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Abstract
The penalized profile sampler for semiparametric inference is an extension of the profile sampler
method [9] obtained by profiling a penalized log-likelihood. The idea is to base inference on the
posterior distribution obtained by multiplying a profiled penalized log-likelihood by a prior for the
parametric component, where the profiling and penalization are applied to the nuisance parameter.
Because the prior is not applied to the full likelihood, the method is not strictly Bayesian. A benefit
of this approximately Bayesian method is that it circumvents the need to put a prior on the possibly
infinite-dimensional nuisance components of the model. We investigate the first and second order
frequentist performance of the penalized profile sampler, and demonstrate that the accuracy of the
procedure can be adjusted by the size of the assigned smoothing parameter. The theoretical validity
of the procedure is illustrated for two examples: a partly linear model with normal error for current
status data and a semiparametric logistic regression model. Simulation studies are used to verify the
theoretical results.
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1 Introduction
Semiparametric models are statistical models indexed by both a finite dimensional parameter
of interest θ and an infinite dimensional nuisance parameter η. In order to make statistical
inference about θ separately from η, we estimate the nuisance parameter with η ̂θ, its maximum
likelihood estimate at each fixed θ, i.e.

where likn(θ, η) is the likelihood of the semiparametric model given n observations and ℋ is
the parameter space for η. Therefore we can do frequentist inference about θ based on the
profile likelihood, which is typically defined as
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The convergence rate of the nuisance parameter η is the order of d(η ̂θ̃n, η0), where d(·, ·) is
some metric on η, θ̃n is any sequence satisfying θ̃n = θ0 + oP(1), and (η0, θ0) is the true value
of (η, θ). Typically,

(1)

where ||·|| is the Euclidean norm and r > 1/4. Of course, a smaller value of r leads to a slower
convergence rate of the nuisance parameter. For instance, the nuisance parameter in the Cox
proportional hazards model with right censored data, the cumulative hazard function, has the
parametric rate, i.e., r = 1/2. If current status data is applied to the Cox model instead, then the
convergence rate will be slower, with r = 1/3, due to the loss of information provided by this
kind of data.

The profile sampler is the procedure of sampling from the posterior of the profile likelihood
in order to estimate and draw inference on the parametric component θ in a semiparametric
model, where the profiling is done over the possibly infinite-dimensional nuisance parameter
η. [9] show that the profile sampler gives a first order correct approximation to the maximum
likelihood estimator θ ̂n and consistent estimation of the efficient Fisher information for θ even
when the nuisance parameter is not estimable at the  rate. Another Bayesian procedure
employed to do semiparametric estimation is considered in [17] who study the marginal
semiparametric posterior distribution for a parameter of interest. In particular, [17] show that
marginal semiparametric posterior distributions are asymptotically normal and centered at the
corresponding maximum likelihood estimates or posterior means, with covariance matrix equal
to the inverse of the Fisher information. Unfortunately, this fully Bayesian method requires
specification of a prior on η, which is quite challenging since for some models there is no direct
extension of the concept of a Lebesgue dominating measure for the infinite-dimensional
parameter set involved [8]. The advantages of the profile sampler for estimating θ compared
to other methods is discussed extensively in [2], [3] and [9].

The motivation for studying second order asymptotic properties of the profile sampler comes
from the observed simulation differences in the Cox model with different types of data, i.e.
right censored data [2] and current status data [9]. The profile sampler generated based on the
first model yields much more accurate estimation results comparing to the second model when
the sample size is relatively small. [2] and [3] have successfully explored the theoretical reasons
behind the above phenomena by establishing the relation between the estimation accuracy of
the profile sampler, measured in terms of second order asymptotics, and the convergence rate
of the nuisance parameters. Specifically speaking, the profile sampler generated from a
semiparametric model with a faster convergence rate usually yields more precise frequentist
inference of θ. These second order results are verified in [2] and [3] for several examples,
including the proportional odds model, case-control studies with missing covariates, and the
partly linear model. The convergence rates for these models range from the parametric to the
cubic. The work in [3] has shown clearly that the accuracy of the inference for θ based on the
profile sampler method is intrinsically determined by the semiparametric model specifications
through its entropy number.
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In many semiparametric models involving a smooth nuisance parameter, it is often convenient
and beneficial to perform estimation using penalization. One motivation for this is that, in the
absence of any restrictions on the form of the function η, maximum likelihood estimation for
some semiparametric models leads to over-fitting. Seminal applications of penalized maximum
likelihood estimation include estimation of a probability density function in [18] and
nonparametric linear regression in [19]. Note that penalized likelihood is a special case of
penalized quasi-likelihood studied in [13]. Under certain reasonable regularity conditions,
penalized semiparametric log-likelihood estimation can yield fully efficient estimates for θ
(see, for example, [13]). As far as we are aware, the only general procedure for inference for
θ in this context known to be theoretically valid is a weighted bootstrap with bounded random
weights (see [11]). It is even unclear whether the usual nonparametric bootstrap will work in
this context when the nuisance parameter has a convergence rate r < 1/2.

The purpose of this paper is to ask the somewhat natural question: does sampling from the
exponential of a profiled penalized log-likelihood (which process we refer hereafter to as the
penalized profile sampler) yield first and even second order accurate frequentist inference?
The conclusion of this paper is that the answer is yes and, moreover, the accuracy of the
inference depends in a fairly simple way on the size of the smoothing parameter.

The unknown parameters in the semiparametric models we study in this paper include θ, which
we assume belongs to some compact set Θ ⊂ ℝd, and η, which we assume to be a function in
the Sobolev class of functions ℋk or its subset  for some known
M < ∞ supported on some compact set on the real line. The Sobolev class of functions ℋk is
defined as the set {η: J2(η) ≡ ∫ (η(k)(z))2dz < ∞}, where η(j) is the j-th derivative of η with
respect to z. Obviously J2(η) is some measurement of complexity of η. We denote ℋk as the
Sobolev function class with degree k. The penalized log-likelihood in this context is:

(2)

where log lik(θ, η) ≡ nℙnℓθ,η(X), ℓθ,η(X) is the log-likelihood of the single observation X, and
λn is a smoothing parameter, possibly dependent on data. In practice, λn can be obtained by
cross-validation [23] or by inspecting the various curves for different values of λn. The
penalized maximum likelihood estimators θ ̂n and η ̂n depend on the choice of the smoothing
parameter λn. Consequently we use the notation θ ̂λn and η ̂λn for the remainder of this paper to
denote the estimators obtained from maximizing (2). In particular, a larger smoothing
parameter usually leads to a less rough penalized estimator of η0. It is of interest to establish
the asymptotic property of the proposed penalized profile sampler procedure with a data-driven
λn. Further studies on this issue are needed, but it is beyond the scope of this paper.

For the purpose of establishing first order accuracy of inference for θ based on the penalized
profile sampler, we assume that the bounds for the smoothing parameter are in the form below:

(3)

The condition (3) is assumed to hold throughout this paper. One way to ensure (3) in practice
is simply to set λn = n−k/(2k+1). Or we can just choose λn = n−1/3 which is independent of k. It
turns out that the upper bound guarantees that θ ̂λn is -consistent, while the lower bound
controls the penalized nuisance parameter estimator convergence rate. Another approach to
controlling estimators is to use sieve estimates with assumptions on the derivatives (see [6]).
We will not pursue this further here.
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The log-profile penalized likelihood is defined as follows:

(4)

where η ̂θ,λn is argmaxη∈ℋk log likλn(θ, η) for fixed θ and λn. Note that J(η ̂θ̃n,0) ≥ J(η ̂θ̃n,λn), where
ηθ,0 = η ̂θ ≡ argmaxη∈ℋ log lik(θ, η) for a fixed θ, based on the inequality that log likλn(θ̃n,
η ̂θ̃n,0) ≤ log likλn(θ̃n, η ̂θ̃n, λn). Hence again we verify that the smoothing parameter λn plays a
role in determining the complexity degree of the estimated nuisance parameter. The penalized
profile sampler is just the procedure of sampling from the posterior distribution of plλn(θ) by
assigning a prior on θ. By analyzing the corresponding MCMC chain from the frequentist’s
point of view, our paper obtains the following conclusions:

1. Distribution Approximation: The posterior distribution with respect to plλn(θ) can be
approximated by the normal distribution with mean the maximum penalized
likelihood estimator of θ and variance the inverse of the efficient information matrix,
with error ;

2. Moment Approximation: The maximum penalized likelihood estimator of θ can be
approximated by the mean of the MCMC chain with error . The efficient
information matrix can be approximated by the inverse of the variance of the MCMC
chain with error ;

3. Confidence Interval Approximation: An exact frequentist confidence interval of
Wald’s type for θ can be estimated by the credible set obtained from the MCMC chain
with error .

Obviously, given any smoothing parameter satisfying the upper bound in (3), the penalized
profile sampler can yield first order frequentist valid inference for θ, similar as to what was
shown for the profile sampler in [9]. Moreover, the above conclusions are actually second order
frequentist valid results, whose approximation accuracy is directly controlled by the smoothing
parameter. Note that the corresponding results for the usual (non-penalized) profile sampler
with nuisance parameter convergence rate r in [3] are obtained by replacing in the above

 with OP(n−1/2 ∨ n−r+1/2) and  with OP(n−1 ∨ n−r), for all respective
occurrences, where r is as defined in (1).

Our results are the first general higher order frequentist inference results for penalized semi-
parametric estimation. We also note, however, that some results on second order efficiency of
semiparametric estimators were derived in [4]. The layout of the article is as follows. The next
section, section 2, introduces the two main examples we will be using for illustration: partly
linear regression for current status data and semiparametric logistic regression. Some
background is given in section 3, including the concept of a least favorable submodel as well
as the main model assumptions. One preliminary theorem concerning about second order
asymptotic expansions of the log-profile penalized likelihood is also presented in section 3.
The main results and implications are discussed in section 4, and all remaining model
assumptions are verified for the examples in section 5. A brief discussion of future work is
given in section 6. We postpone all technical tools and proofs to the last section, section 7.

2 Examples
2.1 Partly Linear Normal Model with Current Status Data

In this example, we study the partly linear regression model with normal residue error. The
continuous outcome Y, conditional on the covariates (U, V) ∈ ℝd × ℝ, is modeled as
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(5)

where f is an unknown smooth function, and ε ~ N(0, σ2) with finite variance σ2. For simplicity,
we assume for the rest of the paper that σ = 1. The theory we propose also works when σ is
unknown, but the added complexity would detract from the main issues. We also assume that
only the current status of response Y is observed at a random censoring time C ∈ ℝ. In other
words, we observe X = (C, Δ, U, V), where indicator Δ = 1{Y ≤ C}. Current status data may
occur due to study design or measurement limitations. Examples of such data arise in several
fields, including demography, epidemiology and econometrics. For simplicity of exposition,
θ is assumed to be one dimensional.

Under the model (5) and given that the joint distribution for (C, U, V) does not involve
parameters (θ, f), the log-likelihood for a single observation at X = x ≡ (c, δ, u, v) is

(6)

where Φ is the cdf of the standard normal distribution. The parameter of interest, θ, is assumed
to belong to some compact set in ℝ1. The nuisance parameter is the function f, which belongs
to the Sobolev function class of degree k. We further make the following assumptions on this
model. We assume that (Y, C) is independent given (U, V). The covariates (U, V) are assumed
to belong to some compact set, and the support for random censoring time C is an interval
[lc, uc], where −∞ < lc < uc < ∞. In addition, PVar(U|V) is strictly positive and Pf (V) = 0. The
first order symptotic behaviors of the penalized log-likelihood estimates of a slightly more
general version of this model have been extensively studied in [10].

2.2 Semiparametric Logistic Regression
Let X1 = (Y1, W1, Z1), X2 = (Y2, W2, Z2), … be independent copies of X = (Y, W, Z), where Y
is a dichotomous variable with conditional expectation P(Y|W, Z) = F(θTW + η(Z)). F(u) is the
logistic distribution defined as eu/(eu + 1). Obviously the likelihood for a single observation is
of the following form:

(7)

This example is a special case of quasi-likelihood in partly linear models when the conditional
variance of response Y is taken to have some quadratic form of the conditional mean of Y. In
the absence of any restrictions on the form of the function η, the maximum likelihood of this
simple model often leads to over-fitting. Hence [5] propose maximizing instead the penalized
likelihood of the form ; and [13] showed the asymptotic consistency of
the maximum penalized likelihood estimators for θ and η. For simplicity, we will restrict
ourselves to the case where Θ ⊂ ℝ1 and (W, Z) have bounded support, say [0, 1]2. To ensure
the identifiability of the parameters, we assume that PVar(W|Z) is positive and that the support
of Z contains at least k distinct points in [0, 1], see lemma 7.1 in [15].

Remark 1—Another interesting potential example we may apply the penalized profile
sampler method to is the classic proportional hazards model with current status data by
penalizing the cumulative hazard function with its Sobolev norm. There are two motivations
for us to penalize the cumulative hazard function in the Cox model. One is that the estimated
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step functions from the unpenalized estimation cannot be used easily for other estimation or
inference purposes. Another issue with the unpenalized approach is that without making
stronger continuity assumptions, we cannot achieve uniform consistency even on a compact
set [10]. The asymptotic properties of the corresponding penalized M-estimators have been
studied in [12].

3 Preliminaries
In this section, we present some necessary preliminary material concerning least favorable sub-
models and assume some structural requirements to achieve second order asymptotic expansion
of the log-profile penalized likelihood (21).

3.1 Least favorable submodels
In this subsection, we briefly review the concept of a least favorable submodel. A submodel
t ↦ likt,ηt is defined to be least favorable at (θ, η) if ℓ̃θ,η = ∂/∂t log likt,ηt, given t = θ, where
ℓ̃θ,η is the efficient score function for θ. The efficient score function for θ can be viewed as the
projection of the score function for θ onto the tangent space of η. The inverse of its variance
is exactly the efficient information matrix Ĩθ,η. We abbreviate hereafter ℓ̃θ0η0 and Ĩθ0,η0 with
ℓ̃0 and Ĩ0, respectively. The “direction” along which ηt approaches η in the least favorable
submodel is called the least favorable direction. An insightful review about least favorable
submodels and efficient score functions can be found in Chapter 3 of [7]. We assume that in
our setting a least favorable submodel always exists. By the above construction of the least
favorable submodel, log plλn (θ) can be rewritten in the following form:

(8)

where ℓ(t, θ, η)(x) = ℓt,ηt(θ,η)(x), t ↦ ηt(θ, η) is a general map from the neighborhood of θ into
the parameter set for η, with ηθ(θ, η) = η. The concrete forms of (8) will depend on the situation.

The derivatives of the function ℓ(t, θ, η) are with respect to its first argument, t. For the
derivatives relative to the argument θ, we use the following shortened notation: ℓθ(t, θ, η)
indicates the first derivative of ℓ(t, θ, η) with respect to θ and ℓt,θ(t, θ, η) denotes the derivative
of ℓ ̇(t, θ, η) relative to θ. Also, ℓt,t(θ) and ℓt,θ(η) indicate the maps θ ↦ ℓ ̈(t, θ, η) and η ↦
ℓt,θ(t, θ, η), respectively. For brevity, we denote ℓ̇0 = ℓ̇(θ0, θ0, η0), ℓ ̈0 = ℓ̈(θ0, θ0, η0) and

, where θ0 and η0 are the true values of θ and η. Of course, we can write
ℓ̃0(X) as ℓ ̇0(X) based on the construction of the least favorable submodel. All the necessary
derivatives of ℓ(t, θ, η) w.r.t. t or θ in this paper are assumed to have integrable envelope
functions in some neighborhood of (θ0, θ0, η0). In the following, we use Pθ,ηU to denote the
expectation of a random variable U at the parameter (θ, η), and use PU to represent Pθ0,η0U
for simplicity.

3.2 Main Assumptions
The set of structural conditions about the least favorable submodel are the “no-bias” conditions:

(9)

(10)
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for any sequence θ̃n satisfying θ̃n = θ0 + oP (1). The verifications of (9) and (10) depend on the
smoothness of ℓ(t, θ, η) and the convergence rate of the penalized nuisance parameter based
on the functional Taylor expansions around the true values. The convergence rate typically has
the following upper bound:

(11)

The form of d(η, η0) may vary for different situations and does not need to be specified in this
subsection beyond the given conditions. (11) implies that η ̂θ̃n,λn is consistent for η0 as θ̃n →
θ0 in probability. Hence (9) and (10) hold provided the Fréchet derivatives of the maps η ↦
ℓ ̈(θ0, θ0, η) and η ↦ ℓt,θ(θ0, θ0, η) are bounded, and

(12)

which is usually implied by a bounded Fréchet derivative of η ↦ ℓ ̇(θ0, θ0, η) and second order
Fréchet differentiability of the map η ↦ lik(θ0, η).

The empirical version of the no-bias conditions,

(13)

(14)

where ℙn represents the empirical distribution of the observations, ensures that the penalized
profile likelihood behaves like a penalized likelihood in the parametric model asymptotically
and therefore yields a second order asymptotic expansion of the penalized profile log-
likelihood. Obviously the empirical no-bias conditions are built upon (9) and (10) by assuming
the sizes of the collections of the functions ℓ̇ and ℓ̈ are manageable. This condition is expressed
in the language of empirical processes. Provided that ℓ̈0 and ℓt,θ(θ0, θ0, η0) are square
integrable, (14) follows from (10) if we assume

(15)

where  is used for the empirical processes of the observations. If we further
assume that

(16)
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(17)

for any sequence θ ̄n satisfying θ ̄n = θ0 + oP (1), then (13) follows. Note that the conditions
(15)–(17) are concerned with the asymptotic equicontinuity of the empirical process measure
of ℓ ̈, ℓt,θ and ℓ̇, respectively. Thus we will be able to use technical tools T2 and T5 given in
the appendix to show (15)–(17). We next present the preliminary theorem about the second
order asymptotic expansion of the log-profile penalized likelihood which prepares us for
deriving the main results about the higher order structure of the penalized profile sampler in
the next section.

Theorem 1—Let (13) and (14) be satisfied and suppose that

(18)

(19)

for any sequence θ̃n and θ̄n satisfying θ̃n = θ0 + oP (1) and θ̄n = θ0 + oP (1). If θ0 is an interior
point in Θ and θ̂λn is consistent, then we have

(20)

(21)

where , provided the efficient information Ĩ0 is positive
definite.

For the verification of (18), we need to make use of a Glivenko-Cantelli theorem for classes
of functions that change with n which is a modification of theorem 2.4.3 in [22] and is explained
in the appendix. Moreover, (19) implies that J(η ̂λn) = OP(1) if the θ ̂λn is asymptotically normal,
which has been shown in (20).

Remark 2—The results in theorem 1 are useful in their own right for inference about θ. (20)
is a second higher order frequentist result in penalized semiparametric estimation regarding
the asymptotic linearity of the maximum penalized likelihood estimator of θ.

4 Main Results and Implications
We now state the main results on the penalized posterior profile distribution. A preliminary
result, theorem 2 with corollary 1 below, shows that the penalized posterior profile distribution
is asymptotically close enough to the distribution of a normal random variable with mean
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θ ̂λn and variance (nĨ0)−1 with second order accuracy, which is controlled by the smoothing
parameter. Similar conclusions also hold for the penalized posterior moments. Another main
result, theorem 3, shows that the penalized posterior profile log-likelihood can be used to
achieve second order accurate frequentist inference for θ.

Let  be the penalized posterior profile distribution of θ with respect to the prior ρ(θ). Define

Theorem 2
Let (20) and (21) be satisfied and suppose that

(22)

for every random {θ̃n} ∈ Θ. If proper prior ρ(θ0) > 0 and ρ(·) has continuous and finite first
order derivative in some neighborhood of θ0, then we have,

(23)

where Φd(·) is the distribution of the d-dimensional standard normal random variable.

Corollary 1
Under the assumptions of theorem 2, we have that if θ has finite second absolute moment, then

(24)

(25)

where  and  are the penalized posterior profile mean and penalized posterior
profile covariance matrix, respectively.

We now present another second order asymptotic frequentist property of the penalized profile
sampler in terms of quantiles. The α-th quantile of the penalized posterior profile distribution,

τnα, is defined as , where the inf is taken componentwise. Without

loss of generality, we can assume  because of the assumed smoothness of both
the prior and the likelihood in our setting. We can also define , i.e.,
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. Note that neither τnα nor κnα are unique if the dimension of θ is
larger than one.

Theorem 3
Under the assumptions of theorem 2 and assuming that ℓ̃0(X) has finite third moment with a
nondegenerate distribution, then there exists a κ̂nα based on the data such that

 and  for each choice of κnα.

Remark 3

Theorem 3 ensures that there exists a unique α-th quantile for θ up to  in the frequentist
set-up for each fixed τnα. Note that τnα is not unique if the dimension of θ is larger than one.

Remark 4
Theorem 2, corollary 1 and theorem 3 above show that the penalized profile sampler generates
second order asymptotic frequentist valid results in terms of distributions, moments and
quantiles. Moreover, the second order accuracy of this procedure is controlled by the smoothing
parameter.

Remark 5
Another interpretation for the role of λn in the penalized profile sampler is that we can view
λn as the prior on J(η), or on η to some extent. To see this, we can write likλn (θ, η) in the
following form:

This idea can be traced back to [23]. In other words, the prior on J(η) is a normal distribution

with mean zero and variance . Hence it is natural to expect λn to have some effect on
the convergence rate of η. Other possible priors on the functional parameter include Dirichlet
and Gaussian processes which are more commonly used in nonparametric Bayesian
methodology.

5 Examples (Continued)
We now illustrate verification of the assumptions in section 3.2 with the two examples that
were introduced in section 2. Thus this section is a continuation of the earlier examples.

5.1 Partly Linear Normal Model with Current Status Data
In this section we verify the regularity conditions for the partly linear model with current status
data as well as present a small simulation study to gain insight into the moderate sample size
agreement with the asymptotic theory.

5.1.1 Verification of conditions—We will concentrate on the estimation of the regression
coefficient θ, considering the infinite dimensional parameter  as a nuisance parameter.
The strengthened condition on η, together with the requirement that the density for the joint
distribution (U, V, C) is strictly positive and finite, is necessary to verify the rate assumptions
(27) and (28) in the below lemma 1. The score function of θ, ℓ ̇θ,f, is given as follows:
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where

qθ,f (x) = c − θu − f(v), and φ is the density of a standard normal random variable. The least
favorable direction at the true parameter value is:

where E0 is the expectation relative to the true parameters. The derivation of ℓ̇θ,f and h0(·) is
given in [3]. Thus, the least favorable submodel can be constructed as follows:

(26)

where ft(θ, f) = f + (θ − t)h0. The concrete forms of ℓ(t, θ, η) and the related derivatives are
given in [3] which considers a more rigid model with a known upper bound on the L2 norm of
the kth derivative. The remaining assumptions are verified in the following three lemmas:

Lemma 1: Under the above set-up for the partly linear normal model with current status data,
we then have for λn satisfying (3) and ,

(27)

(28)

where ||·||2 represents the regular L2 norm. Moreover, if we also assume that f ∈ {g: ||g||∞ + J
(g) ≤ M ̃} for some known M ̃, then

(29)

provided condition (3) holds.

Remark 6: Lemma 1 implies that the convergence rate of the estimated nuisance parameter is
slower than that of the regular nuisance parameter by comparing (27) and (29). This result is
not surprising since the slower rate is the trade-off for the smoother nuisance parameter
estimator. However, the advantage of the penalized profile sampler is that we can control the
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convergence rate by assigning the smoothing parameter with different rates. To obtain the
convergence rate of the non-penalized estimated nuisance parameter, we would need to assume
that the Sobolev norm of the nuisance parameter has some known upper bound. Thus we can
argue that the penalized method enables a relaxation of the assumptions needed for the nuisance
parameter. Lemma 1 also indicates that ||f̂λn − f0||2 = OP (λn) and ||f ̂n − f0||2 = OP (n−k/(k+2)).
Note that the convergence rate of the maximum penalized likelihood estimator, OP (λn), is
deemed as the optimal rate in [23]. Similar remarks also hold for lemma 4 in semiparametric
logistic regression model example below.

Lemma 1 and 4 imply that J(η̂λn) = OP (1) and J(f ̂λn) = OP (1), respectively. Thus the maximum
likelihood estimators of the nuisance parameters in the two examples of this paper are consistent
in the uniform norm, i.e. ||η̂λn − η0||∞ = oP (1) and ||f ̂λn − f0||∞ = oP (1), since the sequences
η̂λn and f̂λn consist of smooth functions defined on a compact set with asymptotically bounded
first-order derivatives.

Lemma 2: Under the above set-up for the partly linear normal model with current status data,
assumptions (13), (14) and (18) are satisfied.

Lemma 3: Under the above set-up for the partly linear normal model with current status data,
condition (22) is satisfied.

5.1.2 Simulation study—In this subsection, we conducted simulations for the partly linear
model with two different sizes of smoothing parameter, i.e. λn = n−1/3 and λn = n−2/5. Since we
assume that  in the model, the above smoothing parameters satisfy (3). Our experience
indicates that, in applications involving moderate sample sizes, specification of M is not needed
and λn = n−1/3 (n−2/5) appears to work most of the time. Perhaps using cross validation to choose
λn may improve the performance of the estimator in some settings, but evaluating this issue
requires further study and is beyond the scope of the current paper. The contrast of the above
two simulations agrees with our theoretical results that we can control the accuracy of
inferences based on the penalized profile sampler by adjusting the related smoothing parameter.

We next discuss the computation of f̂θ,λn in the simulations. For the special case of k = 2, we
can use a cubic spline for estimating f given a fixed θ and λn. In practice, we take a computational
sieve approach suggested by Xiang and Wahba [24], which states that an estimate with the
number of basis functions growing at least at the rate O(n1/5) can achieve the same asymptotic
precision as the full space, see section 8.2 in [10] for details.

In the following, the simulations are run for various sample sizes under a Lebesgue prior. For
each sample size, 200 datasets were analyzed. The regression coefficient is θ = 1 and f(v) = sin
(πv). We generate U ~ Unif[0, 1], V ~ Unif[−1, 1] and C ~ Unif[0, 2]. For each dataset, Markov
chains of length 20, 000 with a burn-in period of 5, 000 were generated using the Metropolis
algorithm. The jumping density for the coefficient was normal with current iteration and
variance tuned to yield an acceptance rate of 20% – 40%. The approximate variance of the
estimator of θ was computed by numerical differentiation with step size proportional to n−1/3

(n−2/5) for the model with smoothing parameter λn = n−1/3 (n−2/5) according to (21), see remark
1 in [3] for details.

Table 1 (2) in the below summarizes the simulation results for θ with smoothing parameter
λn = n−1/3 (n−2/5) giving the average across 200 samples of the penalized maximum likelihood
estimate (PMLE), mean of the penalized profile sampler (CM), estimated standard errors based
on MCMC (SEM), estimated standard errors based on numerical derivatives (SEN), boundaries
for the two-sided 95% confidence interval for θ generated by numerical differentiation and
MCMC. LM (LN) and UM (UN) denote the lower and upper bound of the confidence interval
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from the MCMC chain (numerical derivative). According to the above theoretical results, the
terms n2/3|PMLE − CM|(n4/5|PMLE − CM|), n1/6|SEM − SEN| (n3/10|SEM − SEN|), n2/3|LM −
LN| (n4/5|LM − LN|) and n2/3|UM − UN| (n4/5|UM − UN|) in Table 1 (2) are bounded in probability.
And the realizations of these terms summarized in Table 1 and 2 clearly illustrate their
boundedness. Furthermore, we can conclude that the penalized profile sampler with respect to
different sizes of smoothing parameter can yield statistical inference with different degree of
accuracy.

5.2 Semiparametric Logistic Regression
In the semiparametric logistic regression model, we can obtain the score function for θ and η
by similar analysis performed in the first example, i.e. ℓ̇θ,η(x) = (y − F (θw + η(z)))w and
Aθ,ηhθ,η(x) = (y − F(θw + η(z)))hθ,η(z) for J(h) < ∞, where Aη,η and hθ,η are the score operator
for η and least favorable direction at (θ, η), respectively. And the least favorable direction at
the true parameter is given in [15]:

where Ḟ(u) = F(u)(1 − F(u)). The above assumptions plus the requirement that J(h0) < ∞ ensures
the identifiability of the parameters. Thus the least favorable submodel can be written as:

where ηt(θ, η) = η + (θ − t)h0. By differentiating ℓ(t, θ, η) with respect to t or θ, we obtain,

where F̈(·) is the second derivative of the function F(·). The rate assumptions will be shown in
lemma 4. The remaining assumptions are verified in the last two lemmas:

Lemma 4—Under the above set-up for the semiparametric logistic regression model, we have
for λn satisfying condition (3) and any  that

(30)

(31)

If we also assume that η ∈ {g: ||g||∞ + J(g) ≤ M ̃} for some known M ̃, then
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(32)

provided condition (3) holds.

Lemma 5—Under the above set-up for the semiparametric logistic regression model,
assumptions (13), (14) and (18) are satisfied.

Lemma 6—Under the above set-up for the semiparametric logistic regression model,
condition (22) is satisfied.

6 Future Work
Our paper evaluates the penalized profile sampler method from the frequentist view and
discusses the effect of the smoothing parameter on estimation accuracy. One potential problem
of interest is to sharpen the upper bound for the convergence rate of the approximation error
in this paper, like the typical second-order asymptotic results in Edgeworth expansions, see,
for example [1]. A formal study about the higher order comparisons between the profile sampler
procedure and fully Bayesian procedure [17], which assigns priors to both the finite
dimensional parameter and the infinite dimensional nuisance parameter, is also interesting. We
expect that the involvement of a suitable prior on the infinite dimensional parameter would at
least not decrease the estimation accuracy of the parameter of interest.

Another worthwhile avenue of research is to develop analogs of the profile sampler and
penalized profile sampler to likelihood estimation under model misspecification and to general
M-estimation. Some first order results for this setting in the case where the nuisance parameter
may not be root-n consistent have been developed for a weighted bootstrap procedure in [11].
The studies about second order asymptotics under mild model misspecifications can provide
theoretical insights into semiparametric model selection problems.
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7 Appendix
We first state classical definitions for the covering number (entropy number) and bracketing
number (bracketing entropy number) for a class of functions, and then present some technical
tools about the entropy calculations and increments of empirical processes which will be
employed in the proofs that follow. The notations ≳ and ≲ mean greater than, or smaller than,
up to a universal constant.

Definition
Let  be a subset of a (pseudo-) metric space (ℒ, d) of real-valued functions. The δ-covering
number N(δ, , d) of  is the smallest N for which there exist functions a1, …, aN in ℒ, such
that for each a ∈ , d(a, aj) ≤ δ for some j ∈ {1, …, N}. The δ-bracketing number NB(δ, ,

d) is the smallest N for which there exist pairs of functions , with

, j = 1, …, N, such that for each a ∈  there is a j ∈ {1, …, N} such that

. The δ-entropy number (δ-bracketing entropy number) is defined as H(δ, , d) =
log N (δ, , d) (HB(δ, , d) = log NB(δ, , d)).

T1. For each 0 < C < ∞ and δ > 0 we have

(33)
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(34)

T2. Let ℱ be a class of measurable functions such that P f2 < δ2 and ||f||∞ ≤ M for every f in
ℱ. Then

where || ||ℱ = supf∈ℱ |Gnf| and .

T3. Let ℱ = {ft: t ∈ T} be a class of functions satisfying |fs(x) − ft(x)| ≤ d(s, t)F (x) for every
s and t and some fixed function F. Then, for any norm ||·||,

T4. Let ℱ be a class of measurable functions f: ×  ↦ ℝ on a product of a finite set and
an arbitrary measurable space ( , ). Let P be a probability measure on  ×  and let  be
its marginal on . For every d ∈ , let ℱd be the set of functions w ↦ f(d, w) as f ranges
over ℱ. If every class ℱd is PW-Donsker with supf∈ℱ |PW f(d, W )| < ∞ for every d, then ℱ is
P-Donsker.

T5. Let ℱ be a uniformly bounded class of measurable functions such that for some measurable
f0, supf∈ℱ ||f − f0||∞ < ∞. Moreover, assume that HB(ε, ℱ; L2(P)) ≤ K ε−α for some K < ∞ and
α ∈ (0, 2) and for all ε > 0. Then

T6. For a probability measure P, let ℱ1 be a class of measurable functions f1:  ↦ ℝ, and let
ℱ2 denote a class of continuous nondecreasing functions f2: ℝ ↦ [0, 1]. Then,

T7. Let ℱ and ℊ be classes of measurable functions. Then for any probability measure Q and
any 1 ≤ r ≤ ∞,

(35)

and, provided ℱ and ℊ are bounded by 1 in terms of ||·||∞,
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(36)

where ℱ · ℊ ≡ {f × g: f ∈ ℱ and g ∈ ℊ}.

Remark 7
The proof of T1 is found in [22]. T1 implies that the Sobolev class of functions with known
bounded Sobolev norm is P-Donsker. T2 and T3 are separately lemma 3.4.2 and theorem 2.7.11
in [22]. T4 is lemma 9.2 in [16]. T5 is a result presented on page 79 of [20] and is a special
case of lemma 5.13 on the same page, the proof of which can be found in pages 79–80. T6 and
T7 are separately lemma 15.2 and 9.24 in [7].

Proof of theorem 1—We first show (20), and then we need to state one lemma before
proceeding to the proof of (21). For the proof of (20), note that

Combining the third order Taylor expansion of θ ̂λn ↦ ℙnℓ ̇(θ ̂λn, θ, η) around θ0, where θ =
θ ̂λn, and η = η ̂λn, with conditions (13), (14) and (18), the first term in the right-hand-side of the
above displayed equality equals ℙnℓ̃0 − Ĩ0(θ ̂λn − θ0) + OP (λn + ||θ ̂λn −θ0||)2. By the inequality

 and assumption (19), the second term in the right-
hand-side of the above equality is equal to OP (λn + ||θ ̂λn − θ0||)2. Combining everything, we
obtain the following:

(37)

The right-hand-side of (37) is of the order , where wn represents
||θ ̂λn − θ0||. However, its left-hand-side is trivially OP (1). Considering the fact that

, we can deduce that θ ̂λn − θ0 = OP (n−1/2). Inserting this into the previous display
completes the proof of (20).

We next prove (21). Note that θ ̂λn − θ0 = OP (n −1/2). Hence the order of the remainder terms
in (13) and (14) become OP (λn + ||θ̃n − θ ̂λn||)2 and OP (λn + ||θ̃n − θ ̂λn||), respectively. Expression
(56) in lemma 7 below implies that

(38)

The difference between (38) and (56) generates
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(21) is now immediately obtained after considering (20).

Proof of theorem 2—Suppose that Fλn (·) is the penalized posterior profile distribution of

 with respect to the prior ρ(θ), where the vector ϱn is defined as . The parameter
set for ϱn is Ξn. Fλn (·) can be expressed as:

(39)

Note that dϱn in the above is the short notation for dϱn1 × … × dϱnd. To prove theorem 2, we
first partition the parameter set Ξn as {Ξn ∩ {||ϱn|| > rn}} ∪ {Ξn ∩ {||ϱn|| ≤ rn}}. By choosing
the proper order of rn, we find the posterior mass in the first partition region is of arbitrarily
small order, as verified in lemma 2.1 immediately below, and the mass inside the second
partition region can be approximated by a stochastic polynomial in powers of n−1/2 with error
of order dependent on the smoothing parameter, as verified in lemma 2.2 below. This basic
technique applies to both the denominator and the numerator, yielding the quotient series,
which gives the desired result.

lemma 2.1—Choose rn = o(n−1/3) and . Under the conditions of theorem 2, we
have

(40)

for any positive number M.

Proof—Fix r > 0. We then have

where . According to lemma 3.2 in [2],

 for any positive decreasing r → 0. Note that the above inequality holds
uniformly for any decreasing rn → 0. Therefore, we can choose a positive decreasing sequence
rn = o(n−1/3) with  such that (40) holds.

lemma 2.2—Choose rn = o(n−1/3) and . Under the conditions of theorem 2, we
have
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(41)

Proof—The posterior mass over the region ||ϱn||2 ≤ rn is bounded by

By (21), we obtain

Obviously the order of (*) depends on that of |exp(OP (gλn (||ϱn||))) − 1| for λn satisfying (3)
and ||ϱn|| ≤ rn. In order to analyze its order, we partition the set {λn = oP (n−1/4) and

} with the set {λn = OP (n−1/3)}, i.e.
 and

. For the set Un, we have | exp
(OP (gλn (||ϱn||))) − 1| = gλn (||ϱn||) × OP (1). For the set Ln, we have

. We can take  for some δ > 0 such that
 and rn = o(n−1/3). Then .

Combining with the above, we know that . By similar analysis, we can also
show that (**) has the same order. This completes the proof of lemma 2.2.

We next start the formal proof of theorem 2. By considering both lemma 2.1 and lemma 2.2,
we know the denominator of (39) equals

The first term in the above display equals
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where . The above equality follows from the inequality that 
for any x > 0. Consolidating the above analyses, we deduce that the denominator of (39) equals

. The same analysis also applies to the numerator, thus
completing the whole proof.

Proof of corollary 1—We only show (24) in what follows. (25) can be verified similarly.

Showing (24) is equivalent to establishing . Note that  can be written
as:

By analysis similar to that applied in the proof of theorem 2, we know the denominator in the
above display is  and the numerator is a random vector of
order . This yields the conclusion.

Proof of theorem 3—Note that (23) implies , for any ξ < α < 1 −
ξ, where . Note also that the α-th quantile of a d dimensional standard normal
distribution, zα, is not unique if d > 1. The classical Edgeworth expansion implies that

, where an(α) = O(n−1/2), for ξ < α < 1 − ξ. Note that
an(α) is uniquely determined for each fixed zα since ℓ̃0(Xi) has at least one absolutely continuous

component. Let . Then
. Combining with (20), we obtain . The

uniqueness of κ̂nα up to order  follows from that of an(α) for each chosen zα.

Proof of lemma 1—We first present a technical lemma before the formal proof of lemma 1.
In lemma 1.1 we define

for a known constant C1 < ∞. Combining with T5, we use condition (42) below to control the
order of the increments of the empirical processes indexed by ℓθ,η:

(42)

We next assume two smoothness conditions about the criterion function (θ, η) ↦ Pℓθ,η, i.e.,

(43)

CHENG and KOSOROK Page 20

J Multivar Anal. Author manuscript; available in PMC 2010 April 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(44)

Here  can be thought of as the square of a distance, but the following lemma is valid
for arbitrary functions . Finally, we assume a somewhat stronger assumption on
the density, i.e.,

(45)

But (45) is trivial to satisfy in our first model.

Lemma 1.1—Assume conditions (42)–(45) in the above hold for every θ ∈ Θn and η ∈ .
Then we have

for (θ̃n, η ̂θ̃n,λn) satisfying P(θ̃n ∈ Θn, η ̂θ̃n,λn ∈ ) → 1.

Proof of lemma 1.1—The definition of η ̂θ̃n,λn implies that

Note that by T5 and assumption (42), we have

By assumption (44), we have

Combining with the above, we can deduce that
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(46)

where d̂n = dθ̃n (η ̂θ̃n,λn, η0), J(η0) = J0 and Ĵn = J(η ̂θ̃n,λn). The above inequality follows from
assumption (43). Combining all of the above inequalities, we can deduce that

(47)

(48)

where un = (d̂n + ||θ̃n ~ θ0||)/(λn + λnĴn) and vn = λnĴn + λn. The equation (47) implies that un =
OP (1). Inserting un = OP (1) into (48), we can know that vn = OP (λn + ||θ̃n − θ0||, which implies
un has the desired order. This completes the whole proof.

We now apply lemma 1.1 to derive the related convergence rates in the partly linear model.
Conditions (43)–(45) can be verified easily in this example because ℓ̈θ,f has finite second
moment, and pθ,f is bounded away from zero and infinity uniformly for (θ, f) ranging over the
whole parameter space. Note that dθ(f, f0) = ||pθ,f − p0||2 ≳ ||qθ,f − qθ0,f0||2 by Taylor expansion.
Then by the assumption that PVar(U|V) is positive definite, we know that ||qθ̃n,f̂θ̃n,λn −
qθ0f0||2 = OP(λn + ||θ̃n − θ0||) implies ||f̂θ̃n,λn − f0||2 = OP(λn + ||θ̃n − θ0||). Thus we only need to
show that the ε-bracketing entropy number of the function class  defined below is of order
ε−1/k to complete the proof of (27)–(28):

for some constant C1. Note that ℓθ,f (X)/(1 + J(f)) can be rewritten as:

(49)

where A = 1 + J(f) and q̄θ,f ∈ , where

and where we know HB(ε, , L2(P)) ≲ ε−1/k by T1.
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We next calculate the ε-bracketing entropy number with L2 norm for the class of functions
R1 ≡ {ka(t): t ↦ a−1 log Φ(at) for a ≥ 1 and t ∈ ℝ}. By some analysis we know that ka(t) is
strictly decreasing in a for t ∈ ℝ, and supt∈ℝ |ka(t) − kb(t)| ≲ |a − b| because |∂/∂a(ka(t))| is

bounded uniformly over t ∈ ℝ. In addition, we know that  because
the function u ↦ u log Φ(u−1t) has bounded derivative for 0 < u ≤ 1 uniformly over t ∈ ℝ.
The above two inequalities imply that the ε-bracketing number with uniform norm is of order
O(ε−2) for a ∈ [1, ε−1] and is 1 for a > ε−1. Thus we know HB(ε, R1, L2) = O(log ε−2). By
applying a similar analysis to R2 ≡ {ka(t): t ↦ a−1 log(1 − Φ(at)) for a ≥ 1 and t ∈ ℝ}, we
obtain that HB(ε, R2, L2) = O(log ε−2). Combining this with T6 and T7, we deduce that HB(ε,

, L2) ≲ ε−1/k. This completes the proof of (27)–(28).

For the proof of (29), we apply arguments similar to those used in the proof of lemma 1.1 but
after setting λn, J0 and Ĵn to zero in (46). Then we obtain the following equality:

. By
treating ||θ̃n − θ0|| ≤ n−k/(2k+1) and ||θ̃n − θ0|| > n−k/(2k+1) differently in the above equality, we
obtain (29).

Proof of lemma 2—Based on the discussions of (13) and (14), we need to verify the
smoothness conditions and asymptotic equicontinuity conditions, i.e. (15)–(17), for the
function ℓ(t, θ, η) and its related derivatives. The first set of conditions are verified in lemma
5 of [3]. For the verifications of (15)–(17), we first show condition (17). Without loss of
generality, we assume that λn is bounded below by a multiple of n−k/(2k+1) and bounded above
by n−1/4 in view of (3). Thus

where (27) implies the equality in the above expression.

By (28), we know that J(f̂θ̃n,λn) = OP(1 + ||θ̃n − θ0||/λn) and ||f̂θ̃n,λn||∞ is bounded by some constant,
since . We then define the set  as follows:

for some δ > 0. Obviously the function n−1/(4k+2)(ℓ ̇(θ0, θ0, f̂θ̃n,λn) − ℓ̇)/(λn + ||θ̃n − θ0||)) ∈ 
on a set of probability arbitrarily close to one, as Cn → ∞. If we can show limn→∞ E*|| ||
< ∞ by T2, then assumption (17) is verified. Note that ℓ̇(θ0, θ0, f) depends on f in a Lipschitz
manner. Consequently we can bound HB(ε, , L2(P)) by the product of some constant and H
(ε, ℛn, L2(P)) in view of T3. ℛn is defined as

where Hn(f) = f/(n1/(4k+2)(λn + ||θ − θ0||)). By [22],
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we know that

Note that δn = n−1/(4k+2) and Mn = n(2k−1)/(4k+2) in T2. Thus by calculation we know that
. Then by T2 we can show that limn→∞ E*|| ||  < ∞.

For the proof of (15), we only need to show (15) holds for θ̃n = θ ̂n + o(n−1/3) based on the
arguments in lemma 2.2. We then show that

By the rate assumptions (27), we have

We next define  as follows:

Obviously the function (ℓ̈(θ0, θ̃n, f̂θ̃n,λn) − ℓ̈)/(1 + n1/3||θ̃n − θ0||) ∈  on a set of probability
arbitrarily close to one, as Cn →∞. If we can show limn→∞ E*|| ||  → 0 by T2, then the proof
of (15) is completed. Accordingly, note that ℓ̈(θ0, θ, f) depends on (θ, f) in a Lipschitz manner.
Consequently we can bound HB(ε, , L2(P)) by the product of some constant and (H(ε, ℛ̄n,
L2(P)) + log(1/ε)) in view of T3. ℛ̄n is defined as

where Hn(f) = f/(1 + n1/3||θ − θ0||). By [22], we know that

Then by analysis similar to that used in the proof of (17), we can show that limn→∞ E*||
||  → 0 in view of T2. This completes the proof of (15).

For the proof of (16), it suffices to show that (ℓt,θ(θ0, θ ̄n, f̂θ̃n,λn)− ℓt,θ(θ0, θ0, f0)) = oP(1) for
θ̃n = θ ̂n + o(n−1/3) and for θ ̄n between θ̃n and θ0, in view of lemma 2.2. Then we can show that

CHENG and KOSOROK Page 24

J Multivar Anal. Author manuscript; available in PMC 2010 April 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(ℓt,θ(θ0, θ ̄n, f̂θ̃n,λn) − ℓt,θ(θ0, θ0, f0)) = oP(1 + n1/3||θ̃n − θ0||) = oP(1) by similar analysis as
used in the proof of (15).

In the last part, we show (18). It suffices to verify that the sequence of classes of functions
 is P-Glivenko-Cantelli, where  ≡ {ℓ(3)(θ ̄n, θ̃n, f̂θ̃n,λn)(x)}, for every random sequence θ ̄n

→ θ0 and θ̃n → θ0 in probability. A Glivenko-Cantelli theorem for classes of functions that
change with n is needed. By revising theorem 2.4.3 in [22] with minor notational changes, we
obtain the following suitable extension of the uniform entropy Glivenko-Cantelli theorem: Let
ℱn be suitably measurable classes of functions with uniformly integrable functions and

 for any ε > 0. Then ||ℙn − P||ℱn → 0 in probability for every ε > 0. We
then apply this revised theorem to the set ℱn of functions ℓ(3)(t, θ, f) with t and θ ranging over
a neighborhood of θ0 and λnJ(f) bounded by a constant. By the form of ℓ(3)(t, θ, f), the entropy
number for  is equal to that of

By arguments similar to those used in lemma 7.2 of [15], we know that

. Moreover, the ℱ̃n are uniformly bounded since
. Considering the fact that the probability that  is contained in ℱ̃n tends to 1, we have

completed the proof of (18).

Proof of lemma 3—By the assumption that Δλn(θ̃n) = oP(1), we have Δλn(θ̃n) − Δλn(θ0) ≥
oP(1). Thus the following inequality holds:

By considering assumption (19), the above inequality simplifies to

where H(θ, f; X) = ΔΦ(C − θU − f(V)) + (1 − Δ)(1 − Φ(C − θU − f(V))). By arguments similar
to those used in lemma 2 and by T4, we know H(θ̃n, f̂θ̃n,λn; Xi) belongs to some P-Donsker
class. Combining the above conclusion and the inequality α log x ≤ log(1 + α{x − 1}) for some
α ∈ (0, 1) and any x > 0, we can show that

(50)

The remainder of the proof follows the proof of lemma 6 in [3].
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Proof of lemma 4—The boundedness condition (45) in Lemma 1.1 can not be satisfied in
semiparametric logistic regression model. Hence we propose lemma 4.1 below to relax this
condition by choosing the criterion function mθ,η = log[(pθ,η + pθ,η0)/2pθ,η0]. Obviously,
mθ,η is trivially bounded away from zero. It is also bounded above for (θ, η) around their true
values if pθ,η0(x) is bounded away from zero uniformly in x and pθ,η is bounded above. The
first condition is satisfied if the map θ ↦ pθ,η0(x) is continuous around θ0 and p0(x) is uniformly
bounded away from zero. The second condition is trivially satisfied in the semiparametric
logistic regression model by the given form of the density. The boundedness of mθ,η thus
permits the application of lemma 4.2 below which is used to verify condition (52) in the
following lemma 4.1. Note that lemma 4.1 and lemma 4.2 are theorem 3.2 and lemma 3.3 in
[15], respectively.

Lemma 4.1—Assume for any given θ ∈ Θn, η ̂θ satisfies ℙnmθ,η ̂θ ≥ ℙnmθ,η0 for given
measurable functions x ↦ mθ,η(x). Assume conditions (51) and (52) below hold for every θ
∈ Θn, every η ∈  and every ε > 0:

(51)

(52)

Suppose that (52) is valid for functions φn such that δ ↦ φn(δ)/δα is decreasing for some α <

2 and sets Θn ×  such that P(θ̃ ∈ Θn, η ̂θ̃ ∈ ) → 1. Then  for
any sequence of positive numbers δn such that  for every n.

Lemma 4.2 below is presented to verify the modulus condition for the continuity of the
empirical process in (52). Let  = {x ↦ mθ,η(x) − mθ,η0(x): dθ(η, η0) < δ, ||θ − θ0|| < δ} and
write

(53)

Lemma 4.2—Suppose the functions (x, θ, η) ↦ mθ,η(x) are uniformly bounded for (θ, η)
ranging over a neighborhood of (θ0, η0) and that

Then condition (52) is satisfied for any functions φn such that
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Consequently, in the conclusion of the above theorem, we may use K(δ, , L2(P)) rather than
φn(δ).

We then apply lemma 4.1 to the penalized semiparametric logistic regression model by
including λ in θ, i.e. , in the proof of lemma 4. First, lemma
7.1 in [15] establishes that

(54)

after choosing

in lemma 4.1. Note that the map θ ↦ pθ,η0/fW,Z(w, z) is uniformly bounded away from zero
at θ = θ0 and continuous around a neighborhood of θ0. Hence mθ,λ,η is well defined. Moreover,
ℙnmθ,λ,η ̂θλ ≥ ℙnmθ,λ,η0 by the inequality that ((pθ,η + pθ,η0)/2pθ,η0)2 ≥ (pθ,η/pθ,η0). (54) now
directly implies (31). For the proof of (30), we need to consider the conclusion of lemma 7.4
(i), which states that

(55)

Thus we have proved (30). For (32), we just replace the mθ,λ,η with mθ,0,η in the proof of lemma
7.1 in [15]. Thus we can show that dθ(η, η0) = || pθ,η − pθ0,η0||2. By combining lemma 4.2 and
(55), we know that ||η ̂θ̃n − η0||2 = OP(δn + ||θ̃n − θ0||), for δn satisfying

. Note that K(δ,  L2(P)) is as defined in (53). By similar analysis as
used in the proof of lemma 7.1 in [15] and the strengthened assumption on η, we then find that

, which leads to the desired convergence rate given in (32).

Proof of lemma 5—The proof of lemma 5 follows that of lemma 2. The smoothness
conditions of ℓ(t, θ, η) and its related derivatives can be shown similarly since F(·), Ḟ(·) and
F̈(·) are all uniformly bounded in (−∞, +∞), and h0(·) is intrinsically bounded over [0, 1]. Note
that we can show (12) directly by the following analysis. Pℓ ̇(θ0, θ0, η) can be written as P(F
(θ0w+η0) − F(θ0w+ η(z)))(w−h0(z)) since Pℓ ̇0 = 0. Note that P(w−h0(z))Ḟ(θ0w+η0(z))(η−η0)
(z) = 0. This implies that Pℓ ̇(θ0, θ0, η) = P(F(θ0w+η0) − F(θ0w+η(z))+Ḟ(θ0w+η0(z))(η−η0)(z))
(w−h0(z)). However, by the common Taylor expansion, we have |F(θ0w + η) − F(θ0w + η0) −
Ḟ(θ0w + η0)(η − η0)| ≤ ||F̈||∞|η − η0|2. This proves (12).

We next verify the asymptotic equicontinuity conditions, i.e. (15)–(17). For (17), we first apply
analysis similar to that used in the proof of lemma 2 to obtain
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By lemma 7.1 in [15], we know that J(η ̂θ̃n, λn) = OP (1 + ||θ̃n − θ0||/λn) and ||η ̂θ̃ n, λn||∞ is bounded
in probability by a multiple of J(η ̂θ̃n, λn) + 1. Now we construct the set  as follows:

Clearly, the probability that the function n−1/(4k+2)(ℓ ̇(θ0, θ0, η ̂θ̃n, λn) − ℓ̇0)/(λn + ||θ̃n − θ0||)) ∈
 approaches 1 as Cn → ∞. We next show that limn → ∞E*|| ||  < ∞ by T2. Note that ℓ̇(θ0,

θ0, η) depends on η in a Lipschitz manner. Consequently, we can bound HB(ε, , L2(P)) by
the product of some constant and H(ε, ℛn, L2(P)) in view of T3, where ℛn is as defined in the
proof of lemma 2. By similar calculations as those performed in lemma 2, we can obtain

. Thus limn→ ∞ E*|| ||  < ∞, and (17) follows.

The proof of (15) and (16) follows arguments quite similar to those used in the proof of lemma
2. In other words, we can show that (ℓ ̈(θ0, θ̃n, η ̂θ̃n, λn) − ℓ̈0) = oP (1 + n1/3||θ̃n − θ0||) = oP (1)
and (ℓt,θ(θ0, θ̃n, η ̂θ̃n, λn) − ℓt,θ(θ0, θ0, η0)) = oP (1 + n1/3||θ̃n − θ0||).

Next we define  ≡ {ℓ(3)(θ ̄n, θ̃n, η ̂θ̃n, λn)(x)}. Similar arguments as those used in the proof of
lemma 2 can be directly applied to the verification of (18) in this second model. By the form
of ℓ(3)(t, θ, η), the entropy number for  is bounded above by that of ℱ̄n ≡ {F̈(tw + η(z) + (θ
− t)h0(z)): (t, θ) ∈ Vθ0, λnJ(η) ≤ Cn, ||η||∞ Cn(1 + J(η))}. Similarly, we know

. Moreover, the ℱ̄n are
uniformly bounded. This completes the proof for (18). This concludes the proof.

Proof of lemma 6—The proof of lemma 6 is analogous to that of lemma 3.

Lemma 7—Assuming the assumptions in theorem 1, we have

(56)

for any sequence θ̃n satisfying θ̃n = θ0 + oP (1).

Proof—n−1(log plλn(θ̃n) − log plλ n (θ0)) is bounded above and below by

and

respectively. By the third order Taylor expansion of θ̃n ↦ ℙnℓ(θ̃n, θ, η) around θ0, for θ =
θ̃n and η = η ̂θ̃n,λn, (18) and the above empirical no-bias conditions (13) and (14), we can find
that the order of the difference between ℙn(ℓ(θ̃n, θ̃n, η ̂θ̃n, λn) − ℓ(θ0, θ̃n, η ̂θ̃n, λn)) and (θ̃n −
θ0)T ℙnℓ̃0 − (θ̃n − θ0)T (Ĩ0/2)(θ̃n − θ0) is OP(n−1gλn(||θ̃n − θ ̂λn||)). Similarly, we have
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by Taylor expansion. The last equation holds because of the assumptions (3) and (19). Similar
analysis also applies to the lower bound. This proves (56).
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Table 1

Partly Linear Model with λn = n−1/3 (θ0 = 1 and 200 samples)

n n2/3|PMLE − CM| n1/6|SEM − SEN| n2/3|LM − LN| n2/3|UM − UN|

50 0.8735 1.5007 2.1653 3.4984

100 0.2269 0.9240 0.6927 1.9507

200 0.2565 1.1440 0.7592 0.7182

800 0.0840 0.9539 0.7756 0.5171
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Table 2

Partly Linear Model with λn = n−2/5 (θ0 = 1 and 200 samples)

n n4/5|PMLE − CM| n3/10|SEM − SEN| n4/5|LM − LN| n4/5|UM − UN|

50 0.7866 0.6826 2.3963 2.9725

100 0.8161 0.2389 0.7007 1.0669

200 0.6654 0.5806 0.5614 0.9427

800 0.6032 0.7836 0.1465 0.3782

n, sample size; PMLE, penalized maximum likelihood estimator; CM, empirical mean; SEM, estimated standard errors based on MCMC; SEN,
estimated standard errors based on numerical derivatives; LM (UM), lower (upper) bound of the 95% confidence interval based on MCMC; LN
(UN), lower (upper) bound of the 95% confidence interval based on numerical derivatives.
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