Dehydrozingerone, Chalcone, and Isoeugenol Analogs as In Vitro Anticancer Agents\#

Jin Tatsuzaki ${ }^{\dagger}$, Kenneth F. Bastow ${ }^{\ddagger}$, Kyoko Nakagawa-Goto ${ }^{\dagger}$, Seiko Nakamura ${ }^{\dagger}$, Hideji Itokawa ${ }^{\dagger}$, and Kuo-Hsiung Lee ${ }^{*}, \dagger$
Natural Products Research Laboratories, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7360, USA Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7360, USA

Abstract

Twenty-eight compounds related to dehydrozingerone (1), isoeugenol (3), and 2-hydroxychalcone (4) were synthesized and evaluated in vitro against human tumor cell replication. Except for isoeugenol analogs 27-35, most compounds exhibited moderate or strong cytotoxic activity against KB, KB-VCR (a multi-drug resistant derivative), and A549 cell lines. In particular, chalcone 15 showed significant cytotoxic activity against the A549 cell line with an IC_{50} value of $0.6 \mu \mathrm{~g} / \mathrm{mL}$. Furthermore, dehydrozingerone analog 11 and chalcones 16 and 17 showed significant and similar cytotoxic activity against both $\mathrm{KB}\left(\mathrm{IC}_{50}\right.$ values of $2.0,1.0$, and $2.0 \mu \mathrm{~g} / \mathrm{mL}$, respectively) and KB VCR (IC_{50} values of $1.9,1.0$, and $2.0 \mu \mathrm{~g} / \mathrm{mL}$, respectively) cells, suggesting that they are not substrates for the p-glycoprotein drug efflux pump.

Dehydrozingerone (1), isolated from ginger (Zingiber officinale), ${ }^{1,2}$ is a well known phenolic natural product with anti-inflammatory, antioxidant, and antitumor promoting activities. ${ }^{3}$ It is the structural half analog, as well as biosynthetic intermediate, ${ }^{4}$ of curcumin (2), which
possesses various remarkable bioactivities such as cytotoxic effects on cancer cell lines ${ }^{5-8}$ and induction of apoptotic cell death in human promyelocytic leukemia HL-60 and human oral squamous carcinoma HSC-4 cells. ${ }^{9}$ Dehydrozingerone (1), isoeugenol (3) and 2hydroxychalcone (4) (Figure 1) have similar structures (acetyl, methyl and benzoyl, respectively, attached to a styrene skeleton). Both $\mathbf{3}$ and $\mathbf{4}$ are also prominent bioactive compounds. ${ }^{10,11}$ Thus, we expected that 1 -analogs should show a wide range of pharmacological activities. In spite of the interesting and simple structure of $\mathbf{1}$, we found only a few literature reports on analog syntheses and structure-activity relationships (SAR), ${ }^{12,13}$ although we recently reported the cytotoxic effects of curcumin analogs. $7,14,15$

It is known that the presence of a prenyl or geranyl group on flavonoids, including chalcones, can lead to a remarkable increase in bioactivity. ${ }^{16,17}$ As dehydrozingerone (1) is structurally related to chalcones, the introduction of a prenyl or geranyl group on any position of $\mathbf{1}$ might also increase activity. In fact, most prenylflavonoids and geranylflavonoids as well as related compounds are known to have potent cytotoxic effects. ${ }^{18-21}$ Furthermore, with respect to cancer research, a prenyl moiety has been demonstrated to be essential for chemopreventive

[^0]activity in many compound types. ${ }^{22-24}$ Therefore, we herein report the syntheses and cytotoxic activities of dehydrozingerone analogs, including investigation of prenyl substitution.

Results and Discussion

As shown in Scheme 1, dehydrozingerone ($\mathbf{6} \mathbf{- 1 3}$) and chalcone (14-17) analogs with various substitution patterns on the benzylidene ring were easily obtained from substituted benzaldehydes (5) reacted with the appropriate ketone (acetone for 6-13, acetophenone for $\mathbf{1 4}$ -17) using an aldol condensation. ${ }^{12}$ Alkylation/allylation of the phenol of $\mathbf{1}$ or $\mathbf{3}$ was achieved by a standard procedure ${ }^{25}$ using an alkyl/allyl halide to give the corresponding phenoxy analogs 18-26 and 27-35, respectively, as shown in Scheme 2.

Derivatives 6-35 were evaluated as inhibitors of human tumor cell replication using three human tumor cell lines, nasopharyngeal carcinoma KB , multi-drug resistant expressing pglycoprotein KB-VCR, and lung carcinoma A549. ${ }^{26,27}$ Curcumin (2) and doxorubicin were used as positive controls. The results are shown in Table 1.

Most analogs, except isoeugenol analogs 27-35, showed moderate or strong cytotoxic activity against all three cell lines. Comparison of the corresponding dehydrozingerone (1, 6-8) and chalcone ($\mathbf{1 4 - 1 7}$) analogs showed that the latter compounds were more potent in each case. Because the chalcones have a phenyl rather than methyl in the unsaturated ketone, these data suggest that this phenyl group is important for optimal activity. Chalcone $\mathbf{1 5}$ showed significant activity against the A549 cell line with an IC_{50} value of $0.6 \mu \mathrm{~g} / \mathrm{mL}$. Furthermore, the dehydrozingerone analog $\mathbf{1 1}$ and chalcones $\mathbf{1 6}$ and $\mathbf{1 7}$ showed significant cytotoxic activity against both KB (IC_{50} values of $2.0,1.0$, and $2.0 \mu \mathrm{~g} / \mathrm{mL}$, respectively) and $\mathrm{KB}-\mathrm{VCR}$ (IC_{50} values of $1.9,1.0$, and $2.0 \mu \mathrm{~g} / \mathrm{mL}$, respectively) cells. The similar potencies against the parental and drug-resistant cell lines suggested that these compounds were not substrates for the pglycoprotein drug efflux pump.

The substitution pattern on the benzylidene ring had some influence on potency. In particular, among the dehydrozingerone analogs, compounds with an ortho-hydroxy group were more active than compounds with meta- or para-hydroxy substituents [compare $6\left(2^{\prime}-\mathrm{OH}, 3^{\prime}-\mathrm{OMe}\right)$, $8\left(2^{\prime}-\mathrm{OH}, 4^{\prime}-\mathrm{OMe}\right)$, and $\mathbf{1 1}\left(2^{\prime}-\mathrm{OH}, 3^{\prime}-\mathrm{OEt}\right)$ with $\mathbf{1}\left(3^{\prime}-\mathrm{OMe}, 4^{\prime}-\mathrm{OH}\right), 7\left(3^{\prime}-\mathrm{OH}, 4^{\prime}-\mathrm{OMe}\right)$, and $10\left(3^{\prime}-\mathrm{OEt}, 4^{\prime}-\mathrm{OH}\right)$]. Compound $12\left(2^{\prime}-\mathrm{OH}, 3^{\prime}-\mathrm{F}\right)$ also exhibited significant activity, showing that fluorine could be substituted for an alkoxy group. In addition, substitution of 3^{\prime}-fluoro for 3'-hydroxy (compare 13 with 7) was beneficial.

The dehydrozingerone derivatives $\mathbf{1 8} \mathbf{- 2 6}$ showed cytotoxic activity, while the corresponding isoeugenol derivatives $\mathbf{2 7}-\mathbf{3 5}$ were inactive. This result supported the supposition that the ketone on C-3 (numbering for dehydrozingerone) is important for anticancer properties. ${ }^{28}$ Phenoxydehydrozingerone analogs 18 (C-4'-prenyloxy) and 21 (C-4'-geranyloxy) showed higher activity than dehydrozingerone itself and were as or more active than the other alkylated compounds 19, 20, 22-26. With a longer farnesyl group, analog 22 showed decreased potency relative to $\mathbf{1 8}$ and 21. This result supported those of prior investigations showing that prenylated and/or geranylated flavonoids were more active than farnesylated compounds. ${ }^{17,19}$ Derivative 26, which has a saturated isoamyl rather than unsaturated prenyl group, showed equal and significant activity against KB and $\mathrm{KB}-\mathrm{VCR}$ cells with IC_{50} values of 3.6 and $3.2 \mu \mathrm{~g} / \mathrm{mL}$, respectively. However, the prenylated analog $(\mathbf{1 8})$ was about twice as potent against the drugresistant cell line ($3.8 \mu \mathrm{~g} / \mathrm{mL}$, KB versus $2.0 \mu \mathrm{~g} / \mathrm{mL}$, KB-VCR).

In conclusion, chalcone 15 showed the highest in vitro potencies with IC_{50} values ranging from 0.6 to $2.4 \mu \mathrm{~g} / \mathrm{mL}$. The ketone at the $\mathrm{C}-3$ and phenyl at the $\mathrm{C}-4$ positions are necessary for optimal cytotoxic activity. Compounds with hydroxyl at the ortho position of the benzylidene
moiety generally showed increased activity. Among alkylated 1-analogs, alkylation of the phenolic OH with prenyl or geranyl resulted in the highest potency.

Experimental Section

Melting points were measured with a Fisher Johns melting point apparatus without correction. The proton nuclear magnetic resonance ($\left.{ }^{1} \mathrm{H}-\mathrm{NMR}\right)$ spectra were measured on a Varian Gemini $2000(300 \mathrm{MHz})$ NMR spectrometer with TMS as the internal standard. All chemical shifts are reported in ppm. Mass spectra were obtained on a TRIO 1000 mass spectrometer. Analytical thin layer chromatography (TLC) was performed on Merck pre-coated aluminum silica gel sheets (Kieselgel 60 F 254). Column chromatography was performed on a CombiFlash Companion system using RediSep normal phase silica columns (ISCO, Inc., Lincoln, NE). In case, according to the circumstances, Inc. Silica gel (200-400 mesh) from Natland (Durham, NC) was used for column chromatography. All other chemicals were obtained from Aldrich, Inc. unless otherwise noted.

General Procedure for Aldol Reaction 12

The appropriately substituted benzaldehyde 5 was dissolved in acetone, and 1 n sodium hydroxide was added to the solution with continuous stirring. Stirring was continued overnight. Excess acetone was removed under reduced pressure. Upon acidification with 1 N HCl , the reaction mixture was extracted with CHCl_{3} or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and then solution was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was removed and the yellow solid obtained was recrystallized from EtOAc to give 6-13. Similarly, for the preparation of 14-17, benzaldehyde $\mathbf{5}$ was dissolved in MeOH with acetophenone, and 5 n potassium hydride was added to the solution with continuous stirring. Stirring was continued overnight. MeOH was removed under reduced pressure. After acidification with $1_{\mathrm{N}} \mathrm{HCl}$, the crude mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the solution was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was removed and the solid obtained was purified with CombiFlash chromatography (EtOAc-hexane) to provide 14-17.

E-1-(2-Hydroxy-3-methoxy-phenyl)-but-1-en-3-one (6)

Starting with o-vanillin ($5 \mathrm{~g}, 0.03 \mathrm{~mol}$), acetone (40 mL), and $1 \mathrm{NaOH}(50 \mathrm{~mL})$; yield 2.0 g (30%); powder, mp $79-80^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}, 1-\mathrm{H}$), $7.12\left(\mathrm{dd}, 1 \mathrm{H}, J=6.6,2.7 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 6.90-6.84\left(\mathrm{~m}, 2 \mathrm{H}, 4^{\prime}-\mathrm{and} 6^{\prime}-\mathrm{H}\right) 6.81(\mathrm{~d}, 1 \mathrm{H}, J=16.5,2-$ H) $6.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) 3.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.40(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{H}) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 277[\mathrm{M}+\mathrm{Na}]^{+}$

E-1-(3-Hydroxy-4-methoxy-phenyl)-but-1-en-3-one (7)

Starting with 3-hydroxy-4-methoxybenzaldehyde ($1 \mathrm{~g}, 6.6 \mathrm{mmol}$), acetone (8 mL) and 1 N $\mathrm{NaOH}(10 \mathrm{~mL})$; yield $1.2 \mathrm{~g}(94 \%)$; powder, $\mathrm{mp} 96-97{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42$ (d, 1H, $J=16.2 \mathrm{~Hz}, 1-\mathrm{H}), 7.15\left(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 7.06\left(\mathrm{dd}, 1 \mathrm{H}, J=8.3,2.1 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right)$, $6.86(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, 6 '-\mathrm{H}), 6.59(\mathrm{~d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}, 2-\mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.93(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $3.36(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{H})$; MS m/z $193[\mathrm{M}+\mathrm{H}]^{+}$

E-1-(2-Hydroxy-4-methoxy-phenyl)-but-1-en-3-one (8)

Starting with 2-hydroxy-4-methoxybenzaldehyde ($1 \mathrm{~g}, 6.6 \mathrm{mmol}$), acetone (8 mL), and 1 N $\mathrm{NaOH}(10 \mathrm{~mL})$; yield $497 \mathrm{mg}(39 \%)$; powder, $\mathrm{mp} 129-130{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78(\mathrm{~d}, 1 \mathrm{H}, J=16.3 \mathrm{~Hz}, 1-\mathrm{H}), 7.34\left(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right), 7.01(\mathrm{~d}, 1 \mathrm{H}, J=16.3 \mathrm{~Hz}, 2-$ H) $6.50\left(\mathrm{dd}, 1 \mathrm{H}, J 6.48\left(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 6.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.41\right.$ (s, 3H, 4-H); MS m/z $215[\mathrm{M}+\mathrm{Na}]^{+}$

E-1-Phenyl-but-1-en-3-one (9)

Starting with benzaldehyde ($500 \mathrm{~mL}, 4.9 \mathrm{mmol}$), acetone (4 mL), and $1{ }_{\mathrm{N}} \mathrm{NaOH}(5 \mathrm{~mL})$; yield 241 mg (34\%); yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58-7.53(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{Ar}-\mathrm{H}), 7.52$ $(\mathrm{d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}, 1-\mathrm{H}), 7.42-7.40(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{Ar}-\mathrm{H}), 6.73(\mathrm{~d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}, 2-\mathrm{H}), 2.39$ (s, 3H, 4-H); MS m/z 169 [M+Na] ${ }^{+}$

E-1-(3-Ethoxy-4-hydroxy-phenyl)-but-1-en-3-one (10)

Starting with 3-ethyoxy-4-hydroxybenxaldehyde ($1 \mathrm{~g}, 6.0 \mathrm{mmol}$), acetone (8 mL), and 1 N $\mathrm{NaOH}(10 \mathrm{~mL})$; yield $1.1 \mathrm{~g}(42 \%)$; needles, $\mathrm{mp} 104-105{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.44(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, 1-\mathrm{H}), 7.08\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right), 7.05\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 6.93$ (d, $1 \mathrm{H}, J=8.4 \mathrm{~Hz}, 5 '-\mathrm{H}), 6.57(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, 2-\mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.16(\mathrm{q}, 2 \mathrm{H}, J=7.0$ $\left.\mathrm{Hz}, 1^{\prime}-\mathrm{H}\right), 2.36(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{H}), 1.48\left(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 229[\mathrm{M}+\mathrm{Na}]^{+}$

E-1-(3-Ethoxy-2-hydroxy-phenyl)-but-1-en-3-one (11)

Starting with 3-ethyoxysalicyl-aldehyde ($1 \mathrm{~g}, 6.0 \mathrm{mmol}$), acetone (8 mL), and $1{ }_{\mathrm{N}} \mathrm{NaOH}(10$ mL); yield $1.0 \mathrm{~g}(84 \%)$; powder, mp $77-78{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~d}, 1 \mathrm{H}$, $J=16.5 \mathrm{~Hz}, 1-\mathrm{H}), 7.11\left(\mathrm{dd}, 1 \mathrm{H}, J=4.8,2.1 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 6.88-6.81\left(\mathrm{~m}, 2 \mathrm{H}, 4^{\prime}-\right.$ and $\left.6^{\prime}-\mathrm{H}\right) 6.21$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 6.81(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}, 2-\mathrm{H}), 4.14\left(\mathrm{q}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 2.40(\mathrm{~s}, 3 \mathrm{H}, 1-\mathrm{H})$, $1.47\left(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 207[\mathrm{M}+\mathrm{H}]^{+}$

E-1-(3-Fluoro-2-hydroxy-phenyl)-but-1-en-3-one (12)

Starting with 3-fluorosalicyl-aldehyde ($200 \mathrm{mg}, 1.4 \mathrm{mmol}$), acetone (1.6 mL), and $1 \times \mathrm{NaOH}$ (2 mL); yield 239 mg (93%); prisms, mp $167-168{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79$ (d, 1H, $J=16.5 \mathrm{~Hz}, 1-\mathrm{H}$), 7.29 (br d, $1 \mathrm{H}, J=8.1 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}$), 7.12 (br t, $1 \mathrm{H}, J=8.1 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}$), $6.91-6.82\left(\mathrm{~m}, 2 \mathrm{H}, 4^{\prime}-\mathrm{and} 2-\mathrm{H}\right), 5.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 2.41(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{H}) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 203[\mathrm{M}$ $+\mathrm{Na}]^{+}$

E-1-(3-Fluoro-4-methoxy-phenyl)-but-1-en-3-one (13)

Starting with 3-fluoro-4-methoxybenzaldehyde ($500 \mathrm{mg}, 3.24 \mathrm{mmol}$), acetone (4 mL), and 1 ${ }_{\mathrm{n}} \mathrm{NaOH}(5 \mathrm{~mL})$; yield $139 \mathrm{mg}(22 \%)$; needles, $\mathrm{mp} 96-97{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.42(\mathrm{~d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}, 1-\mathrm{H}), 7.34-7.25(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{Ar}-\mathrm{H}), 6.97\left(\mathrm{t}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}, 5{ }^{\prime}-\mathrm{H}\right), 6.59$ $(\mathrm{d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}, 2-\mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.37(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{H}) ; \mathrm{MS} m / z$ $217[\mathrm{M}+\mathrm{Na}]^{+}$

E-1-(2-Hydroxy-3-methoxy-phenyl)-3-phenyl-propenone (15)

Starting with o-vanillin ($128 \mathrm{mg}, 0.85 \mathrm{mmol}$), acetophenone ($100 \mu \mathrm{~L}, 0.85 \mathrm{mmol}$), $\mathrm{MeOH}(1$ mL), and $5 \mathrm{~N} \mathrm{NaOH}(1 \mathrm{~mL})$; yield $80 \mathrm{mg}(37 \%)$; powder, mp $115{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.05-8.02(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{Ar}-\mathrm{H}), 8.04(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}, 1-\mathrm{H}), 7.75(\mathrm{~d}, 1 \mathrm{H}, J=15.9$ $\mathrm{Hz}, 2-\mathrm{H}), 7.61-7.47$ (m, 3H, $3 \times \mathrm{Ar}-\mathrm{H}$), 7.20 (dd, $1 \mathrm{H}, J=3.3,2.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.92-6.86$ (m, 2H, $2 \times \mathrm{Ar}-\mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; \mathrm{MS} m / z 277[\mathrm{M}+\mathrm{Na}]^{+}$

E-1-(3-Hydroxy-4-methoxy-phenyl)-3-phenyl-propenone (16)

Starting with 3-hydroxy-4-methoxybenzaldehyde ($128 \mathrm{mg}, 0.85 \mathrm{mmol}$), acetophenone (100 $\mu \mathrm{L}, 0.85 \mathrm{mmol})$, $\mathrm{MeOH}(1 \mathrm{~mL})$, and $5 \mathrm{NaOH}(1 \mathrm{~mL})$; yield $194 \mathrm{mg}(90 \%)$; powder, $97-98$ ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04-8.00(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{Ar}-\mathrm{H}), 7.74(\mathrm{~d}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz}, 1-$ H), $7.61-7.47(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{Ar}-\mathrm{H}), 7.41(\mathrm{~d}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz}, 2-\mathrm{H}), 7.29(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{Ar}-$ H), $7.15(\mathrm{dd}, 1 \mathrm{H}, J=8.2,2.0 \mathrm{~Hz}$, Ar-H), $6.88(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 5.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH})$, 3.95 (s, 3H, OCH_{3}); MS m/z $255[\mathrm{M}+\mathrm{H}]^{+}$

E-1-(2-Hydroxy-4-methoxy-phenyl)-3-phenyl-propenone (17)

Starting with 2-hydroxy-4-methoxybenzaldehyde ($128 \mathrm{mg}, 0.85 \mathrm{mmol}$), acetophenone (100 $\mu \mathrm{L}, 0.85 \mathrm{mmol})$, $\mathrm{MeOH}(1 \mathrm{~mL})$, and $5 \mathrm{NaOH}(1 \mathrm{~mL})$; yield $65 \mathrm{mg}(30 \%)$; amorphous; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.14(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}, 1-\mathrm{H}), 8.04-8.01(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{Ar}-\mathrm{H}), 7.61$ $(\mathrm{d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}, 2-\mathrm{H}), 7.61-7.47(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{Ar}-\mathrm{H}), 6.53(\mathrm{dd}, 1 \mathrm{H}, J=8.7,2.4 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, $6.49(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 277[\mathrm{M}+\mathrm{Na}]^{+}$

General Procedure for Alkylation 25

The mixture of dehydrozingerone (2) or isoeugenol (3), an appropriate alkyl halide, and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in acetone was heated to reflux overnight. The reaction mixture was evaporated under vacuum. The crude mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the organic phase was washed with brine and dried over NaSO_{4} and concentrated to obtain the product as a solid. The crude solid was purified with CombiFlash chromatography (EtOAc -hexane gradient) to obtain the target materials (18-35). ${ }^{25}$

E-1-[3-Methoxy-4-(3-methyl-but-2-enyloxy)-phenyl]-but-1-en-3-one (18)

Starting with 1 ($50 \mathrm{mg}, 0.26 \mathrm{mmol}$), 4-bromo-2-methyl-2-butene ($48 \mu \mathrm{l}, 0.39 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($252 \mathrm{mg}, 1.82 \mathrm{mmol}$); yield $57 \mathrm{mg}(87 \%)$; powder, $\mathrm{mp} 89-90{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}, 1-\mathrm{H}), 7.10(\mathrm{dd}, 1 \mathrm{H}, J=8.2,2.1 \mathrm{~Hz}, 6 '-\mathrm{H}), 7.07(\mathrm{~d}, 1 \mathrm{H}, J=$ $\left.2.1 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right) 6.88\left(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 6.60(\mathrm{~d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}, 2-\mathrm{H}), 5.51(\mathrm{tt}, 1 \mathrm{H}, J=$ $6.6,1.2 \mathrm{~Hz}, 2 "-\mathrm{H}), 4.63(\mathrm{~d}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}, 1 "-\mathrm{H}), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.37(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{H}), 1.78$ (br s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $1.75\left(\mathrm{br} \mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \mathrm{MS} m / \mathrm{z} 261[\mathrm{M}+\mathrm{H}]^{+}$

E-1-(4-Allyloxy-3-methoxy-phenyl)-but-1-en-3-one (19)

Starting with 1 ($100 \mathrm{mg}, 0.52 \mathrm{mmol}$), allyl bromide ($68.1 \mathrm{~mL}, 0.78 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (503 $\mathrm{mg}, 3.64 \mathrm{mmol}$); yield $115 \mathrm{mg}(94 \%)$; needles, mp $71-72{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.48(\mathrm{~d}, 1 \mathrm{H}, J=16.3 \mathrm{~Hz}, 1-\mathrm{H}), 7.12-7.06\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}-\mathrm{and} 6^{\prime}-\mathrm{H}\right), 6.88\left(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right)$, $6.60(\mathrm{~d}, 1 \mathrm{H}, J=16.3 \mathrm{~Hz}, 2-\mathrm{H}), 6.08(\mathrm{ddt}, 2 \mathrm{H}, J=17.4,10.5,5.1 \mathrm{~Hz}, 2 "-\mathrm{H}) 5.42(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J=$ $17.4 \mathrm{~Hz}, 3 "-\mathrm{H}) 5.32(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J 10.5 \mathrm{~Hz}, 3 "-\mathrm{H}) 3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.37$ (s, 3H, 4-H); MS m/ z $233[\mathrm{M}+\mathrm{H}]^{+}$

E-1-(4-But-2-enyloxy-3-methoxy-phenyl)-but-1-en-3-one (20)

Starting with $\mathbf{1}$ ($100 \mathrm{mg}, 0.52 \mathrm{mmol}$), crotyl bromide ($95 \mu \mathrm{~L}, 0.78 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(503 \mathrm{mg}$, $3.64 \mathrm{mmol})$; yield $119 \mathrm{mg}(93 \%)$; powder, mp $68-69^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48$ $(\mathrm{d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}, 1-\mathrm{H}), 7.12-7.06\left(\mathrm{~d}, 2 \mathrm{H}, 2^{\prime}-\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 6.88\left(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 6.60$ (d, 1H, $J=16.2 \mathrm{~Hz}, 2-\mathrm{H}), 5.94-5.72(\mathrm{~m}, 2 \mathrm{H}, 2 "$ - and $3 "-\mathrm{H}) 4.56(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}, 1 "-\mathrm{H})$, $3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.37(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{H}), 1.75(\mathrm{~d}, 3 \mathrm{H}, J=5.1 \mathrm{~Hz}, 4 "-\mathrm{H}) ; \mathrm{MS} m / z 247[\mathrm{M}+\mathrm{H}]^{+}$

E-1-[4-(3,7-Dimethyl-octa-2,6-dienyloxy)-3-methoxy-phenyl]-but-1-en-3-one (21)

Starting with 1 ($100 \mathrm{mg}, 0.52 \mathrm{mmol}$), crotyl bromide ($149 \mu \mathrm{~L}, 0.78 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (503 $\mathrm{mg}, 3.64 \mathrm{mmol}$); yield $160 \mathrm{mg}(93 \%)$; powder, $\mathrm{mp} 56-57{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.46(\mathrm{~d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}, 1-\mathrm{H}), 7.10\left(\mathrm{dd}, 1 \mathrm{H}, J=8.2,1.9 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right), 7.07(\mathrm{~d}, 1 \mathrm{H}, J=1.9 \mathrm{~Hz}$, $\left.2^{\prime}-\mathrm{H}\right), 6.87\left(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 6.60(\mathrm{~d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}, 2-\mathrm{H}), 5.51$ (br t, $1 \mathrm{H}, J=6.6 \mathrm{~Hz}$, $2 "-\mathrm{H}$), 5.07 (br t, $1 \mathrm{H}, J=6.6 \mathrm{~Hz}, 6 "-\mathrm{H}), 4.67(\mathrm{~d}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}, 1 "-\mathrm{H}), 3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 2.37 (s, 3H, 4-H), 2.16-2.05 (m, 4H, 4"- and 5"-H), 0.74 (br s, 3H, CH3), 1.66 (br s, 3H, CH_{3}), $1.60\left(\mathrm{br} \mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; $\mathrm{MS} m / \mathrm{z} 351[\mathrm{M}+\mathrm{H}]^{+}$

E-1-[3-Methoxy-4-(3,7,11-trimethyl-dodeca-2,6,10-trienyloxy)-phenyl]-but-1-en-3-one (22)
Starting with $1(100 \mathrm{mg}, 0.52 \mathrm{mmol})$, farnesyl bromide ($222.8 \mu \mathrm{~L}, 0.78 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($503 \mathrm{mg}, 3.64 \mathrm{mmol}$); yield 182 mg (88%); powder, mp $66-67{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}, 1-\mathrm{H}), 7.10(\mathrm{dd}, 2 \mathrm{H}, J=7.8,2.0 \mathrm{~Hz}, 6 '-\mathrm{H}), 7.07(\mathrm{~d}, 1 \mathrm{H}, J=$ $\left.2.0 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 6.87\left(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 6.60(\mathrm{~d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}, 2-\mathrm{H}), 5.51(\mathrm{br} \mathrm{t}, 1 \mathrm{H}, J$ $=6.0 \mathrm{~Hz}, 2 "-\mathrm{H}), 5.12-5.04(\mathrm{~m}, 2 \mathrm{H}, 6 "-$ and $10 "-\mathrm{H}), 4.67(\mathrm{~d}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}, 1 "-\mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), 2.37 (s, 3H, 4-H), 2.18-1.92 (m, 8H, 4"-, 5 "-, 8 "-, and 9 "-H), 0.75 (br s, $3 \mathrm{H}, 3$ "- or $7 "-\mathrm{CH} 3$), 1.68 (br s, $3 \mathrm{H}, 3$ "- or 7"-CH3), 1.59 (br s, 6 H , gem-diMe); MS m/z 397 [M+H] ${ }^{+}$

E-1-(3,4-Dimethoxy-phenyl)-but-1-en-3-one (23)

Starting with 1 ($100 \mathrm{mg}, 0.52 \mathrm{mmol}$), bromomethane ($50 \mu \mathrm{~L}, 0.78 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (503 $\mathrm{mg}, 3.64 \mathrm{mmol}$); yield $72 \mathrm{mg}(78 \%)$; needles, $\mathrm{mp} 87-88{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.47 (d, 1H, $J=16.2 \mathrm{~Hz}, 1-\mathrm{H}), 7.13$ (br d, 1H, 6'-H), 7.08 (br s, 1H, 2'-H) 6.88 (d, 1H, $J=8.2$ $\left.\mathrm{Hz}, 5^{\prime}-\mathrm{H}\right), 6.61(\mathrm{~d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}, 2-\mathrm{H}), 4.08(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}, 1 "-\mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{OCH}_{3} \times 2$), $2.37(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{H}) ; \mathrm{MS} m / \mathrm{z} 179[\mathrm{M}+\mathrm{H}]^{+}$

E-1-(4-Ethoxy-3-methoxy-phenyl)-but-1-en-3-one (24)

Starting with 1 ($100 \mu \mathrm{l}, 0.65 \mathrm{mmol}$), bromoethane ($59 \mu \mathrm{~L}, 0.97 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(626 \mathrm{mg}, 4.53$ mmol); yield $70 \mathrm{mg}(61 \%)$; needles, $\mathrm{mp} 108-109{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46(\mathrm{~d}$, $1 \mathrm{H}, J=16.0 \mathrm{~Hz}, 1-\mathrm{H}), 7.10\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J=8.1,6{ }^{\prime}-\mathrm{H}\right), 7.08\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right) 6.87(\mathrm{~d}, 1 \mathrm{H}, J=8.1$ $\left.\mathrm{Hz}, 5^{\prime}-\mathrm{H}\right), 6.60(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, 2-\mathrm{H}), 4.14(\mathrm{q}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}, 1 "-\mathrm{H}), 3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 2.37 (s, 3H, 4-H), 1.48 (t, 2H, $7.0 \mathrm{~Hz}, 2$ "-H); MS m/z $221[\mathrm{M}+\mathrm{H}]^{+}$

E-1-(3-Methoxy-4-propoxy-phenyl)-but-1-en-3-one (25)

Starting with 1 ($100 \mathrm{mg}, 0.52 \mathrm{mmol}$), 1-iodopropane ($77 \mu \mathrm{~L}, 0.78 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (503 $\mathrm{mg}, 3.64 \mathrm{mmol})$; yield $57 \mathrm{mg}(47 \%)$; needles, $\mathrm{mp} 101{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46$ (d, 1H, $J=16.2 \mathrm{~Hz}, 1-\mathrm{H}$), 7.10 (br d, 1H, $6 '-\mathrm{H}$), 7.08 (br s, 1H, 2'-H) 6.87 (d, 1H, $J=8.0 \mathrm{~Hz}$, $\left.5^{\prime}-\mathrm{H}\right), 6.60(\mathrm{~d}, 1 \mathrm{H}, J=16.1 \mathrm{~Hz}, 2-\mathrm{H}), 4.02(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}, 1 "-\mathrm{H}), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.37$ ($\mathrm{s}, 3 \mathrm{H}, 4-\mathrm{H}$), $1.89(\mathrm{qt}, 2 \mathrm{H}, J=7.3,6.9 \mathrm{~Hz}, 2 "-\mathrm{H}), 1.05(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}, 3 "-\mathrm{H}) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 207$ [M+H]+

E-1-[3-Methoxy-4-(3-methyl-butoxy)-phenyl]-but-1-en-3-one (26)

Starting with 1 ($100 \mathrm{mg}, 0.52 \mathrm{mmol}$), 1-methyl-3-bromobutane ($102.3 \mu \mathrm{~L}, 0.78 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($503 \mathrm{mg}, 3.64 \mathrm{mmol}$); yield $32 \mathrm{mg}(23 \%)$; needles, mp $77-78{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{~d}, 1 \mathrm{H}, J=16.1 \mathrm{~Hz}, 1-\mathrm{H}), 7.10\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, 6{ }^{\prime}-\mathrm{H}\right), 7.07\left(\mathrm{br}\right.$ s, $1 \mathrm{H}, 2^{\prime}-$ H) $6.88\left(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 6.60(\mathrm{~d}, 1 \mathrm{H}, J=16.1 \mathrm{~Hz}, 2-\mathrm{H}), 4.08(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}, 1 "$ H), $3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.37(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{H}), 1.92-1.70(\mathrm{~m}, 1 \mathrm{H}, 3$ "-H), 1.77 (br t, $2 \mathrm{H}, J=6.6 \mathrm{~Hz}$, 2"-H), 0.98 (br s, 3H, CH3), 0.96 (br s, 3H, CH3); MS m/z $263[\mathrm{M}+\mathrm{H}]^{+}$

2-Methoxy-1-(3-methyl-but-2-enyloxy)-4-propenyl-benzene (27)

Starting with 3 ($100 \mu \mathrm{l}, 0.65 \mathrm{mmol}$), 4-bromo-2-methyl-2-butene ($118 \mu \mathrm{~L}, 0.97 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($626 \mathrm{mg}, 4.53 \mathrm{mmol}$); yield $45 \mathrm{mg}(30 \%)$; yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 6.89-6.78 (m, 3H, 3-, 5-, and 6-H), $6.33(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}, 1 "-\mathrm{H}) 6.16-6.04(\mathrm{~m}, 1 \mathrm{H}, 2 "-\mathrm{H})$, $5.89-5.71\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}-\mathrm{and} 3^{\prime}-\mathrm{H}\right), 4.50\left(\mathrm{~d}, 2 \mathrm{H}, J=5.4 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.86(\mathrm{~d}$, $3 \mathrm{H}, J=6.3 \mathrm{~Hz}, 3 "-\mathrm{H}), 1.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 233[\mathrm{M}+\mathrm{H}]^{+}, 255[\mathrm{M}$ $+\mathrm{Na}]^{+}$

1-Allyloxy-2-methoxy-4-propenyl-benzene (28)

Starting with $\mathbf{3}$ ($100 \mu \mathrm{l}, 0.65 \mathrm{mmol}$), allyl bromide ($85 \mu \mathrm{~L}, 0.97 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(626 \mathrm{mg}, 4.53$ mmol); yield $78 \mathrm{mg}(59 \%)$; pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.89-6.78(\mathrm{~m}, 3 \mathrm{H}$, $3-$ - $5-$, and $6-\mathrm{H}), 6.33(\mathrm{~d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}, 1 "-\mathrm{H}) 6.16-6.02(\mathrm{~m}, 1 \mathrm{H}, 2 "-\mathrm{H}), 5.42(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J=$ $\left.17.4 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 5.27\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 4.60\left(\mathrm{~d}, 2 \mathrm{H}, J=5.7 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 3.88(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 1.86(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}, 3 "-\mathrm{H}) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 205[\mathrm{M}+\mathrm{H}]^{+}$

1-But-2-enyloxy-2-methoxy-4-propenyl-benzene (29)

Starting with $3(100 \mu \mathrm{l}, 0.65 \mathrm{mmol})$, crotyl bromide ($118 \mu \mathrm{~L}, 0.97 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(626 \mathrm{mg}$, 4.53 mmol); yield $98 \mathrm{mg}(69 \%)$; pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.89-6.78$ $(\mathrm{m}, 3 \mathrm{H}, 3-, 5-$, and $6-\mathrm{H}), 6.33(\mathrm{~d}, 1 \mathrm{H}, J=15.3 \mathrm{~Hz}, 1 "-\mathrm{H}) 6.16-6.04(\mathrm{~m}, 1 \mathrm{H}, 2 "-\mathrm{H}), 5.51(\mathrm{~m}$, $\left.1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 4.55\left(\mathrm{~d}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.86(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}, 3$ "-H), $1.71\left(\mathrm{~d}, 3 \mathrm{H}, J=5.1 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right) ; \mathrm{MS} m / z 219[\mathrm{M}+\mathrm{H}]^{+}$

2-Methoxy-4-propenyl-1-(3,7,11-trimethyl-dodeca-2,6,10-trienyloxy)-benzene (30)

Starting with 3 ($100 \mu \mathrm{l}, 0.65 \mathrm{mmol}$), farnesyl bromide ($277 \mu \mathrm{~L}, 0.78 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (626 $\mathrm{mg}, 4.53 \mathrm{mmol}$); yield $215 \mathrm{mg}(90 \%)$; yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.88-6.78$ $(\mathrm{m}, 3 \mathrm{H}, 3-5-$, and $6-\mathrm{H}), 6.33(\mathrm{~d}, 1 \mathrm{H}, J=15.3 \mathrm{~Hz}, 1 "-\mathrm{H}) 6.16-6.04(\mathrm{~m}, 1 \mathrm{H}, 2 "-\mathrm{H}), 5.51(\mathrm{~m}$, $\left.1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 5.10\left(\mathrm{~m}, 2 \mathrm{H}, 6^{\prime}-\right.$ and $\left.10^{\prime}-\mathrm{H}\right), 4.60\left(\mathrm{~d}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.15$ $-1.90\left(\mathrm{~m}, 8 \mathrm{H}, 4^{\prime}-, 5^{\prime}-, 8^{\prime}-, 9^{\prime}-\mathrm{H}\right) 1.86(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}, 3 "-\mathrm{H}), 1.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.72(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right) 1.59(\mathrm{~s}, 6 \mathrm{H}$, gem-diCH 3$) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 369[\mathrm{M}+\mathrm{H}]^{+}$

1,2-Dimethoxy-4-propenyl-benzene (32)

Starting with $3(100 \mu \mathrm{l}, 0.65 \mathrm{mmol})$, bromomethane ($61 \mu \mathrm{~L}, 0.97 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(626 \mathrm{mg}, 4.53$ mmol); yield $101 \mathrm{mg}(88 \%)$; pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.89-6.78(\mathrm{~m}$, $3 \mathrm{H}, 3-, 5-$, and $6-\mathrm{H}), 6.34(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}, 1 "-\mathrm{H}) 6.16-6.04(\mathrm{~m}, 1 \mathrm{H}, 2 "-\mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) 1.87(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}, 3 "-\mathrm{H}) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 179[\mathrm{M}+\mathrm{H}]^{+}$

2-Methoxy-4-propenyl-1-propoxy-benzene (34)

Starting with 3 ($100 \mu \mathrm{l}, 0.65 \mathrm{mmol}$), 1-iodopropane ($96 \mu \mathrm{~L}, 0.97 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(626 \mathrm{mg}, 4.53$ mmol); yield $129 \mathrm{mg}(96 \%)$; pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.89-6.80(\mathrm{~m}$, $3 \mathrm{H}, 3-, 5-$, and $6-\mathrm{H}), 6.33(\mathrm{~d}, 1 \mathrm{H}, J=1.56 \mathrm{~Hz}, 1 "-\mathrm{H}) 6.15-6.04(\mathrm{~m}, 1 \mathrm{H}, 2$ "-H), $3.96(\mathrm{t}, 3 \mathrm{H}, J$ $\left.=6.7 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) 1.91-1.79\left(\mathrm{~m}, 5 \mathrm{H}, 3\right.$ "- and $\left.2^{\prime}-\mathrm{H}\right), 1.03(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}$, $\left.3^{\prime}-\mathrm{H}\right)$; MS $\mathrm{m} / \mathrm{z} 235[\mathrm{M}+\mathrm{H}]^{+}$

2-Methoxy-1-(3-methyl-butoxy)-4-propenyl-benzene (35)

Starting with 3 ($100 \mu \mathrm{l}, 0.65 \mathrm{mmol}$), 1-methyl-3-bromobutane ($127 \mu \mathrm{~L}, 0.97 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($626 \mathrm{mg}, 4.53 \mathrm{mmol}$); yield $91 \mathrm{mg}(59 \%)$; pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.89$ $-6.78(\mathrm{~m}, 3 \mathrm{H}, 3-, 5-$, and $6-\mathrm{H}), 6.33(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}, 1 "-\mathrm{H}) 6.16-6.04(\mathrm{~m}, 1 \mathrm{H}, 2 "-\mathrm{H}), 4.03$ (t, 2H, J = 6.9 Hz, 1'-H), $3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.86(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, 3 "-\mathrm{H}), 1.92-1.70(\mathrm{~m}$, $3 \mathrm{H}, 2^{\prime}-$ and $\left.3^{\prime}-\mathrm{H}\right), 0.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \mathrm{MS} m / \mathrm{z} 263[\mathrm{M}+\mathrm{H}]^{+}$

Cytotoxic Activity Assay

The in vitro cytotoxicity assay was carried out according to procedures described in Rubinstein et al. ${ }^{26}$ Drug stock solutions were prepared in DMSO, and the final solvent concentration was $<1 \%$ DMSO (v / v), a concentration without effect on cell replication. The human tumor cell line panel consisted of epidermoid carcinoma of the nasopharynx (KB), lung carcinoma (A-549). The drug resistant cell line was KB-VCR, an MDR variant selected for growth in vincristine. It is cross-resistant to doxorubicin (Table 1). Detailed characterization of this cell line is described elsewhere. ${ }^{27}$ Cells were cultured at $37{ }^{\circ} \mathrm{C}$ in RPMI- 1640 with $100 \mu \mathrm{~g} / \mathrm{mL}$ kanamycin and $10 \%(\mathrm{v} / \mathrm{v})$ fetal bovine serum in a humidified atmosphere containing 5\% CO_{2}. Initial seeding densities varied among the cell lines to ensure a final absorbance of 1-2.5 A_{562} units. Drug exposure was for 2 days and the IC_{50} value, the drug concentration that reduced the absorbance by 50%, was interpolated from dose-response data. Each test was performed in duplicate, and absorbance readings varied no more than 5\% between replicates.

Acknowledgment

This investigation was supported by a grant from the National Cancer Institute (CA 17625) awarded to K. H. Lee.

References and Notes

1. De Bernardi M, Vidari G, Vita-Finzi P. Phytochemistry 1976;15:1785-1786.
2. Motohashi N, Ashihara Y, Yamagami C, Saito T. Mutat. Res 1997;377:17-25. [PubMed: 9219575]
3. Motohashi N, Yamagami C, Tokuda H, Konoshima T, Okuda Y, Okuda M, Mukainaka T, Nishino H, Saito Y. Cancer Lett 1998;134:37-42. [PubMed: 10381128]
4. Roughley RJ, Whiting AW. Org. Bio-Org. Chem 1973;20:2379-2388.
5. Matthes HWD, Luu B, Ourisson G. Phytochemistry 1980;19:2643-2650.
6. Adams BK, Ferstl EM, Davis MC, Herold M, Kurtkaya S, Camalier RF, Hollingshead MG, Kaur G, Sausville EA, Rickles FR, Snyder JP, Liotta DC, Shoji M. Bioorg. Med. Chem 2004;12:3871-3883. [PubMed: 15210154]
7. Ishida J, Ohtsu H, Tachibana Y, Nakanishi Y, Bastow KF, Nagi M, Wang HK, Itokawa H, Lee KH. Bioorg. Med. Chem 2002;10:3481-3487. [PubMed: 12213462]
8. Syu WJ, Shen CC, Don MJ, Ou JC, Lee GH, Sun CM. J. Nat. Prod 1998;61:1531-1534. [PubMed: 9868158]
9. Nogaki A, Satoh K, Iwasaka K, Takano H, Takahama M, Ida Y, Sakagami H. Anticancer Res 1998;18:3487-3491. [PubMed: 9858929]
10. Rajakumar DV, Rao MN. Biochem. Pharmacol 1993;46:2067-2072. [PubMed: 8267655]
11. Ogata M. Aroma Res 2004;5:259-262.
12. Elias G, Rao MNA. Eur. J. Med. Chem 1988;23:379-380.
13. Motohashi N, Yamagami C, Tokuda H, Okuda Y, Ichiishi E, Mukainaka T, Nishino H, Saito Y. Mutat. Res 2000;464:247-254. [PubMed: 10648911]
14. Ohtsu H, Xiao Z, Ishida J, Nagai M, Wang HK, Itokawa H, Su CY, Shih C, Chiang T, Chang E, Lee Y, Tsai MY, Chang C, Lee KH. J. Med. Chem 2002;45:5037-5042. [PubMed: 12408714]
15. Ohtsu H, Itokawa H, Xiao Z, Su CY, Shih CC, Chiang T, Chang E, Lee Y, Chiu SY, Chang C, Lee KH. Bioorg. Med. Chem 2003;11:5083-5090. [PubMed: 14604672]
16. Wang Y, Tan W, Li WZ, Li Y. J. Nat. Prod 2001;64:196-199. [PubMed: 11429999]
17. Huang C, Zhang Z, Li Y. J. Nat. Prod 1998;61:1283-1285. [PubMed: 9784169]
18. Tanaka N, Takaishi Y, Shikishima Y, Nakanishi Y, Bastow KF, Lee KH, Honda G, Ito M, Takeda Y, Kodzhimatov OK, Ashurmetov O. J. Nat. Prod 2004;67:1870-1875. [PubMed: 15568778]
19. Kanokmedhakul S, Kanokmedhakul K, Nambuddee K, Kongsaeree P. J. Nat. Prod 2004;67:968-972. [PubMed: 15217275]
20. van Der Kaaden JE, Hemscheidt TK, Mooberry SL. J. Nat. Prod 2001;64:103-105. [PubMed: 11170679]
21. Nkengfack AE, Azebaze AG, Waffo AK, Fomum ZT, Meyer M, van Heerden FR. Phytochemistry 2001;58:1113-1120. [PubMed: 11730876]
22. Itoigawa M, Ito C, Tokuda H, Enjo F, Nishino H, Furukawa H. Cancer Lett 2004;214:165-169. [PubMed: 15363542]
23. Ito C, Itoigawa M, Furukawa H, Ichiishi E, Mukainaka T, Okuda M, Ogata M, Tokuda H, Nishino H. Cancer Lett 1999;142:49-54. [PubMed: 10424780]
24. Ito C, Itoigawa M, Otsuka T, Tokuda H, Nishino H, Furukawa H. J. Nat. Prod 2000;63:1344-1348. [PubMed: 11076549]
25. Katritzky AR, Long Q, He HY, Qiua G, Wilcox AL. ARKIVOC 2000;1:868-875.
26. Rubinstein LV, Shoemaker RH, Paull KD, Simon RM, Tosini S, Skehan P, Scudiero DA, Monks A, Boyd MR. J. Natl. Cancer Inst 1990;82:1113-1118. [PubMed: 2359137]
27. Ferguson PJ, Fisher MH, Stephenson J, Li DH, Zhou BS, Cheng YC. Cancer Res 1988;48:59565964. [PubMed: 2844393]
28. Ducki S, Hadfield JA, Lawrence NJ, Liu CY, McGown AT, Zhang X. Planta Med 1996;62:185-186. [PubMed: 8657758]

1, Dehydrozingerone: $\mathrm{R}_{1}=\mathrm{COMe}$
3, Isoeugenol:
$\mathrm{R}_{1}=\mathrm{Me}$

2, Curcumin

4, 2-Hydroxychalcone

Figure 1.
Structures of Dehydrozingerone (1), Curcumin (2), Isoeugenol (3) \& 2-Hydroxychalcone (4).

Scheme 1.
Syntheses of Dehydrozingerone (6-13) and Chalcone (14-17) Analogs

1, Dehydrozingerone: $\mathrm{R}_{1}=\mathrm{COMe} \quad 18-26: \mathrm{R}_{1}=\mathrm{COMe}$
3, Isoeugenol: $\quad R_{1}=M e$
27-35: $\mathrm{R}_{1}=\mathrm{Me}$

Dehydrozingerone $\mathrm{R}_{1}=\mathrm{COMe}$	Isoeugenol $\mathrm{R}_{1}=\mathrm{Me}$
18	27
19	28
20	29
21	30
22	31
24	33
26	34
25	
23	

Scheme 2.
C-4' Alkylated Dehydrozingerone (18-26) and Isoeugenol (27-35) Analogs

Table 1
Activities of Analogs Against Human Tumor Cell Replication

compound	cell line/IC ${ }_{50}(\mu \mathrm{~g} / \mathrm{mL})^{\boldsymbol{a}}$		
	KB ${ }^{\text {b }}$	KB-VCR ${ }^{\text {b }}$	$\mathrm{A549}^{\text {b }}$
Dehydrozingerone Analogs			
1	>10	>10	>10
6	3.8	2.0	2.5
7	10.0	8.2	>10
8	3.8	4.0	3.5
9	5.3	5.6	2.8
10	7.7	7.8	8.5
11	2.0	1.9	2.3
12	2.1	3.0	3.0
13	4.3	5.0	5.5
Chalcone Analogs			
14	3.5	1.9	2.3
15	2.4	1.3	0.6
16	1.0	1.0	3.5
17	2.0	2.0	3.8
C-4' Alkylated Dehydrozingerone Analogs			
18	5.7	3.5	3.8
19	6.8	5.0	5.8
20	4.8	3.4	6.8
21	2.2	3.3	3.4
22	6.5	7.4	7.4
23	8.6	7.8	8.0
24	5.5	8.0	>10
25	6.5	4.2	5.8
26	3.6	3.2	7.2
C-4' Alkylated Isoeugenol Analogs			
$27-35{ }^{\text {c }}$	>10	>10	ND^{d}
Controls			
Curcumin (2)	5.5	3.1	5.2
Doxorubicin	0.1	2.7	0.1

${ }^{a}$ Cytotoxicity as IC50 values for each cell line, the concentration of compound that caused 50% reduction in absorbance at 562 nm relative to untreated cells using the sulforhodamine B assay. The average value is from two independent determinations and variation (SEM) was no greater than 10%.
${ }^{b}$ Human epidermoid carcinoma of the nasopharynx (KB), multi-drug resistant expression P-glycoprotein (KB-VCR), human lung carcinoma (A549).
${ }^{c} 30$ and 33 were not tested.
$d_{\mathrm{ND}}=$ Not determined.

[^0]: \#Antitumor Agents 249. For part 248, see L. Wei, A. Brossi, S. L. Morris-Natschke, K. F. Bastow, and K.H. Lee, "Chemistry and Antitumor Activity of Tylophorine-related Alkaloids," Studies in Natural Product Chemistry: Bioactive Natural Products, Vol. 34, in press.
 *To whom correspondence should be addressed. Tel: 919-962-0066. Fax: 919-966-3893. E-mail: khlee@unc.edu.
 \dagger Natural Products Research Laboratories
 \ddagger Division of Medicinal Chemistry and Natural Products

