 1H, *J* = 8.5 Hz, 6'-H), 7.01 (d, 1H, *J* = 16.3 Hz, 2-H) 6.50 (dd, 1H, *J* 6.48 (d, 1H, *J* = 2.1 Hz, 3'-H), 6.16 (s, 1H, OH) 3.82 (s, 3H, OCH₃), 2.41 (s, 3H, 4-H); MS *m*/z 215 [M+Na]⁺

E-1-Phenyl-but-1-en-3-one (9)

Starting with benzaldehyde (500 mL, 4.9 mmol), acetone (4 mL), and 1 \times NaOH (5 mL); yield 241 mg (34%); yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.58–7.53 (m, 2H, 2×Ar-H), 7.52 (d, 1H, *J* = 16.2 Hz, 1-H), 7.42–7.40 (m, 3H, 3×Ar-H), 6.73 (d, 1H, *J* = 16.2 Hz, 2-H), 2.39 (s, 3H, 4-H); MS *m*/z 169 [M+Na]⁺

E-1-(3-Ethoxy-4-hydroxy-phenyl)-but-1-en-3-one (10)

Starting with 3-ethyoxy-4-hydroxybenxaldehyde (1 g, 6.0 mmol), acetone (8 mL), and 1 N NaOH (10 mL); yield 1.1 g (42%); needles, mp 104–105 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.44 (d, 1H, *J* = 16.0 Hz, 1-H), 7.08 (br d, 1H, *J* = 8.4 Hz, 6'-H), 7.05 (br s, 1H, 2'-H), 6.93 (d, 1H, *J* = 8.4 Hz, 5'-H), 6.57 (d, 1H, *J* = 16.0 Hz, 2-H), 5.85 (s, 1H, OH), 4.16 (q, 2H, *J* = 7.0 Hz, 1'-H), 2.36 (s, 3H, 4-H), 1.48 (t, 3H, *J* = 7.0 Hz, 2'-H); MS *m*/z 229 [M+Na]⁺

E-1-(3-Ethoxy-2-hydroxy-phenyl)-but-1-en-3-one (11)

Starting with 3-ethyoxysalicyl-aldehyde (1 g, 6.0 mmol), acetone (8 mL), and 1 \times NaOH (10 mL); yield 1.0 g (84%); powder, mp 77–78 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.84 (d, 1H, J = 16.5 Hz, 1-H), 7.11 (dd, 1H, J = 4.8, 2.1 Hz, 5'-H), 6.88–6.81 (m, 2H, 4'- and 6'-H) 6.21 (s, 1H, OH), 6.81 (d, 1H, J = 16.5 Hz, 2-H), 4.14 (q, 2H, J = 6.9 Hz, 1'-H), 2.40 (s, 3H, 1-H), 1.47 (t, 3H, J = 6.9 Hz, 2'-H); MS m/z 207 [M+H]⁺

E-1-(3-Fluoro-2-hydroxy-phenyl)-but-1-en-3-one (12)

Starting with 3-fluorosalicyl-aldehyde (200 mg, 1.4 mmol), acetone (1.6 mL), and 1 \times NaOH (2 mL); yield 239 mg (93%); prisms, mp 167–168 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.79 (d, 1H, *J* = 16.5 Hz, 1-H), 7.29 (br d, 1H, *J* = 8.1 Hz, 6'-H), 7.12 (br t, 1H, *J* = 8.1 Hz, 5'-H), 6.91–6.82 (m, 2H, 4'- and 2-H), 5.96 (br s, 1H, OH), 2.41 (s, 3H, 4-H); MS *m/z* 203 [M +Na]⁺

E-1-(3-Fluoro-4-methoxy-phenyl)-but-1-en-3-one (13)

Starting with 3-fluoro-4-methoxybenzaldehyde (500 mg, 3.24 mmol), acetone (4 mL), and 1 \times NaOH (5 mL); yield 139 mg (22%); needles, mp 96–97 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.42 (d, 1H, *J* = 16.2 Hz, 1-H), 7.34–7.25 (m, 2H, 2×Ar-H), 6.97 (t, 1H, *J* = 8.7 Hz, 5'-H), 6.59 (d, 1H, *J* = 16.2 Hz, 2-H), 5.85 (s, 1H, OH), 3.93 (s, 3H, OCH₃), 2.37 (s, 3H, 4-H); MS *m*/*z* 217 [M+Na]⁺

E-1-(2-Hydroxy-3-methoxy-phenyl)-3-phenyl-propenone (15)

Starting with o-vanillin (128 mg, 0.85 mmol), acetophenone (100 μ L, 0.85 mmol), MeOH (1 mL), and 5 N NaOH (1 mL); yield 80 mg (37%); powder, mp 115 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.05–8.02 (m, 2H, 2×Ar-H), 8.04 (d, 1H, *J* = 15.9 Hz, 1-H), 7.75 (d, 1H, *J* = 15.9 Hz, 2-H), 7.61–7.47 (m, 3H, 3×Ar-H), 7.20 (dd, 1H, *J* = 3.3, 2.7 Hz, Ar-H), 6.92–6.86 (m, 2H, 2×Ar-H), 6.27 (s, 1H, OH), 3.94 (s, 3H, OCH₃); MS *m/z* 277 [M+Na]⁺

E-1-(3-Hydroxy-4-methoxy-phenyl)-3-phenyl-propenone (16)

Starting with 3-hydroxy-4-methoxybenzaldehyde (128 mg, 0.85 mmol), acetophenone (100 μ L, 0.85 mmol), MeOH (1 mL), and 5 \times NaOH (1 mL); yield 194 mg (90%); powder, 97–98 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.04–8.00 (m, 2H, 2×Ar-H), 7.74 (d, 1H, *J* = 15.7 Hz, 1-H), 7.61–7.47 (m, 3H, 3×Ar-H), 7.41 (d, 1H, *J* = 15.7 Hz, 2-H), 7.29 (d, 1H, *J* = 2.0 Hz, Ar-H), 7.15 (dd, 1H, *J* = 8.2, 2.0 Hz, Ar-H), 6.88 (d, 1H, *J* = 8.2 Hz, Ar-H), 5.69 (br s, 1H, OH), 3.95 (s, 3H, OCH₃); MS *m*/z 255 [M+H]⁺

E-1-(2-Hydroxy-4-methoxy-phenyl)-3-phenyl-propenone (17)

Starting with 2-hydroxy-4-methoxybenzaldehyde (128 mg, 0.85 mmol), acetophenone (100 μ L, 0.85 mmol), MeOH (1 mL), and 5 \times NaOH (1 mL); yield 65 mg (30%); amorphous; ¹H NMR (300 MHz, CDCl₃) δ 8.14 (d, 1H, *J* = 15.9 Hz, 1-H), 8.04–8.01 (m, 2H, 2×Ar-H), 7.61 (d, 1H, *J* = 15.9 Hz, 2-H), 7.61–7.47 (m, 4H, 4×Ar-H), 6.53 (dd, 1H, *J* = 8.7, 2.4 Hz, Ar-H), 6.49 (d, 1H, Ar-H), 3.82 (s, 3H, OCH₃); MS *m*/z 277 [M+Na]⁺

General Procedure for Alkylation²⁵

The mixture of dehydrozingerone (2) or isoeugenol (3), an appropriate alkyl halide, and K_2CO_3 in acetone was heated to reflux overnight. The reaction mixture was evaporated under vacuum. The crude mixture was extracted with CH_2Cl_2 , and the organic phase was washed with brine and dried over NaSO₄ and concentrated to obtain the product as a solid. The crude solid was purified with CombiFlash chromatography (EtOAc-hexane gradient) to obtain the target materials (18–35).²⁵

E-1-[3-Methoxy-4-(3-methyl-but-2-enyloxy)-phenyl]-but-1-en-3-one (18)

Starting with **1** (50 mg, 0.26 mmol), 4-bromo-2-methyl-2-butene (48 µl, 0.39 mmol), K₂CO₃ (252 mg, 1.82 mmol); yield 57 mg (87%); powder, mp 89–90 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.46 (d, 1H, *J* = 16.2 Hz, 1-H), 7.10 (dd, 1H, *J* = 8.2, 2.1 Hz, 6'-H), 7.07 (d, 1H, *J* = 2.1 Hz, 2'-H) 6.88 (d, 1H, *J* = 8.2 Hz, 5'-H), 6.60 (d, 1H, *J* = 16.2 Hz, 2-H), 5.51 (tt, 1H, *J* = 6.6, 1.2 Hz, 2"-H), 4.63 (d, 1H, *J* = 6.6 Hz, 1"-H), 3.90 (s, 3H, OCH₃), 2.37 (s, 3H, 4-H), 1.78 (br s, 3H, CH₃), 1.75 (br s, 3H, CH₃); MS *m*/z 261 [M+H]⁺

E-1-(4-Allyloxy-3-methoxy-phenyl)-but-1-en-3-one (19)

Starting with **1** (100 mg, 0.52 mmol), allyl bromide (68.1 mL, 0.78 mmol), and K₂CO₃ (503 mg, 3.64 mmol); yield 115 mg (94%); needles, mp 71–72 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.48 (d, 1H, *J* = 16.3 Hz, 1-H), 7.12–7.06 (m, 2H, 2'- and 6'-H), 6.88 (d, 1H, *J* = 7.8 Hz, 5'-H), 6.60 (d, 1H, *J* = 16.3 Hz, 2-H), 6.08 (ddt, 2H, *J* = 17.4, 10.5, 5.1 Hz, 2"-H) 5.42 (br d, 1H, *J* = 17.4 Hz, 3"-H) 5.32 (br d, 1H, *J* 10.5 Hz, 3"-H) 3.91 (s, 3H, OCH₃), 2.37 (s, 3H, 4-H); MS m/ z 233 [M+H]⁺

E-1-(4-But-2-enyloxy-3-methoxy-phenyl)-but-1-en-3-one (20)

Starting with **1** (100mg, 0.52 mmol), crotyl bromide (95 μ L, 0.78 mmol), and K₂CO₃ (503 mg, 3.64 mmol); yield 119 mg (93%); powder, mp 68–69 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.48 (d, 1H, *J* = 16.2 Hz, 1-H), 7.12–7.06 (d, 2H, 2'- and 6'-H), 6.88 (d, 1H, *J* = 8.4 Hz, 5'-H), 6.60 (d, 1H, *J* = 16.2 Hz, 2-H), 5.94–5.72 (m, 2H, 2"- and 3"-H) 4.56 (d, 1H, *J* = 6.0 Hz, 1"-H), 3.91 (s, 3H, OCH₃), 2.37 (s, 3H, 4-H), 1.75 (d, 3H, *J* = 5.1 Hz, 4"-H); MS *m*/z 247 [M+H]⁺

E-1-[4-(3,7-Dimethyl-octa-2,6-dienyloxy)-3-methoxy-phenyl]-but-1-en-3-one (21)

Starting with **1** (100 mg, 0.52 mmol), crotyl bromide (149 µL, 0.78 mmol), and K₂CO₃ (503 mg, 3.64 mmol); yield 160 mg (93%); powder, mp 56–57 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.46 (d, 1H, *J* = 16.2 Hz, 1-H), 7.10 (dd, 1H, *J* = 8.2, 1.9 Hz, 6'-H), 7.07 (d, 1H, *J* = 1.9 Hz, 2'-H), 6.87 (d, 1H, *J* = 8.2 Hz, 5'-H), 6.60 (d, 1H, *J* = 16.2 Hz, 2-H), 5.51 (br t, 1H, *J* = 6.6 Hz, 2"-H), 5.07 (br t, 1H, *J* = 6.6 Hz, 6"-H), 4.67 (d, 2H, *J* = 6.6 Hz, 1"-H), 3.91 (s, 3H, OCH₃), 2.37 (s, 3H, 4-H), 2.16–2.05 (m, 4H, 4"- and 5"-H), 0.74 (br s, 3H, CH₃), 1.66 (br s, 3H, CH₃); MS *m*/z 351 [M+H]⁺

E-1-[3-Methoxy-4-(3,7,11-trimethyl-dodeca-2,6,10-trienyloxy)-phenyl]-but-1-en-3-one (22)

Starting with **1** (100 mg, 0.52 mmol), farnesyl bromide (222.8 μ L, 0.78 mmol), and K₂CO₃ (503 mg, 3.64 mmol); yield 182 mg (88%); powder, mp 66–67 °C; ¹H NMR (300 MHz,

J Nat Prod. Author manuscript; available in PMC 2008 September 8.

CDCl₃) δ 7.46 (d, 1H, *J* = 16.2 Hz, 1-H), 7.10 (dd, 2H, *J* = 7.8, 2.0 Hz, 6'-H), 7.07 (d, 1H, *J* = 2.0 Hz, 2'-H), 6.87 (d, 1H, *J* = 7.8 Hz, 5'-H), 6.60 (d, 1H, *J* = 16.2 Hz, 2-H), 5.51 (br t, 1H, *J* = 6.0 Hz, 2"-H), 5.12–5.04 (m, 2H, 6"- and 10"-H),4.67 (d, 2H, *J* = 6.3Hz, 1"-H), 3.91 (s, 3H, OCH₃), 2.37 (s, 3H, 4-H), 2.18–1.92 (m, 8H, 4"-, 5"-, 8"-, and 9"-H), 0.75 (br s, 3H, 3"- or 7"-CH3), 1.68 (br s, 3H, 3"- or 7"-CH3), 1.59 (br s, 6H, gem-diMe); MS *m/z* 397 [M+H]⁺

E-1-(3,4-Dimethoxy-phenyl)-but-1-en-3-one (23)

Starting with **1** (100 mg, 0.52 mmol), bromomethane (50 μ L, 0.78 mmol), and K₂CO₃ (503 mg, 3.64 mmol); yield 72 mg (78%); needles, mp 87–88 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.47 (d, 1H, *J* = 16.2 Hz, 1-H), 7.13 (br d, 1H, 6'-H), 7.08 (br s, 1H, 2'-H) 6.88 (d, 1H, *J* = 8.2 Hz, 5'-H), 6.61 (d, 1H, *J* = 16.2 Hz, 2-H), 4.08 (t, 2H, *J* = 6.6Hz, 1"-H), 3.92 (s, 3H, OCH₃×2), 2.37 (s, 3H, 4-H); MS *m*/z 179 [M+H]⁺

E-1-(4-Ethoxy-3-methoxy-phenyl)-but-1-en-3-one (24)

Starting with **1** (100 µl, 0.65 mmol), bromoethane (59 µL, 0.97 mmol), K₂CO₃ (626 mg, 4.53 mmol); yield 70 mg (61%); needles, mp 108–109 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.46 (d, 1H, *J* = 16.0 Hz, 1-H), 7.10 (br d, 1H, *J* = 8.1, 6'-H), 7.08 (br s, 1H, 2'-H) 6.87 (d, 1H, *J* = 8.1 Hz, 5'-H), 6.60 (d, 1H, *J* = 16.0 Hz, 2-H), 4.14 (q, 2H, *J* = 6.9 Hz, 1"-H), 3.91 (s, 3H, OCH₃), 2.37 (s, 3H, 4-H), 1.48 (t, 2H, 7.0 Hz, 2"-H); MS *m/z* 221 [M+H]⁺

E-1-(3-Methoxy-4-propoxy-phenyl)-but-1-en-3-one (25)

Starting with **1** (100 mg, 0.52 mmol), 1-iodopropane (77 μ L, 0.78 mmol), and K₂CO₃ (503 mg, 3.64 mmol); yield 57 mg (47%); needles, mp 101 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.46 (d, 1H, *J* = 16.2 Hz, 1-H), 7.10 (br d, 1H, 6'-H), 7.08 (br s, 1H, 2'-H) 6.87 (d, 1H, *J* = 8.0 Hz, 5'-H), 6.60 (d, 1H, *J* = 16.1 Hz, 2-H), 4.02 (t, 2H, *J* = 6.9 Hz, 1"-H), 3.90 (s, 3H, OCH₃), 2.37 (s, 3H, 4-H), 1.89 (qt, 2H, *J* = 7.3, 6.9 Hz, 2"-H), 1.05 (t, 3H, *J* = 7.3 Hz, 3"-H); MS *m*/*z* 207 [M+H]+

E-1-[3-Methoxy-4-(3-methyl-butoxy)-phenyl]-but-1-en-3-one (26)

Starting with **1** (100 mg, 0.52 mmol), 1-methyl-3-bromobutane (102.3 μ L, 0.78 mmol), and K₂CO₃ (503 mg, 3.64 mmol); yield 32 mg (23%); needles, mp 77–78 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.45 (d, 1H, *J* = 16.1 Hz, 1-H), 7.10 (br d, 1H, *J* = 8.4 Hz, 6'-H), 7.07 (br s, 1H, 2'-H) 6.88 (d, 1H, *J* = 8.4 Hz, 5'-H), 6.60 (d, 1H, *J* = 16.1 Hz, 2-H), 4.08 (t, 2H, *J* = 6.6 Hz, 1"-H), 3.90 (s, 3H, OCH₃), 2.37 (s, 3H, 4-H), 1.92–1.70 (m, 1H, 3"-H), 1.77 (br t, 2H, *J* = 6.6 Hz, 2"-H), 0.98 (br s, 3H, CH₃), 0.96 (br s, 3H, CH₃); MS *m*/z 263 [M+H]⁺

2-Methoxy-1-(3-methyl-but-2-enyloxy)-4-propenyl-benzene (27)

Starting with **3** (100 µl, 0.65 mmol), 4-bromo-2-methyl-2-butene (118 µL, 0.97 mmol), K₂CO₃ (626 mg, 4.53 mmol); yield 45 mg (30%); yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 6.89–6.78 (m, 3H, 3-, 5-, and 6-H), 6.33 (d, 1H, *J* = 15.6 Hz, 1"-H) 6.16–6.04 (m, 1H, 2"-H), 5.89–5.71 (m, 2H, 2'- and 3'-H), 4.50 (d, 2H, *J* = 5.4 Hz, 1'-H), 3.87 (s, 3H, OCH₃), 1.86 (d, 3H, *J* = 6.3 Hz, 3"-H), 1.76 (s, 3H, CH₃), 1.72 (s, 3H, CH₃); MS *m*/*z* 233 [M+H]⁺, 255 [M +Na]⁺

1-Allyloxy-2-methoxy-4-propenyl-benzene (28)

Starting with **3** (100 µl, 0.65 mmol), allyl bromide (85 µL, 0.97 mmol), K_2CO_3 (626 mg, 4.53 mmol); yield 78 mg (59%); pale yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 6.89–6.78 (m, 3H, 3-, 5-, and 6-H), 6.33 (d, 1H, J = 16.2 Hz, 1"-H) 6.16–6.02 (m, 1H, 2"-H), 5.42 (br d, 1H, J = 17.4 Hz, 3'-H), 5.27 (br d, 1H, J = 9.6 Hz, 3'-H), 4.60 (d, 2H, J = 5.7 Hz, 1'-H), 3.88 (s, 3H, OCH₃), 1.86 (d, 3H, J = 6.3 Hz, 3"-H); MS m/z 205 [M+H]⁺

1-But-2-enyloxy-2-methoxy-4-propenyl-benzene (29)

Starting with **3** (100 µl, 0.65 mmol), crotyl bromide (118 µL, 0.97 mmol), K₂CO₃ (626 mg, 4.53 mmol); yield 98 mg (69%); pale yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 6.89–6.78 (m, 3H, 3-, 5-, and 6-H), 6.33 (d, 1H, *J* = 15.3 Hz, 1"-H) 6.16–6.04 (m, 1H, 2"-H), 5.51 (m, 1H, 2'-H), 4.55 (d, 2H, *J* = 6.6 Hz, 1'-H), 3.87 (s, 3H, OCH₃), 1.86 (d, 3H, *J* = 6.3 Hz, 3"-H), 1.71 (d, 3H, *J* = 5.1 Hz, 4'-H); MS *m*/z 219 [M+H]⁺

2-Methoxy-4-propenyl-1-(3,7,11-trimethyl-dodeca-2,6,10-trienyloxy)-benzene (30)

Starting with **3** (100 µl, 0.65 mmol), farnesyl bromide (277 µL, 0.78 mmol), and K₂CO₃ (626 mg, 4.53 mmol); yield 215 mg (90%); yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 6.88–6.78 (m, 3H, 3-, 5-, and 6-H), 6.33 (d, 1H, *J* = 15.3 Hz, 1"-H) 6.16–6.04 (m, 1H, 2"-H), 5.51 (m, 1H, 2'-H), 5.10 (m, 2H, 6'- and 10'-H), 4.60 (d, 2H, *J* = 6.3 Hz, 1'-H), 3.87 (s, 3H, OCH₃), 2.15 –1.90 (m, 8H, 4'-, 5'-, 8'-, 9'-H) 1.86 (d, 3H, *J* = 6.3 Hz, 3"-H), 1.77 (s, 3H, CH₃), 1.72 (s, 3H, CH₃) 1.59 (s, 6H, gem-diCH₃); MS *m*/z 369 [M+H]⁺

1,2-Dimethoxy-4-propenyl-benzene (32)

Starting with **3** (100 µl, 0.65 mmol), bromomethane (61 µL, 0.97 mmol), K_2CO_3 (626 mg, 4.53 mmol); yield 101 mg (88%); pale yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 6.89–6.78 (m, 3H, 3-, 5-, and 6-H), 6.34 (d, 1H, J = 15.9 Hz, 1"-H) 6.16–6.04 (m, 1H, 2"-H), 3.89 (s, 3H, OCH₃), 3.87 (s, 3H, OCH₃)1.87 (d, 3H, J = 6.3 Hz, 3"-H); MS *m*/*z* 179 [M+H]⁺

2-Methoxy-4-propenyl-1-propoxy-benzene (34)

Starting with **3** (100 µl, 0.65 mmol), 1-iodopropane (96 µL, 0.97 mmol), K₂CO₃ (626 mg, 4.53 mmol); yield 129 mg (96%); pale yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 6.89–6.80 (m, 3H, 3-, 5-, and 6-H), 6.33 (d, 1H, *J* = 1.56 Hz, 1"-H) 6.15–6.04 (m, 1H, 2"-H), 3.96 (t, 3H, *J* = 6.7 Hz, 1'-H), 3.87 (s, 3H, OCH₃) 1.91–1.79 (m, 5H, 3"- and 2'-H), 1.03 (t, 3H, *J* = 7.5 Hz, 3'-H); MS *m*/*z* 235 [M+H]⁺

2-Methoxy-1-(3-methyl-butoxy)-4-propenyl-benzene (35)

Starting with **3** (100 µl, 0.65 mmol), 1-methyl-3-bromobutane (127 µL, 0.97 mmol), K₂CO₃ (626 mg, 4.53 mmol); yield 91 mg (59%); pale yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 6.89 –6.78 (m, 3H, 3-, 5-, and 6-H), 6.33 (d, 1H, *J* = 15.9 Hz, 1"-H) 6.16–6.04 (m, 1H, 2"-H), 4.03 (t, 2H, *J* = 6.9 Hz, 1'-H), 3.87 (s, 3H, OCH₃), 1.86 (d, 3H, *J* = 6.6 Hz, 3"-H), 1.92–1.70 (m, 3H, 2'- and 3'-H), 0.97 (s, 3H, CH₃), 0.95 (s, 3H, CH₃); MS *m*/*z* 263 [M+H]⁺

Cytotoxic Activity Assay

The *in vitro* cytotoxicity assay was carried out according to procedures described in Rubinstein et al.²⁶ Drug stock solutions were prepared in DMSO, and the final solvent concentration was <1% DMSO (v/v), a concentration without effect on cell replication. The human tumor cell line panel consisted of epidermoid carcinoma of the nasopharynx (KB), lung carcinoma (A-549). The drug resistant cell line was KB-VCR, an MDR variant selected for growth in vincristine. It is cross-resistant to doxorubicin (Table 1). Detailed characterization of this cell line is described elsewhere.²⁷ Cells were cultured at 37 °C in RPMI-1640 with 100 µg/mL kanamycin and 10% (v/v) fetal bovine serum in a humidified atmosphere containing 5% CO₂. Initial seeding densities varied among the cell lines to ensure a final absorbance of 1–2.5 A₅₆₂ units. Drug exposure was for 2 days and the IC₅₀ value, the drug concentration that reduced the absorbance by 50%, was interpolated from dose-response data. Each test was performed in duplicate, and absorbance readings varied no more than 5% between replicates.

Acknowledgment

This investigation was supported by a grant from the National Cancer Institute (CA 17625) awarded to K. H. Lee.

References and Notes

- 1. De Bernardi M, Vidari G, Vita-Finzi P. Phytochemistry 1976;15:1785-1786.
- 2. Motohashi N, Ashihara Y, Yamagami C, Saito T. Mutat. Res 1997;377:17–25. [PubMed: 9219575]
- 3. Motohashi N, Yamagami C, Tokuda H, Konoshima T, Okuda Y, Okuda M, Mukainaka T, Nishino H, Saito Y. Cancer Lett 1998;134:37–42. [PubMed: 10381128]
- 4. Roughley RJ, Whiting AW. Org. Bio-Org. Chem 1973;20:2379-2388.
- 5. Matthes HWD, Luu B, Ourisson G. Phytochemistry 1980;19:2643-2650.
- Adams BK, Ferstl EM, Davis MC, Herold M, Kurtkaya S, Camalier RF, Hollingshead MG, Kaur G, Sausville EA, Rickles FR, Snyder JP, Liotta DC, Shoji M. Bioorg. Med. Chem 2004;12:3871–3883. [PubMed: 15210154]
- 7. Ishida J, Ohtsu H, Tachibana Y, Nakanishi Y, Bastow KF, Nagi M, Wang HK, Itokawa H, Lee KH. Bioorg. Med. Chem 2002;10:3481–3487. [PubMed: 12213462]
- Syu WJ, Shen CC, Don MJ, Ou JC, Lee GH, Sun CM. J. Nat. Prod 1998;61:1531–1534. [PubMed: 9868158]
- 9. Nogaki A, Satoh K, Iwasaka K, Takano H, Takahama M, Ida Y, Sakagami H. Anticancer Res 1998;18:3487–3491. [PubMed: 9858929]
- 10. Rajakumar DV, Rao MN. Biochem. Pharmacol 1993;46:2067–2072. [PubMed: 8267655]
- 11. Ogata M. Aroma Res 2004;5:259-262.
- 12. Elias G, Rao MNA. Eur. J. Med. Chem 1988;23:379-380.
- Motohashi N, Yamagami C, Tokuda H, Okuda Y, Ichiishi E, Mukainaka T, Nishino H, Saito Y. Mutat. Res 2000;464:247–254. [PubMed: 10648911]
- 14. Ohtsu H, Xiao Z, Ishida J, Nagai M, Wang HK, Itokawa H, Su CY, Shih C, Chiang T, Chang E, Lee Y, Tsai MY, Chang C, Lee KH. J. Med. Chem 2002;45:5037–5042. [PubMed: 12408714]
- Ohtsu H, Itokawa H, Xiao Z, Su CY, Shih CC, Chiang T, Chang E, Lee Y, Chiu SY, Chang C, Lee KH. Bioorg. Med. Chem 2003;11:5083–5090. [PubMed: 14604672]
- 16. Wang Y, Tan W, Li WZ, Li Y. J. Nat. Prod 2001;64:196-199. [PubMed: 11429999]
- 17. Huang C, Zhang Z, Li Y. J. Nat. Prod 1998;61:1283–1285. [PubMed: 9784169]
- Tanaka N, Takaishi Y, Shikishima Y, Nakanishi Y, Bastow KF, Lee KH, Honda G, Ito M, Takeda Y, Kodzhimatov OK, Ashurmetov O. J. Nat. Prod 2004;67:1870–1875. [PubMed: 15568778]
- Kanokmedhakul S, Kanokmedhakul K, Nambuddee K, Kongsaeree P. J. Nat. Prod 2004;67:968–972. [PubMed: 15217275]
- van Der Kaaden JE, Hemscheidt TK, Mooberry SL. J. Nat. Prod 2001;64:103–105. [PubMed: 11170679]
- Nkengfack AE, Azebaze AG, Waffo AK, Fomum ZT, Meyer M, van Heerden FR. Phytochemistry 2001;58:1113–1120. [PubMed: 11730876]
- 22. Itoigawa M, Ito C, Tokuda H, Enjo F, Nishino H, Furukawa H. Cancer Lett 2004;214:165–169. [PubMed: 15363542]
- 23. Ito C, Itoigawa M, Furukawa H, Ichiishi E, Mukainaka T, Okuda M, Ogata M, Tokuda H, Nishino H. Cancer Lett 1999;142:49–54. [PubMed: 10424780]
- 24. Ito C, Itoigawa M, Otsuka T, Tokuda H, Nishino H, Furukawa H. J. Nat. Prod 2000;63:1344–1348. [PubMed: 11076549]
- 25. Katritzky AR, Long Q, He HY, Qiua G, Wilcox AL. ARKIVOC 2000;1:868-875.
- Rubinstein LV, Shoemaker RH, Paull KD, Simon RM, Tosini S, Skehan P, Scudiero DA, Monks A, Boyd MR. J. Natl. Cancer Inst 1990;82:1113–1118. [PubMed: 2359137]
- 27. Ferguson PJ, Fisher MH, Stephenson J, Li DH, Zhou BS, Cheng YC. Cancer Res 1988;48:5956–5964. [PubMed: 2844393]

NIH-PA Author Manuscript

 Ducki S, Hadfield JA, Lawrence NJ, Liu CY, McGown AT, Zhang X. Planta Med 1996;62:185–186. [PubMed: 8657758]

J Nat Prod. Author manuscript; available in PMC 2008 September 8.

Tatsuzaki et al.

- **1**, Dehydrozingerone: $R_1 = COMe$ **3**, Isoeugenol: $R_1 = Me$

2, Curcumin

4, 2-Hydroxychalcone

R ₂ R ₃	R ₁ O 5	H R_4 1N NaOH for R_4 = Me or MeOH / 5N KOH for R_4 =		R_{2} R_{3} R_{3} $R_{4} = Me$ $R_{4} = Me$ $R_{4} = Ph$	
-		R_1	R_2	R_3	R_4
-	1	Н	OMe	ОН	Me
	6	ОН	OMe	Н	Me
	7	Н	ОН	OMe	Me
	8	OH	Н	OMe	Me
	9	Н	Н	Н	Me
	10	Н	OEt	OH	Me
	11	OH	OEt	Н	Me
	12	OH	F	Н	Me
	13	Н	F	OMe	Me
	14	Н	OMe	OH	Ph
	15	OH	OMe	Н	Ph
	16	Н	OH	OMe	Ph
_	17	OH	Н	OMe	Ph

Scheme 1.

Syntheses of Dehydrozingerone (6–13) and Chalcone (14–17) Analogs

Dehydrozingerone R ₁ = COMe	lsoeugenol R ₁ = Me	R ₂	
18	27		
19	28		
20	29	\sim	
21	30		
22	31		
23	32	Ме	
24	33	\sim	
25	34	\sim	
26	35	\sim	

Scheme 2.

C-4' Alkylated Dehydrozingerone (18-26) and Isoeugenol (27-35) Analogs

_		cell line/IC ₅₀ (µg/mL) ^d			
compound	кв ^b	KB-VCR ^b	A549 ^b		
ehydrozingerone Analogs					
1	>10	>10	>10		
6	3.8	2.0	2.5		
7	10.0	8.2	>10		
8	3.8	4.0	3.5		
9	5.3	5.6	2.8		
10	7.7	7.8	8.5		
11	2.0	1.9	2.3		
12	2.1	3.0	3.0		
13	4.3	5.0	5.5		
alcone Analogs					
14	3.5	1.9	2.3		
15	2.4	1.3	0.6		
16	1.0	1.0	3.5		
17	2.0	2.0	3.8		
4' Alkylated Dehydrozingerone Anal	logs				
18	5.7	3.5	3.8		
19	6.8	5.0	5.8		
20	4.8	3.4	6.8		
21	2.2	3.3	3.4		
22	6.5	7.4	7.4		
23	8.6	7.8	8.0		
24	5.5	8.0	>10		
25	6.5	4.2	5.8		
26	3.6	3.2	7.2		
4' Alkylated Isoeugenol Analogs					
27–35 ^{<i>c</i>}	>10	>10	ND^d		
ontrols					
Curcumin (2)	5.5	3.1	5.2		
Doxorubicin	0.1	2.7	0.1		

Table 1
Activities of Analogs Against Human Tumor Cell Replication

 a Cytotoxicity as IC₅₀ values for each cell line, the concentration of compound that caused 50% reduction in absorbance at 562 nm relative to untreated cells using the sulforhodamine B assay. The average value is from two independent determinations and variation (SEM) was no greater than 10%.

^bHuman epidermoid carcinoma of the nasopharynx (KB), multi-drug resistant expression P-glycoprotein (KB-VCR), human lung carcinoma (A549).

^c**30** and **33** were not tested.

 d ND = Not determined.