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Abstract
Nanoporous cobalt thin films were deposited on anodized aluminum oxide (AAO) membranes at
room temperature using pulsed laser deposition. Scanning electron microscopy demonstrated that
the nanoporous cobalt thin films retained the monodisperse pore size and high porosity of the
anodized aluminum oxide substrates. Temperature- and field-dependent magnetic data obtained
between 10 K and 350 K showed large hysteresis behavior in these materials. The increase of
coercivity values was larger for nanoporous cobalt thin films than for multilayered cobalt/alumina
thin films. The average diameter of the cobalt nanograins in the nanoporous cobalt thin films was
estimated to be ~5 nm for blocking temperatures near room temperature. These results suggest that
pulsed laser deposition may be used to fabricate nanoporous magnetic materials with unusual
properties for biosensing, drug delivery, data storage, and other technological applications.
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Introduction
Over the past several years, nanoporous membranes have attracted significant interest due to
their potential use in high density data storage, biosensing, drug delivery, and other
technological applications.1–3 Masuda et al. demonstrated that anodization of aluminum,
stripping of the thick aluminum oxide layer, and re-anodization of aluminum may be used to
produce anodized aluminum oxide (AAO) membranes that exhibit monodisperse pore size
and high porosity.4 Anodized aluminum oxide membranes have recently been used as
templates for developing nanowires, nanotubes, and several other nanostructured
materials.5–8 For example, magnetic nanoparticles and nanowires were previously been
fabricated within the nanosize pores of anodized aluminum oxide membranes using
electrochemical methods. The use of anodized aluminum oxide membranes as templates for
growth of magnetic nanoparticles and nanowires obtained has previously been
reported.5, 6, 9–10
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The development of magnetic metal nanostructures using nanoporous membranes is an
emerging area of nanotechnology research. Many interesting magnetic nanostructures have
been developed using nanoporous templates, including magnetic antidots and magnetic
networks.11–13 Unlike magnetic nanodot structures (e.g., magnetic nanodots dispersed in
nonmagnetic matrix), magnetic antidot structures include nonmagnetic nanoparticles in
magnetic media and nanoporous magnetic structures. Magnetic antidots have attracted
significant attention due to their potential use as ultra-high-density magnetic storage media.
Unlike dot arrays, the stability of written bits increases with storage density in antidot
arrays.14 In addition, antidot arrays or magnetic networks demonstrate no superparamagnetic
lower limit to bit size. Common methods for developing magnetic antidot arrays include
electron beam lithography and ion beam milling.14–16 Magnetic antidot arrays also may be
prepared by replicating the surface structure of a porous material with a thin layer of a
magnetic material. Magnetic antidots have previously been reported by depositing thin films
of nickel, cobalt, and cobalt-iron on anodized aluminum oxide membranes using RF
magnetron sputtering17 and DC magnetron sputtering.14

In this work, we report on growth of nanoporous cobalt thin films deposited on anodized
aluminum oxide substrates using a line-of-sight physical vapor deposition process known as
pulsed laser deposition. In pulsed laser deposition, an excimer laser is used to ablate the
cobalt target. A plasma plume containing excited atoms and ions forms perpendicularly to
the target and expands with a velocity of ~106 cm/s. The excited species then form a thin
film on the anodized aluminum oxide substrate. Pulsed laser deposition is a convenient and
efficient method for growing metallic thin films at room temperature, including antidot
structures. In this study, the surface morphology and the magnetic properties of the
nanoporous cobalt films were systematically investigated. The magnetic properties of
nanoporous cobalt films were also compared with those of continuous cobalt thin films
using a physical property measurement system in conjunction with a vibrating sample
magnetometer attachment. These nanoporous magnetic materials have numerous potential
applications, including use in biosensing, drug delivery, data storage, and other
technological applications.

Experimental details
An ultra high purity cobalt target and an ultra high alumina target were supplied by a
commercial source (Alfa Aesar, Ward Hill, MA, USA). Anodized aluminum oxide
membranes with average pore diameter values of ~200 nm were also obtained from a
commercial source (Whatman, Brentford, England). The membranes have thickness values
of ~60 μm and porosity values between 25%−50%. 2 cm2 pieces of 2.5 ohm/cm2 (p-type),
525 μm thick silicon (100) wafers (Silicon Quest International, Santa Clara, CA) were
cleaned with acetone and methanol in an ultrasonic cleaner. The silicon wafers were dipped
in hydrofluoric acid to remove silicon oxide and produce a hydrogen-terminated surface.
The substrates and targets were loaded into a pulsed laser deposition chamber, which was
evacuated to a pressure of 5 × 10−7 Torr.

A Compex 205 KrF (λ = 248 nm) excimer laser (Coherent, Fort Lauderdale, FL) was used
for ablation of cobalt and alumina targets. The laser was operated at a frequency of 10 Hz, a
pulse duration of 25 ns, and a laser energy density of ~3 J/cm2. The target-substrate distance
was maintained at 4.5 cm, and the target was rotated at a rate of 5 revolutions per minute
during the deposition process. Nanoporous cobalt thin films were grown on nanoporous
alumina membranes using deposition times of one minute or two minutes. Continuous cobalt
thin films were deposited on silicon wafers using deposition times of one minute or two
minutes. In addition, multilayered cobalt/alumina films were deposited on silicon wafers.
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The multilayered cobalt/alumina films were obtained by alternately ablating a cobalt target
with 100 laser pulses and a alumina target with 150 laser pulses a total of four times.

High resolution transmission electron microscopy (HRTEM) was performed using a 2010
analytical electron microscope (JEOL, Tokyo, Japan). Surface morphology of the films was
determined using a 6400F field emission scanning electron microscope (JEOL, Tokyo,
Japan). Temperature and field dependence of magnetization were measured using a physical
property measurement system in conjunction with a vibrating sample magnetometer
attachment (Quantum Design, San Diego, CA, USA). The magnetic fields were swept
between −20 to +20 kOe. Measurements were obtained at temperatures between 10 and 350
K.

Results and discussion
Figure 1 shows the cross-sectional transmission electron micrograph of a cobalt/alumina
multilayered structure. The micrograph demonstrates that a multilayered film containing
four alternating cobalt/alumina layers was obtained. The average thickness of the cobalt
layers within the multilayered film was estimated as ~1 nm and the average thickness of the
alumina layers within the multilayered film was estimated as ~3 nm. These results suggest
that the cobalt deposition rate for the deposition parameters used in this study was ~0.1 Å/
pulse.

Figure 2 (a) and (b) demonstrate the surface morphology of nanoporous cobalt thin films
grown on anodized aluminum oxide membranes for one minute and two minutes,
respectively. Using the estimated cobalt deposition rate of 0.1 Å/pulse, the thickness of the
cobalt thin films grown for one minute and two minutes was projected as ~6 nm and ~12
nm, respectively. The relatively monodisperse pore size and high porosity of the nanoporous
alumina substrate was maintained in the cobalt thin film. In a recent study, the authors have
demonstrated nanoporous alumina membranes coated using pulsed laser deposition
exhibited slightly larger pore sizes than the as-prepared membranes.18 An increase in pore
size resulted from localized heating of the nanoporous alumina membrane during the film
deposition process. In the previous study, the coated nanoporous alumina membranes
exhibited hardness and Young’s modulus values slightly lower than those of as-prepared
nanoporous alumina membranes due to their slightly larger pore sizes.

Figure 3 shows the hysteresis loops for nanoporous cobalt thin films grown on anodized
aluminum oxide membranes for one minute or two minutes. Measurements were obtained
with the magnetic field applied parallel to the sample surface. Magnetization of the
nanoporous cobalt thin films began to saturate at ~1000 Oe. Large hysteresis loops were
observed, which are similar to those commonly observed in ferromagnetic materials. The
variation in the coercivity values with respect to temperature is plotted in Figure 4. Both the
nanoporous cobalt thin film grown for one minute and the nanoporous cobalt thin film
grown for two minutes exhibited coercivity values larger than 1000 Oe at 10 K; the
nanoporous cobalt thin film grown for one minute demonstrated larger coercivity value
(1120 Oe). At 350 K, the coercivity values decreased to 363 Oe for the nanoporous cobalt
thin film grown for one minute and 502 Oe for the nanoporous cobalt thin film grown for
two minutes.

The isothermal field dependent magnetization data for the nanoporous cobalt thin film
grown on anodized aluminum oxide (deposition time=one minute), the continuous cobalt
thin film grown on silicon (deposition time=one minute), and the cobalt/alumina
multilayered film are shown in Figure 5. The measurements were obtained at a temperature
of 300 K, and the magnetic field was swept between +20000 to −20000 Oe. Compared to the
continuous cobalt thin film grown on silicon and the cobalt/alumina multilayered film, the
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nanoporous cobalt thin film exhibited much larger coercivity values. Coercivity values for
the nanoporous cobalt thin film grown for one minute and the nanoporous cobalt thin film
grown for two minutes were 385 Oe and 523 Oe, respectively. The values for the
nanoporous cobalt thin films are one order of magnitude higher than those for the
continuous cobalt thin film grown on silicon (20 Oe) and the cobalt/alumina multilayered
film (30 Oe). The relatively high coercivity values were attributed to magnetocrystalline
anisotropy and pinning of pores. Figure 6 contains plots of magnetization as a function of
temperature for nanoporous cobalt thin film (deposition time=two minutes) measured at
1000 Oe and 2000 Oe. The broad peaks in the magnetization data are attributed to the
nanoporous nature of the material and the presence of a blocking temperature near room
temperature. The peak in the zero field cooled magnetization results from competition
between the larger-sized (relaxed) particles, which contribute to an increase in the magnetic
moment, and the superparamagnetic particles, which contribute to a decrease in the
magnetic moment of the nanograins inside the nanoporous cobalt thin films. The average
size of the grains in the nanoporous cobalt thin film may be estimated from the temperature-
dependent magnetization data. The blocking temperature (TB) for the grains in the
nanoporous cobalt thin film approximately varies as TB = KV/25kB, in which K is the
anisotropy constant of metallic cobalt (~ 45×105 erg/cm−3), V is the average volume (V) of
the pores or the nanoparticles, and kB is the Boltzmann constant. The average size of the
grains in the nanoporous cobalt thin film is ~ 5 nm for a blocking temperature (TB) of
~300K (Figure 6 inset).

When magnetic field was aligned parallel to the sample surface, the nanoporous cobalt thin
films demonstrated high coercivity values. Similar orientation effects have been observed in
iron and other magnetic materials.16 On the other hand, the enhancement of coercivity was
not observed when the applied field was aligned perpendicular to the sample surface (Figure
7). Cobalt nanowires exhibit similar magnetic behavior; for example, Li et al. have recently
shown that larger coercivity values were observed in magnetic nanowires when the applied
field was oriented parallel to the wire axis.19 The results of this study suggest that shape
anisotropy in the nanoporous cobalt thin film may contribute to the enhancement of
coercivity.

Conclusions
Nanoporous cobalt thin films were fabricated on nanoporous alumina membranes using
pulsed laser deposition performed at room temperature. The nanoporous cobalt thin films
retained the monodisperse pore size and the high porosity of the anodized aluminum oxide
substrates. The coercivity of nanoporous cobalt thin films was much higher than that of
continuous cobalt thin films. The average size of the nanograins in nanoporous cobalt thin
films was estimated to be ~5 nm for blocking temperatures occurring near room
temperature. Pulsed laser deposition may be used to fabricate nanostructured materials with
unusual magnetic properties for biosensing, drug delivery, data storage, and other
technological applications.
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Figure 1.
Transmission electron micrograph of cobalt/alumina multilayered film. The thickness of
cobalt layers in the multilayered film is ~1 nm.
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Figure 2.
Scanning electron micrographs of nanoporous cobalt thin films grown on anodized
aluminum oxide membranes (a) Nanoporous cobalt thin film grown for one minute (film
thickness ~ 6 nm). (b) Nanoporous cobalt thin film grown for two minutes (film thickness ~
12 nm).
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Figure 3.
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Isothermal field dependent magnetization for nanoporous cobalt thin films grown for one
minute and two minutes on anodized aluminum oxide membranes. Measurements were
obtained at 10, 250, 300, 325 and 350 K. The inset plots of (a) and (b) clearly show the large
hysteresis exhibited by these materials. The coercivity values obtained at 10 K (1080 Oe for
the nanoporous cobalt thin film grown for one minute and 1160 Oe for the nanoporous
cobalt thin film grown for two minutes) were much larger than the values obtained at higher
temperatures.
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Figure 4.
Coercivity vs. temperature for nanoporous cobalt thin films grown for one minute and two
minutes on anodized aluminum oxide membranes.
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Figure 5.
Isothermal field dependent magnetization of nanoporous cobalt thin film (deposition
time=one minute), continuous cobalt thin film (deposition time=one minute)), and cobalt/
alumina multilayered film obtained at 300 K.
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Figure 6.
Magnetization as a function of temperature for nanoporous cobalt thin film (deposition
time=two minutes) measured at two different field strengths. The inset shows variation of
the average size of the cobalt nanograins with blocking temperature.
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Figure 7.
Isothermal field dependent magnetization of nanoporous cobalt thin film (deposition
time=two minutes) obtained with applied magnetic field aligned in both perpendicular and
parallel directions with respect to the sample surface at 300 K.
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