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Abstract
The semilinear in-slide models (SLIMs) have been shown to be effective method for normalizing
microarray data (Fan, et al. 2004). Using a backfitting method, Fan, Peng and Huang (2005) proposed
a profile least squares (PLS) estimation for the parametric and nonparametric components. The
general asymptotic properties for their estimator is not developed. In this paper, we consider a new
approach, two-stage estimation, which enables us to establish the asymptotic normalities for both of
the parametric and nonparametric component estimators. We further propose a plug-in bandwidth
selector using the asymptotic normality of the nonparametric component estimator. The proposed
method allow for the modeling of the aggregated SLIMs case where we can explicitly show that
taking the aggregated information into account can improve both of the parametric and nonparametric
component estimator by the proposed two-stage approach. Some simulation studies are conducted
to illustrate the finite sample performance of the proposed procedures.
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1 Introduction
Microarray technology is an important tool for quantitatively monitoring gene expression
patterns and has been widely used in functional genomics (see e.g. Schena et al., 1995; Brown
and Botstein 1999). Since great variations in experimental conditions exist in the microarray
process it is essential to normalize the raw microarray data before any meaningful inference
or analysis can be done. Useful normalization techniques developed include the global
normalization method (e.g. Kroll and Wölfl 2002), the “lowess” method (e.g. Dudoit et al.
2002), the rank based procedure (e.g. Tseng et al. 2001). However, some restrictive biological
assumptions are generally needed for normalization techniques. For example, the global
normalization method needs an assumption that there is no print-tip block effect and no
intensity effect. Without such an assumption, the global normalization method would be
statistically biased. The “lowess” method requires an assumption that the average expression
levels of up-and down-regulated genes at each intensity level are about the same in each print-
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tip block. The rank based procedure assumes that there are not many genes that are up-regulated
(or down-regulated).

New statistical approaches have been sought to relax those restrictive biological assumptions.
For example, two-way semilinear models have been proposed to normalize the microarray data
(Huang, et al. 2003, Huang and Zhang 2003, Huang, Wang and Zhang 2005). This method
does not make the usual assumptions underlying the existing methods mentioned above. The
two-way semilinear model approach can also incorporate uncertainty due to normalization into
significant analysis of microarrays.

Fan, et al. (2004) proposed a method to estimate the intensity and print-tip effects by
aggregating information from the replications in a microarray. Let G be the number of genes,
Ig be the number of replications of the gth gene, Rgi and Ggi be the red (Cy5) and green (Cy3)
intensities of the gth gene in the ith replication, respectively. Further, let Ygi be the log-intensity
ratio of red over green channels of the gth gene in the ith repetition, and let Ugi be the
corresponding average of the log-intensities of the red and green channels. That is, Ygi =
log2 Rgi/Ggi,Ugi = 1/2 log2(RgiGgi). The following semilinear model was proposed by Fan, et
al. (2004) to fit the intensity and print-tip block effects

(1.1)

where αg is the treatment effect associated with the gth gene, rgi and cgi are the row and column
of print-tip block where the gth gene of the ith replication resides, β and γ are the row and

column effects with constraints , where r and c are the number of
rows and columns of the print-tip blocks, m(·) is a smooth function of U representing the
intensity effect, and εgi’s are random errors with mean zero and variance σ2.

Using matrix notation, model (1.1) can be re-written as

(1.2)

where Y = (Y1,…, Yn)T is the response, B = blockdiag(1I1,…, 1IG) with 1Ig being a vector of
length Ig and all elements 1, X = (X1,…,Xn)T is an n × p design matrix with p being the sum
of the numbers of row and column, α = (α1,…, αG)T is the effect of gene, β = (β1,…, βr, γ1,…,
γc)T is the print-tip block effect, M = (m(U1),…,m(Un))T is the intensity effect and ε = (ε1,…,
εn)T is the random error.

Model (1.2) can be viewed as an extension of the usual fixed-effects parametric model to the
semiparametric context. Such fixed-effects model is an appropriate specification if one is
interested in a specific set of subjects and it has been widely applied in econometric analysis.
(e.g. for example, Lichtenberg 1988,Honoré 1994,Baltagi 1995,Entorf 1997).

For the case where Ig ≡ I, Baltagi and Li (2002) proposed difference-based series (DBS)
estimators for β and m(·). They established the asymptotic normality of the former and derived
the convergence rate of the latter. Fan, Peng and Huang (2005) proposed profile least squares
(PLS) estimators for β and m(·) by combining the local linear, least squares and backfitting
procedures. They established the asymptotic normality of the former and derived the upper
boundary of the mean squares error of the latter. You, Zhou, and Zhou (2005) proposed
semiparametric least squares (SLE) estimators for β and m(·) by series approximating the
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nonparametric component. For DBS, PLS and SLE estimators, it is not easy to establish the
asymptotic normality of the nonparametric component estimators. The reason is that the DBS
and SLE involve the series approximation and the PLS uses a backfitting procedure. This
hinders the application of these estimators in practice as it is difficult to select bandwidth and
inference on the nonparametric component. In addition, Baltagi and Li (2002) and You, Zhou,
and Zhou (2005) only consider the non-aggregated model.

Real microarray data often has different replication numbers reported, i.e. Ig may not always
be the same across different g. This structure may arise from the fact that different studies have
different replication number or that within a same study, uncontrollable experimental
conditions such as image corruption, array fabrication error, etc, may lead to different Ig for
different g (Golub et al. 1999, Alizadeh et al. 2000, Hendenfalk et al. 2001, Nguyen et al.
2004). Extension of model (1.2) under unequal Ig cases is undeveloped.

In this paper, we describe a two-stage estimation procedure. In the first stage, the series
approximating estimation is used to obtain the series estimates of the parametric and
nonparametric components. In the second stage, we input the first-stage estimates and eliminate
the nuisance parameters αg by difference. This transforms model (1.2) into an ordinary
semilinear regression model. We then propose an ordinary profile least squares estimation for
the parametric and nonparametric components, respectively. The asymptotic normalities of the
proposed estimators are established. In particular, we show that the estimator of the parametric
component achieves the semiparametric efficiency bound. We extend the two-stage estimate
to the aggregated SLIMs case. Using the PLS estimation the aggregated information can only
be used to improve the parametric components (Fan, Peng and Huang 2005). We explicitly
demonstrate that under our two-stage estimation, the aggregated information can be used to
improve both of the parametric and nonparametric component estimates.

The layout of the remainder of this paper is as follows. In Section 2 we describe the proposed
two-stage estimation. In Section 3 we derive the asymptotic properties of the two-stage
estimators. Extending the two-stage estimation to the aggregated SLIMs case is considered in
Section 4. Section 5 presents results from numerical studies. Section 6 concludes. All proofs
of main results are relegated to the Appendix.

2 A Two-Stage Procedure
Throught out this paper we assume that G → ∞ and 2 ≤ Ig ≤ c for some fixed constant c. The
two-stage estimation is as follows. In the first stage, the series approximating technique is used
to obtain the series estimates of the parametric and nonparametric components, respectively.
In the second stage, the first-stage estimates are input to the second stage and by differencing,
we eliminate the nuisance parameters αg and transform model (1.2) into an ordinary semilinear
regression model. The ordinary profile least squares and local polynomial estimates are then
obtained for the parametric and nonparametric components, respectively.

Since m(u) is a smooth function, it can be approximated by ζT (u)ϑ where ζ (u) = (ζ kn1(u),…,
ζknkn(u))T is a vector of approximating functions, such as power series or B-splines, ϑ is an
unknown kn-variate constant vector and kn is a positive integer which is dependent on n. Thus,
model (1.2) can be written as

(2.1)

where Ξ is an n × kn matrix with i-th row being ζ(Ui) = (ζkn1(Ui),…, ζknkn(Ui))T , ε* = ε + M
− Ξϑ and M = (m(U1),…,m(Un))T . Define MB = In − B(BTB)−1BT . Then pre-multiplying
(2.1) by MB leads to
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(2.2)

If we take MBε* as the residuals, model (2.2) is a version of the usual linear regression. By the
usual “profile” or “partialing out” formula, the estimator of β can be written as

(2.3)

where MMBΞ = In − PMBΞ = In −MBΞ (ΞTMBΞ)−ΞTMB and A− denotes any generalized
inverse of matrix A. An estimator of ϑ is

Then an obvious estimator of m(u) is mñ(u) = ζT (u)ϑ ̃n, which is a nonparametric projecting
estimator. Same as You, Zhou and Zhou (2005) we can establish the asymptotic normality of
β̃ n. However, it is a great challenge to establish the asymptotic normality of m̃n(u). The lack
of asymptotic normality of the nonparametric component estimator poses difficulties for
bandwidth selections and hinders statistical inference. In the following we will propose two-
stage estiamtors for both of the parametric and nonparametric components and establish the
asymptotic normality for both of them.

For convenience, let

 with g =
1,…,G and i = 1,…, Ig. If subtracting Q(g, i) from two sides of model (1.2) we have

According to Lemma 1 and Lemma 2 in the appendix, we have

Therefore, if we denote  we have

(2.4)

It is easy to see that (2.4) is an ordinary semilinear regression model. The ordinary profile least
squares and local polynomial estimations can be used to estimate β and m(·). The detail is as
follows. For any given β, (2.4) can be written as

(2.5)
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where . This transforms the semilinear regression model into the usual
nonparametric model. Now, apply a local linear regression technique in a small neighborhood
of u0, one can approximate m(u) locally by a linear function

with m′ (u) = ∂m/∂u. This leads to the following weighted local least squares problem: find a,
b to minimize

(2.6)

where K(·) is a kernel function, h is a bandwidth and Kh(·) = K(·/h)/h. The solution to minimizing
the sum in (2.6) is given by

(2.7)

where

and

Replacing m(·) by â(·) in (2.5) results the following model

(2.8)

where

and  with
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Take  as residuals and apply the least squares method to (2.8), we obtain a two-stage
estimator of β as

(2.9)

where In is an n × n identity matrix,

Correspondingly, a two-stage estimator of m(·) is

(2.10)

The error variance  is the quantity that describes the noise level. Apart from the
intrinsic interest as parameters of the model, its estimation is essential in constructing
confidence regions, model-based tests, model selection procedures, signal-to-noise ratio
determination, and so on. Therefore, it is also essential to estimate it. We propose an estimate
of σ2 as follows

In the next section, we will establish the asymptotic properties of β̂n,m ̂n(·) and .

3 Asymptotic Normality of the Two-Stage Estimators
To present the asymptotic properties of β̂n,m ̂n(·) and , we make the following assumptions

Assumption 1
(Xi,Ui, εi) are independent and identically distributed as (X1,U1, ε1).

Assumption 2
(i) For very kn there is a nonsingular matrix M such that for Mζ (u), the smallest eigenvalue
of E[M(ζ(U1) − Eζ (U1))]⊗2 is bounded away from zero uniformly in kn.

(ii) There is a sequence of constants δ0(kn) satisfying supu∈  ║Mζ (u)║ ≤ δ0(kn) and kn satisfies
that (δ0(kn))2kn/n → 0 as n → ∞, where  is the support of U1, and for a matrix A, ║A║ = tr
(AAT) denotes the Euclidean norm of A.

Assumption 3
(i) m(u) and hj(u) = E(Xj1|U1 = u) are twice continuously differentiable on  where j = 1,…,
p.
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(ii) For m(u) or hj(u), j = 1,…, p, there exist ϑ = (ϑ1,…,ϑkn)T, such that
 with g(u) = m(u) or hj(u).

(iii) kn = ckn4/15+ν for some constant ck satisfying 0 < ck < ∞ and some ν satisfying 0 ≤ ν < 1/30.

Assumption 4
The function K(·) is a symmetric density function with compact support.

Assumption 5
h = chn−1/5 for some constant ch satisfying 0 < ch < ∞.

Remark 1—Assumption 2 is a standard assumption being used in series estimation methods.
Assumption 3 says that the uniform approximation error to the function shrinks at the rate

. Assumption 2 and Assumption 3 are not the easiest conditions but it is known that many
series functions satisfy these conditions, e.g. power series and spline. Assumption 4 and
Assumption 5 are standard assumptions used in kernel or local polynomial estimations.

Under the above assumptions, the following theorem provides the asymptotic properties of
β̂n,m ̂n(·) and 

Theorem 1
Suppose that Assumption 1 to Assumption 5 hold. Then it holds that

where  and Π1 = X1 − E(X1|U1).

Theorem 2
Suppose that Assumption 1 to Assumption 5 hold. Then it holds that

provided that p(u) ≠ 0, where 

with  and p(·) is the density function of U1.

Remark 2—According to Theorem 1, when Ig ≡ I the asymptotic covariance matrix of β̂n
reduces to I/(I − 1)σ2Σ−1, i.e the semiparametric efficient boundary (Fan, Peng and Huang
2005).
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Theorem 3

Suppose that Assumption 1 to Assumption 5 hold. If  holds, then

where ,

and

Further, we define

for g = 1,…,G, i = 2,…, Ig,

The next theorem shows that Σ̂n and κ̂n are consistent estimators of

 and κ, respectively.

Theorem 4

Suppose that Assumption 1 to Assumption 5 hold. If  holds, then
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4 Two-stage Estimation for the Aggregated SLIM
In so far, the intensity effect and the gene effect were estimated by using the information within
one slide. Therefore, the arrays are allowed to have different gene effect, namely, αg can be
slide-dependent. When samples were drawn from different subjects this is reasonable.
However, in many practical situations, the sample may come from the same subject. In those
cases, it is natural to assume that the gene effects are the same across arrays and the information
from other arrays can be aggregated. This assumption is helpful for improving the precision
and for assessing the quality of an array using the coefficient of variation (Tseng, et al.
2001). Therefore, Fan, Peng and Huang (2005) further proposed an aggregated SLIM. This
kind of aggregation idea is also appeared in the work of Huang, Wang and Zhang (2003) for
a very different semiparametric model. The aggregated SLIM is defined as

(4.1)

where Yj=(Y1j,…,Ynj)T, Bj = (B1j , …,Bnj)T , Xj = (X1j ,… ,Xnj)T , Uj = (U1j ,…,Unj)T , α =
(α1, …, αG)T , βj = (β1j , …, βpj j)

T and εj = (ε1j ,…, εnj)T.

Fan, Peng and Huang (2005) proposed an aggregated profile least squares (APLS) estimator

for  and describe an estimation for the nonparametric components. We here
propose an aggregated two-stage procedure.

4.1 Estimating the parametric component
We will investigate two cases. One is that Xij1 and Xij2 are independent and the other is Xij1
and Xij2 are dependent, where j1 ≠ j2.

Case 1—Suppose that β̃jn and m̃jn(·) are series estimators of βj and mj(·) , respectively which
are based on individual equation. Let

For fixed j, if subtracting

from the two sides of model (4.1) we have
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Therefore, applying the usual profile least squares estimation we can obtain an aggregated two-
stage estimator of βj as

where Sj, X ̂j have the same definitions as S and X ̂, the ι(g, i)th element of

.

Case 2—For fixed j, if subtracting  from the two sides
of model (4.1) we have

Therefore, applying the usual profile least squares estimation we can obtain an aggregated two-
stage estimator of βj as

where the ι(g, i)th element of .

For  we have the following asymptotic properties.

Theorem 5—Under some regularity conditions (same as Assumption 1 to Assumption 5) it
holds that

where .

Theorem 6—Under some regularity conditions (same as Assumption 1 to Assumption 5) it
holds that

where Σj is defined in Theorem 5.
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Remark 3: From Theorem 5 and 6 we can see the aggregated information can be used to
improve the two-stage estimators for the parametric components and the degree of
improvement depend on Xij1 and Xij2 being independent or dependent. Moreover, when

 reduces to JI/(JI − 1). Thus, according to Fan, Peng and
Huang (2005), our aggregated two-stage estimator has the same asymptotic covariance as
that of the aggregated PLS estimator.

4.2 Estimating the nonparametric components
We propose an aggregated local linear estimator of mj(·) for Case 1 and 2. In Case 1, it has the
form

In Case 2, it has the form

For  we have the following asymptotic properties.

Theorem 7—Under some regularity conditions (same as Assumption 1 to Assumption 5) it
holds that

Further,

provided that pj(u) ≠ 0, where

and pj(u) is the density function of U1j.

Remark 4—From Theorem 7, we can see that taking the aggregated information into account
can improve the estimate of the nonparametric component as well.
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5 Simulation Studies
In this section, we conduct some simulations to show the finite sample performance of the
estimators in last sections. In order to compare our estimators with those in Fan, Peng and
Huang (2005) we take Example 1 of Fan, Peng and Huang (2005).

Example 1
We select G = 100, 200, 400, 800 and I = 2, 3, 4. For each pair of (G, I), we simulate 200
datasets from model (1.2). The details of simulation scheme for this example are as follows:

αg: The expression levels of the genes are generated from the standard double-exponential
distribution.

β: For the row effects, first generate  from N(0, 0.5), then set ,

which will guarantee that  The column effects are generated in the same way.

U: The intensity is generated from a mixture distribution. We generate u from probability
0.0004(u−6)3I(6 < u < 16) with probability 0.7 and from uniform distribution over [6, 16]
with probability 0.3.

m(·): Set the function , where expectation is 0.

X: For each given gene, its associated block is assigned at random at one of 32 print-tip
blocks.

ε: εgi is generated from the standard normal distribution.

For the proposed estimation, in first stage, we use a cubic B-spline basis function defined by

where u0,…, u4 are the evenly-spaced design knots. In the second stage, we take the Gaussian
kernel, i.e.

and the bandwidth is selected by plug-in method. The performance of the estimators is assessed
by the mean squared errors (MSEs). The results are summarized in Table 1 and Figure 1.

From Table 1 and Figure we can see that the two-stage estimators almost has the same finite
sample performance as that of the profile least squares estimators. This phenomena is also
observed for the case of aggregation across arrays. We here omit the detail.

6 Concluding Remarks
In this paper, we have proposed a two-stage estimation procedure for the semilinear in-slide
models. The main advantage of our approach over the existing ones is that we can establish
the asymptotic normalities for the corresponding parametric and nonparametric component
estimators, respectively. We further extended the two-stage estimation to aggregated
semilinear in-slide models. The advantage of the two-stage estimation over the existed
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estimations in this case is that we can explicitly show that taking the aggregated information
can lead to improvement in both the the parametric and nonparametric component estimators.
The significance of developing these asymptotic normalities lies in that we can do bandwidth
selection and statistical inference for the interested parametric and nonparametric components.

This is still an fast evolving area of research and additional effort in this direction is warranted.
For example, how to take the heteroscedastic into account to improve the two-stage estimation
is still an open problem.
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Appendix. Proof of Main Results

Lemma 1
Let (X1, Y1),…, (Xn, Yn) be i.i.d random vectors, where the Yi’s are scalar random variables.
Further assume that E|Yi|4 < ∞ and supx ∫ |y|4f(x, y)dy < ∞, where f denotes the joint density
of (X, Y). Let K be a bounded positive function with a bounded support, and satisfies Lipschitz’s
condition. Then if nh8 → 0 and nh2/(log n)2 → ∞, it holds that

.

The proof of Lemma 1 follows immediately from the result of Mack and Silverman (1982).

Lemma 2

Suppose that Assumption 3 to Assumption 5 hold. Then it holds that  where
X ̂ is defined in Section 2 and Σ is defined in Theorem 1.

The proof of Lemma 2 is trivial. We here omit the detail.

Lemma 3
Suppose that Assumption 1 to Assumption 3 hold. Then we have β̃n − β = Op(n−1/2) Further,

where Π = (Π1,…, Πn)T , Πi = Xi − E(Xi|Ui) and PB = B(BTB)−1BT .

Lemma 4
Suppose that Assumption 1 to Assumption 3 hold. Then we have

a. limn→∞ ‖ϑ ̃n - ϑ‖ →p 0;
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b.

c.

Further,

d.

The proof of Lemma 3 is same as that of Theorem 1 in You, Zhou and Zhou (2005). Applying
the root-n consistency of β̃n, combining the proof of Theorem 1 in Horowitz and Mammen
(2004) we can show Lemma 4 holds. We here omit the detail.

Proof of Theorem 1

For convenience, let  for g
= 1,…,G. Then, according to the definition of β̂n it can be verified that

Therefore, combining Lemma 2 in order to complete the proof we just need to show that

A.1

and J2 = op(n1/2). Following the same argument as the proof of Theorem 1 in Fan and Huang
(2005) we have

Since  ’s are independent random variables with
mean zero and finite covariance matrix
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by central limit theorem and Slustky’s theorem (A.1) holds. Moreover,

Let  By definition of X^ it holds that

where h(u) = (E(X11|U1 = u),…,E(Xp1|U1 = u))T and H = (h(U1),…,h(Un))T . By Fan and Huang
(2005) it holds that

and

Therefore, combining Lemma 3 and Lemma 4 we have

and J213 = op(n−1/2). Further,

It is easy to see that
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where A⊗ means ATA. Combining the root-n consistency of β ˜n; it holds that

According to the definition of m̃n(·) we have

Now, we will prove Js = op(n1/2) for s = 3, 4 and 5. For convenience, we let

It is easy to see, in order to complete the proof of J3 = op(n1/2), we just need to show that

 Following the proof of Lemma 3 we have

Put τg = Πι(g,1),1m̃ι(g,1). For any δ > 0, set

so that

By the three-series theorem we obtain  for all g = 1,…,G. This implies that
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For g = 1,…,G, let  Then given  are independent
and

By Bernstein’s inequality we have

as m →∞. By this we have

Therefore, J3 = o(n1/2) a.s.

By the Cauchy-Schwarz inequality, it holds that

Further,

and
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Thus, J4 = op(n1/2).

In addition, it holds that

It is easy to see that

This implies that S3 = op(n1/2). Following the same line, we can show that S4 = op(n1/2). So
J5 = op(n1/2) holds. In summary, the proof of Theorem 1 completes.

Proof of Theorem 2
According to the definition of m ̂n(u) it holds that

It is easy to see that

Each element of the above matrix is in the form of kernel regression. By Lemma 1 it holds that

holds uniformly in , where ⊗ is the Kronecker product and µ2 = ∫ u2K(u)du By using the
same argument, we have
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Therefore, combining the fact  we have J3 = Op(n1/2). Moreover, let

for g = 1,…,G. Then, we have

By the root-n consistency of β̃n and the argument as proving J3 it is easy to see J21 =
Op(n−1/2). Further,

Applying Lemma 1 and the root-n consistency of β̃n we can show that J6 = op(n−1/2). Moreover,
by the same argument as proof of Theorem 1 in Horowitz and Mammen (2004) we can show

that  Above all we have  .

According to the usual nonparametric regression result we have

Therefore, in order to complete the proof we just need to show that

Let
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where  It follows that

The variance of  is

It is easy to see that  for s =
11, 12, 13 as n →∞. Above all,

Let

and  Then
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Simple calculation show that

It follows that  By the central limit theorem the proof is complete.

Proof of Theorem 3
For convenience, let

and

By the definition of  it can be decomposed as

where  Applying Lemma 3 and Lemma 4, and Theorem 1
and Theorem 2 it is easy to show that Js = op(n−1/2) for s = 2, 3 and 6.

Let

Obviously, ζg’s are independent random variables with  Further,
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It is easy to see that

In summary, we have

Then, by some simple calculation, we have

Therefore,

According to the definition, J4 can be written as
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By the proof of Theorem 1, we can show that

Therefore, combining the root-n consistency of β̂n we have J41 = op(n−1/2). By the same
argument we can show that J42 = op(n−1/2). Further, it holds that

Following the same line as proving

in the proof of Theorem 1, we have J42s = op(n−1/2) for s = 1, 2 and 3. Thus J4 = op(n−1/2). By
the same argument, we can show that J5 = op(n−1/2). The proof of theorem completes.

Proof of Theorem 4
Proving the consistency of ∑̂ is trivial. We here omit the detail. We just show the second result.
To facilitate the notation we write

Then it holds that
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For J1 we have

Combining Theorem 1 and Theorem 2 it is easy to show that  Next,
according to the Hölder inequality, for s = 1, 2 and 3 we have

Therefore, we can show that Ji = op(n) for i = 3,…,5. Thus, the proof is complete.

Proof of Theorems 5 and 6
Following the proof of Theorem 1, we can show that

and

Therefore, combining the central limit theorem and slustky’s theorem we can show that
Theorem 5 and Theorem 6 hold.
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Proof of Theorem 7
Applying Theorem 5 and Theorem 6, by the same argument as proving Theorem 2 we can
show Theorem 7 holds.
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Figure 1.
The estimators of m(·) with G = 200 and I = 4. Dotted line: the proposed estimator; dash-dotted
line: Fan, Peng and Huang (2005)’s estimator; and solid line: m(·).
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