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Abstract

Our understanding of mammalian-microbial mutualism has expanded by combing microbial 

sequencing with evolving molecular and cellular methods, and unique model systems. Here, the 

recent literature linking the microbiota to diseases of three of the key mammalian mucosal 

epithelial compartments – nasal, lung and gastrointestinal (GI) tract – is reviewed with a focus on 

new knowledge about the taxa, species, proteins and chemistry that promote health and impact 

progression toward disease. The information presented is further organized by specific diseases 

now associated with the microbiota:, Staphylococcus aureus infection and rhinosinusitis in the 

nasal-sinus mucosa; cystic fibrosis (CF), chronic obstructive pulmonary disorder (COPD), and 

asthma in the pulmonary tissues. For the vast and microbially dynamic GI compartment, several 

disorders are considered, including obesity, atherosclerosis, Crohn’s disease, ulcerative colitis, 

drug toxicity, and even autism. Our appreciation of the chemical symbiosis ongoing between 

human systems and the microbiota continues to grow, and suggest new opportunities for 

modulating this symbiosis using designed interventions.

INTRODUCTION

Focusing on literature from the past five years, this review will consider three of the central 

“inside out” mucosal epithelial membrane-containing compartments relevant to mammalian-

microbial mutualism: the nasal-sinuses, the lungs, and the gastrointestinal tract (GI). Each 

region is involved in constant and essential chemical communication between the local 

microbiota and both local and systemic tissues critical to human physiology. Furthermore, 

each compartment can be considered as a simple system, with overall sources of input and 

output, as well as local give-and-take occurring between the mammalian and microbial cells 

at the epithelial surface; the figures in this review attempt to represent these basic systems 

(Figures 1-3). The goal is to provide a framework to understand the chemical, 

macromolecular, cellular, tissue, and systemic relationships between components of the 

three domains of life that coexist within the human body, although only bacterial and 

mammalian cells are considered here. Sections are also organized by disease states related to 

roles the microbiota play in human health. This review is not intended to be comprehensive, 

however, neither in the complexity of the tissue systems considered, nor in its coverage of 

the primary literature from the past five years. As an example, the oral oropharynx and 

subgingival crevice tissues, which interact intimately with the microbiota, are not covered. 

Key reviews on several topics will be cited to provide access to more comprehensive 
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information. The disease states associated with the microbiota and considered here are 

Staphylococcus aureus infections and rhinosinusitis within the nasal-sinus compartment; 

cystic fibrosis (CF), chronic obstructive pulmonary disorder (COPD) and other non-asthma 

pulmonary disorders, and allergic asthma in the lung compartment; and the following 

disorders related to the GI and its resident bacteria: obesity, atherosclerosis, ulcerative 

colitis, Crohn’s disease, autism, and drug- and xenobiotic-toxicity.

Sequencing efforts have provided organized and highly evolving data that significantly 

expand our understanding of the locations and activities of human symbiotic microbes 1. In 

2012, Human Microbiome Project reported results from 242 healthy U.S. adults sampled 

three times from 15-18 body site. These efforts revealed 5,177 bacteria taxa from 16S rRNA 

sequencing, as well as 3.5 Tbp of metagenomic sequencing data, including the assembled 

sequences of 800 reference bacterial strains 2. Considerable data continue to be added to 

such resources, which are publicly available both in readily annotated and in pre-annotation 

forms. Some very general conclusions that can be drawn from the initial data analyses are 

that healthy people differed in bacterial composition at these body sites, but that a baseline 

for the Western microbiome (the genetic material present in commensal microbiota) could 

be defined, and that ethnic-racial clinical trends correlated with distinctions in microbial 

compositions 1,2.

On an individual basis, prior work had indicated that bacterial composition is unique to each 

body part, significantly changes with time in each individual during infancy and early 

childhood, and, as born out in more detail by the HMP, compositions are distinct individual 

to individual 3. Perhaps not surprisingly, the skin’s ~1.7 m2 surface area appears to host the 

most diverse microbiota, as it has a myriad of ways by which it samples the bacteria present 

in our environment. In terms of volume and number of cells, however, the human GI’s ~250 

m2 surface is home to trillions of bacterial cells and is by far the largest and most intimate 

connection between cells from both domain of life. The lungs are the next largest surface 

area, at ~85 m2, and is capable of containing a volume of 6 L; the lungs are not abiotic, even 

in the lower airways, as outlined below. Finally, the relatively small 0.02 L volume of the 

nasal and paranasal cavities are populated by a distinct set of bacteria and potential 

pathogenic microbial species. This review will start with the smallest compartment 

considered here, the nasal/sinuses, then transition to pulmonary system, and finally to the 

large, dynamic and robustly populated GI.

NASAL-SINUS COMPARTMENT

The nasal cavities are portals to the lungs, and to some extent, the GI. They are a pass-

through with mucosal membranes that contend with an onslaught of particulate and 

microbial material with each breath (Figure 1). A minor but important component of the 

nasal output is the GI, where mucin-entrapped particles are often sent for excretion. The 

nasal passages are clearly a key site of human viral and bacterial infection. The paranasal 

sinuses are also non-sterile and play enigmatic roles in physiology, and are similarly subject 

to viral and bacterial infection. An important component of the local, tissue-specific 

secretions essential for nasal function, as well as the functions of all the compartments 

considered here, are mucin-producing cells of each epithelial layer.
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Nasal Microbiota and Staphylococcus aureus

While ~30% of humans are carriers of Staphylococcus aureus in their nasal/pharynx, it is 

usually not pathogenic in healthy subjects. One early human study in 2000 demonstrated 

that the nasal microbiota are distinct from that of the pharynx, and are distinct between 

individuals 4. They defined a set of nasal bacterial genera (specifically Corynebacterium, 

Aureobacterium, Rhodococcus, and several representative Staphylococci, including S. 

epidermidis, S. capitis, S. hominis, S. haemolyticus, S. lugdunensis and S. warneri), and 

pointed to the presence of opportunistic pathogens. Furthermore, they concluded that certain 

species can dominate specific regions of the nasal mucosa, and that dominance appeared to 

be linked to the presence of a specific enzyme, IgA1 protease, produced by successful 

species. In 2004, it was shown in rats that the ability of the immune system to respond to the 

presence of a specific microbe, Mycoplasma pulmonis, is dependent on the presence of the 

normal nasal microbiota 5. The results obtained are akin to the wealth of data now in place 

related to the GI healthy commensal bacteria and its role in establishing and regulating a 

healthy immune response, as outlined below.

More recent human clinical data have demonstrated that normal subjects have a diverse set 

of nasal microbiota dominated by the Actinobacteria, such as Propionibacterium and 

Corynebacterium, and Firmicutes, while hospitalized patients were enriched in both S. 

aureus and S. epidermidis, and reduced in Actinobacteria 6. Furthermore, levels of S. aureus 

and S. epidermidis were anti-correlated, suggesting that S. aureus either outcompetes S. 

epidermidis, or that S. aureus fills nasal mucosal niches vacated by S. epidermidis. Lemon 

and colleagues showed in 2010 that the microbiota of the nostrils in normal human subjects 

showed similarities to skin in terms of the presence of Actinobacteria and Firmicutes, 

suggesting these portals to the nasal cavity experience a similar “onslaught” of particulate 

and microbial visitors, most of which can be eliminated or marginalized using mucus 

secretions 7. These authors also found in co-culturing studies that the success of Firmicutes 

like S. aureus was associated with a failure of Actinobacteria colonization. A relatively 

comprehensive study in 2013 of more than 32,200 patients from several EU countries found 

that S. aureus colonization appeared in the nasal compartment of 22% of subjects examined, 

but that methicillin-resistant S. aureus (MRSA) was relatively rare and genetic heterogeneity 

existed between the MRSA strains recovered 8.

Relman and colleagues took nasal microbiota composition to the next level in terms of 

defining specific regions of the nasal compartment and their different microbial 

colonization 9. Healthy human subjects either carrying or not carrying S. aureus were 

sampled at three sites, the anterior nares, middle meatus, and sphenoethmoidal recess, and 

distinct microbial compositions were observed 9. With respect to S. aureus, two 

Corynebacterium species, C. accolens and C. pseudodiptheriticum, were found to associate 

with the presence and absence, respectively, of S. aureus, and interactions between these 

Actinobacteria and Firmicute species were evident from laboratory co-culture studies. 

Finally, competition between the S. aureus and Corynebacterium only appeared evident in 

locations in the nasal mucosa containing ciliated pseudostratified columnar epithelia. Taken 

together, these recent data drive toward a detailed knowledge of both the location of key 

microbiota in this human mucosal compartment, and direct competitive interactions that 
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occur between species that appear to help explain the relative success of genera in specific 

tissue niches. It is expected that more extensive co-culturing studies will reveal additional 

insights, and facilitate the screening for chemical and cellular interactions between bacteria 

species relevant to impacting local nasal health and systemic immune function.

Nasal Microbiota and Rhinosinusitis

An association between the local and even non-local microbiota in the nasal cavities and 

chronic rhinosinusitis (CRS) is now emerging. Microbes in the gut affect the development of 

a healthy immune system associated with asthma and allergy by engaging the immune T-

helper 1 (Th1), Th2, Th17, as well as T-regulatory (Treg) and dendritic cells (DCs), and 

Toll-like receptors (TLRs) 10. Recent human data have indicated that CRS with nasal polyps 

(CRSwNP) is dominated by a Th2 phenotype, and that there exists an association between 

CRS and the presence of local S. aureus in the nasal and paranasal sinuses 10. To date, no 

relationship has yet been identified between GI microbiota and CRS, although how 

particulate matter and the commensal and non-commensal microbiota impact CRS is an area 

for new study.

Clinical data have demonstrated that, while the microbiota in CRS and normal subjects are 

not significantly different, the levels of immune system responses were notably higher in 

CRS patients relative to healthy volunteers 11. CRS patients were found to have normal 

nasal commensal microbiota, but to exhibit increased levels in nasal lavage solutions of 

several cytokines, as well as eosinophils and basophils. Furthermore, peripheral blood 

leukocytes from CRS patients produced IL-5 in response to standard commensals, while 

those from non-CRS volunteers did not. Taken together, these data indicate a hyper-

response to the microbiota in the individuals with CRS, and that this response is not 

localized only in the nasal-sinus tissues. It will be interesting to know if host factors, 

including secreted proteins, somehow mediate the response to bacterial macromolecules. 

Such a candidate factor would be human SPLUNC1, 1213 a secreted protein whose levels are 

decreased in CRS.

Sinus Microbiota and Rhinosinusitis

While the nasal cavity is considerably more exposed to bacterial and particulate onslaughts 

than the sinuses, the paranasal sinuses are not abiotic. Indeed, the resident commensal 

bacterial load, diversity, and its interaction with human tissues through the sinus mucosal 

membranes are expected to be, like many other site in humans, critically involved in disease. 

Lynch and colleagues recently demonstrated that less microbial diversity was present in the 

sinuses of CRS patients relative to healthy controls, and that CRS patients had reduced 

levels of lactic acid bacteria and an increase in Corynebacterium tuberulostearicum 14. The 

normal nasal microbiota are expected to protect against C. tuberulostearicum colonization; 

indeed, it was demonstrated that the presence of Lactobacillus sakei decreased sinus 

infections by C. tuberulostearicum, a particularly interesting result in the context of 

understanding how individual members of the normal microbiota compete against a single 

potential pathogenic species. More sinus microbial diversity, but still less than normal, was 

noted in samples taken from CRS patients 15. In this study, Propionibacterium acnes was 

highest in normal subjects, while Staphylococcus aureus was highest in those with CRS. 
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Here again, detailed co-culturing studies may help to clarify the molecular bases for these 

distinct microbial ecologies in different clinical groups.

A report this year examined the presence of extracellular vesicles (EV) derived from 

bacteria, which have been associated with acute inflammatory states, as well as bacterial 

loads from CRS, CRSwNP, and normal subjects 16. Here, more bacteria but less diversity 

was found with CRS patients, and that levels of Bacteroides and Prevotella species were 

decreased, while the Proteobacteria and Staphylococcus aureus were increased. Indeed, in 

CRSwNP, both Staphylococcus aureus and its EV were increased relative to patients with 

only CRS. These data draw an increasingly detailed picture of how the sinus and nasal 

microbiota are associated with inflammation of the tissues in this region of the human body. 

This is an important area for future studies due to the prevalence of rhinosinusitis and CRS 

in the developed world. Also, given the relative ease with which small molecule therapeutics 

and/or pre- or probiotic treatments could be delivered to the nasal-sinus tissues, treating 

disorders in this compartment might be an avenue for success in translating basic discoveries 

into practice.

LUNG COMPARTMENT

Overview

Like the nasal and sinus cavities, the pulmonary airways are subject to constant exposure to 

particulate, environmental, and microbial threats, all of which must be kept in check to 

ensure proper lung function. Where the pulmonary tissues differ from the nasal passages in 

our compartmental view is that the lungs are a closed macro-compartment, with only a 

single entry and exit portal — the upper airways. Furthermore, the lower airways have the 

essential role in exchanging gases. Like in the nasal cavities, mucus is crucial in protecting 

the airways from particulate stresses, and in keeping commensal microbiota at a safe 

distance from the pulmonary epithelium. Additionally, the airway surface liquid that covers 

the lung epithelial tissues is critical, and its levels, akin to those of secreted mucus, must be 

tightly regulated 17. The lung contains its own microbiota and both these local microbes, and 

microbiota located at distant body sites like the GI, may be crucial for proper lung function, 

as outlined below. The lung contains a larger volume and surface area than the nasal-sinus 

cavities (Figure 2).

It was recently shown that the general immune response to respiratory influenza viral 

infection requires the commensal bacteria 18. In mice with normal commensals, viral 

infection leads to IL-1β and IL-18 production through activation of TLRs and 

inflammasomes, resulting in properly primed T-cells and dendritic cell migration to the 

draining lymph nodes. Lack of microbiota disrupts this normal response upon viral 

challenge. Indeed, germ-free (GF) mice were found in 2012 to have a build-up of invariant 

natural killer T cells (iNKTs) in both the lungs and the lamina propia of the colon 19. iNKTs 

in either site are associated with increased morbidity in the inflammatory diseases of the 

lung (asthma) or GI (ulcerative colitis). Providing GF mice with normal commensals led to a 

decrease in iNKTs and decreased pathology. Thus, it would appear that the immune system 

must experience normal commensals at the right time in development or else a set of 
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undifferentiated T cells will respond inappropriately when challenged with irritants in the 

pulmonary or GI tissues.

The connections between the lung and the GI microbiota are becoming deeply appreciated, 

particularly with the goal of understanding how perturbations in lung microbial composition 

and function should be monitored 20. Along these lines, Weidmen and colleagues examined 

29 human volunteers to determine how oral microbiota that make it into the airways impact 

pulmonary inflammation 21. They measured inflammatory markers in bronchoalveolar 

lavage samples, as well as exhaled nitrous oxide (NO), and employed 16S rRNA 

sequencing. They found that patients with increased levels of Veillonella and Prevotella, 

taxa associated with larynx, demonstrated higher measures of lung inflammation. Such 

approaches could be extended beyond this small initial study toward the goal of screening 

for dysbiosis related to lung inflammatory diseases.

Lung Microbiota and Cystic Fibrosis

Because of the lethality of bacterial pathogens to cystic fibrosis (CF) patients, special 

emphasis is well placed on understanding how the microbiota of the CF lung relates to those 

of healthy volunteers. Years of cultivation data have established the importance of several 

pathogens, including H. influenzae, S. aureus, P. aeruginosa, Burkholderia spp. and 

Stenotrophomonas maltophila, but more recent work is revealing information on new 

bacteria not previously associated with CF exacerbations. A recent report showed that the 

lung microbiota of CF patients included the well known opportunistic pathogens 

Pseudomonas aeruginosa and Burkholderia cenocepacia, but also species of Prevotella, 

Streptococci, Rothia and Veillonella 22. Generally, lack of microbial diversity correlated 

with poor lung function, but, interestingly, these authors found that antibiotic use did not 

appear to decrease this diversity. Other reports have also indicated that lower diversity in 

both bacteria, as well as fungi, in the lungs of CF patients was associated with poor lung 

function 23,24.

Whole genome sequencing is also being employed to study CF lung colonization and 

potential dysbiosis. As reported this year, shotgun sequencing was used to examine sputa 

from two CF patients collected by several extraction techniques, and provided similar 

results 25. Primary taxa observed in these patients were Haemophilus and Staphylococcus, 

along with Streptococcus, with lower levels of the following taxa detected: the anaerobic 

Veillonella, Prevotella, and Fusobacterium, and the aerobic Gemella, Moraxella, and 

Granulicatella species. In this report, though, little evidence for fungi was detected. Such 

results provide initial interesting clues regarding the microbiota of the CF lung, but 

considerable additional work is now required to understand at the cellular and molecular 

levels how the altered tissues and airway surface liquid (ASL) in CF patients are impacted 

by both normal and pathogenic bacteria.

A unique and highly interesting twist to the typical focus on the CF pathogen Burkholderia 

cenocepacia has been provided by Lieberman, Kishony and colleagues in two papers that 

focused on Burkholderia dolosa. This is typically a soil bacterium, but based on this work is 

now appreciated as an late-stage CF pathogen. This team followed the allelic trajectories of 

a deadly pathogenic outbreak in 14 patients over an impressive 16-year period, and was able 
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to identify specific mutations acquired in B. dolosa genes over this time frame that were 

indicative of adaptive evolution. Alternations were seen in antibiotic resistance genes, 

membrane composition factors, iron scavenging, and oxygen sensitive genes, some of which 

may provide potential new targets for therapeutic intervention 26. Furthermore, B. dolosa 

cells with mutations coexist with those lacking mutations in the lungs of the same patient 

over years 27. Thus, even under strong selective pressure, adaptive mutations do not take 

over, suggesting that the overall mosaic community of B. dolosa, and likely the full 

complement of the microbiota present in these tissues, “crowd source” the job of surviving 

in the lungs of patients. An area of particularly exciting future work will be in defining the 

chemical basis of this coexistence and mutualism within these patients, and in healthy 

individuals as well.

Lung Microbiota, COPD, and Other Non-Asthma Diseases

Defining the lung microbiota associated with chronic obstructive pulmonary disorder 

(COPD) and other non-CF or -asthma lung diseases has also been progressing 28. This is 

particularly important for COPD, which is the third-leading cause of death worldwide 29. A 

2011 study examined healthy patients, non-COPD smokers, and COPD patients, and found 

the COPD group exhibited a limited bacterial community diversity and microscopic 

differences in the anatomical distribution of bacteria 30. A core lung microbiota was 

considered to be composed of Pseudomonas, Streptococcus, Prevotella, Fusobacterium, 

Haemophilus, Veillonella, and Porphyromonas species. Hilty and colleagues found last year 

that the lower airways consisted of a set of Prevotella, Streptococcus and Acidaminococcus 

species, but that no significant difference was seen in the overall composition in this area 

between healthy subjects and those with interstitial lung disease 31. However, diseased lungs 

showed distinctions in localization of Haemophilus influenzae, as well as S. pneumoniae, the 

Neisseriaceae, and the Cellulomonadaceae. Thus, it appears that often it’s not what microbes 

are present, but where they are lurking that matters both in the lungs, and likely elsewhere.

How does rhinovirus infection impact the lung microbiome? In a study of COPD and 

healthy patients after viral infection, only the COPD patients showed a large increase in 

bacteria, particularly in Proteobacteria, and in H. influenzae 32. These changes persisted for 

more than 40 days after infection, at least within the sputum samples examined. In contrast, 

there was stability in normal subjects, both smokers and non-smokers. These results indicate 

that COPD patients who acquire a head-cold can experience profound and long-term 

changes in their lung microbiota, giving H. influenzae a chance to take hold.

Even more recent data suggest that particular measures of sputum IL-1β and IL-18, as well 

as serum C-reactive protein (CRP), can be indicative of H. influenzae presence in non-CF 

lung disease patients 33. Levels of P. aeruginosa, H. influenzae and other bacteria in these 

patients provided a useful stratification indicative of patient outcomes. Specifically, P. 

aeruginosa and H. influenzae dominance correlated with poorer lung function and higher 

interleukin and CRP levels. P. aeruginosa, along with Veillonella species, were also 

indicative of future exacerbations of lung function. Such data indicate that measures of both 

host responses and key microbiota composition can be used clinically to evaluate patients at 

risk for pulmonary failure.
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Lung Microbiota and Asthma

It was shown in 2004 that disruption of the GI microbiota with antibiotics, followed by the 

introduction of a fungal pathogen (C. albicans) into the GI, led to allergic responses in the 

pulmonary tissues of mice when challenged with the mold spore Aspergillus fumigatus 34. 

Without GI antibiotics, mice challenged with fungi in the same way did not develop 

increases in eosinophils, mast cells, interleukins, and mucus-secreting cells in the airway. 

Thus, early links to GI microbiota and lung allergic responses were established, and those 

GI-systemic connections are now extending to many other areas of homeostasis and disease. 

It has been shown that some allergic asthmatics contain more Proteobacterial Haemophilus 

species, akin to the disrupted microbiota of COPD patients, as well as less Bacteroidetes, 

particularly Prevotella, than healthy controls 35.

Children on farms have less likelihood of developing asthma, and it is now known that such 

children are exposed to more bacteria, more bacterial diversity, and more fungal diversity 

than their counterparts raised in non-farm environments 36. The bacteria farm children tend 

to see more include Listeria monocytogenes, Bacilli, and the Corynebacteria. These data 

support the conclusion that proper control of future inflammatory responses in the lung are 

dependent on experiencing microbial diversity at key stages during development and early 

childhood, as well as solid continual exposure throughout life. For example, evidence exists 

that the presence of the stomach-associated microbe Helicobacter pylori, particularly CagA-

positive strains, is protective against childhood asthma in part by the gastric recruitment of 

regulatory T-cells 37.

House dust (HD) is a common lung-specific exacerbating factor in asthma airway hyper-

responsiveness (AHR). Regular low dose HD exposure can reduce AHR and reduce T 

helper cell 2 (Th2) cytokine production in response to future challenges, and that this 

modulation of immune response is dependent on the presence of a healthy microbiota 38. 

Subsequent data have now established that mice exposed to HD accumulate fewer airway T-

cells, experience attenuated Th2-related airway responses, and have a reduction in mucin 

production 39. In these animals, the GI, not lung, microbiota were found to change, 

especially in increases in Lactobacillus johnsonii. Simply giving L. johnsonii to animals, 

remarkably, appears to be sufficient in some respects, as these animals are protected in terms 

of their responses to HD or viral challenges, with lower activated CD8 and CD11 cells, and 

reduced Th2 cytokine production. These results link airway asthma to GI bacteria, and 

highlight L. johnsonii as a potential causative species in this interplay.

However, it would appear that it’s not simply the bacteria, nor environmental allergen 

triggers like HD, that tune the immune system toward a properly modulated response to 

pulmonary irritation. This is also dependent on the metabolic activity of the GI microbiota. 

As shown this year, dietary fiber content changed the GI and the lung microbiota in mice, 

shifting the Firmicutes:Bacteroidetes ratio 40. In the GI, the increase in Firmicute species 

processed high fiber content and generated circulating short chain fatty acids (SCFAs), 

which were protective against allergic asthma response in the lung. Indeed, simply providing 

mice the SCFA propionate leads to altered bone marrow hematopoiesis, more macrophage 

and dendritic cell (DC) precursors, and more DC precursors in the lungs that could act as 
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phagocytes and impair the activation of Th2 cell effector function. In short, at least in mice, 

what they eat impacts how their lungs react. Our understanding of the connection between 

the GI macrocompartment and the pulmonary tissues continues to grow, and highlights how 

crucial the GI is to immune responses in the lungs and throughout the body.

GASTROINTESTINAL COMPARTMENT

Overview

The GI is by far the largest microbial compartment in the body, with trillions of bacterial 

cells residing in the adult human intestinal tract. This region also contains the largest surface 

area in the human body, with the villi and microvilli of the small bowel in particularly 

creating the vast ~250 m2 surface the dwarfs that of the skin, sinuses, nasal cavity and lungs. 

The GI experiences two significant inputs – food through the esophagus, and bile and other 

secretions from gall bladder, pancreas and other small proximal organs (Figure 3). As such, 

the GI acts as an enormous bioreactor for processing sources of energy, as well as chemical 

and biological threats that enter this compartment. Importantly the GI selects, through its 

mucosal epithelium, what materials are brought from the outside in. At its terminus, of 

course, is the major output portal of the GI, although a tremendous amount of fluid is 

absorbed both in the small, and more so, in the large intestines, prior to concentration in the 

feces for elimination.

Here, an attempt is made to focus on recent literature regarding the microbiota and several 

human diseases related to diet and obesity, atherosclerosis, Crohn’s disease, ulcerative 

colitis, autism, and drug- and xenobiotic-processing. A further goal of this section is to 

highlight specific bacterial species and/or microbial and host factors shown to be involved in 

this most complex and dynamic arena of mammalian-microbiota mutualism.

A recent paper that examined individuals from the HMP studied the microbiota in the GI 

from ten different sample points along this organ, and clustered them into four overall 

groups by location site and compositional correlation 41. Their results further our 

appreciation that metabolic activity can be vary considerably between sites, noting in 

particular the higher activities in the oral and stool regions for both sugar utilization and 

hydrogen sulfide (H2S) production. Thus, we are beginning to understand the specific 

chemical, metabolic, and enzymatic differences between the microbiota in distinct regions of 

this complex compartment. More generally, 16S rRNA sequencing and whole genome 

sequencing of 500 cultured isolates from 37 US adults over 5 years has shown that strains 

are resident for decades, and that related people have related GI microbiota 42. Changes in 

composition were observed, though, during weight loss, indicating the dynamic nature of the 

microbiota when the inputs into the GI are significantly altered.

GI Microbiota, Diet and Obesity

The relationship between diet, obesity and the microbiota has been a particularly vigorous 

area of study. A 2009 report examined more than 150 lean and obese adult twins and 

correlated mothers, and defined a core microbiome at the gene level 43. Obesity was linked 

to changes in microbiota, reduced bacterial diversity, and changes in microbial expression of 

a variety of different KEGG (Kyoto Encyclopedia of Genes and Genomes) enzyme classes, 
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including those involved in carbohydrate, lipid, and amino acid metabolism. One distinction 

observed was that expression glycosyltransferase enzymes between lean and obese twins 

were similar, but expression of glycosylhydrolase enzymes, which are employed to harvest 

energy from various dietary sources, varied between these two groups. These effects are 

likely driven by differences in diet as well as microbial composition in the GI. Results from 

future larger, longitudinal studies will be of considerable interest to validate and extend 

these initial findings.

Sonnenburg and colleagues focused in 2010 on a specific dietary component, the fructans, 

and showed that these compounds lead to the proliferation of particular species of 

Bacteroides 44. They further defined a two-component signaling sensor that controls the 

fructan utilization locus in Bacteroides thetaiotaomicron (B. theta.), and they found that the 

locus varies in Bacteroides in a manner that predictably reflects variability in fructan 

processing. Finally, at the molecular level, they established that the presence of a particular 

enzyme, β-2-6-endofrucanase, allows B. theta. to employ and metabolize, β-2-6-linked 

fructans like levan. This arc from dietary components, through GI microbial composition, 

into bacterial transcriptional control, and finally to specific catalytic activities demonstrates 

the power of our current ability to unravel details of mammalian-microbial chemical 

symbiosis.

The same group also examined the ability of the GI microflora to process milk 

saccharides 45. They found that, during early colonization in mice, B. theta. and B. fragilis 

employ a set of genes usually reserved for the degradation of host mucus glycans. Instead, in 

this study, these factors were employed to process the human milk oligosaccharides (HMOs) 

that arrive undigested in the distal GI. Mucus glycans are similar, but not identical to HMOs. 

Indeed, they showed that one HMO-specific glycan, lacto-N-neotetraose, is handled 

particularly well by another GI microbial species, Bifidobacterium infantis, which allows 

this particular bacterium to flourish in the competitive colonization environment of the 

infant GI. These results further advance the view of the microbiota as providing a mosaic of 

enzymatic capabilities designed to benefit from particular metabolic niches in the GI.

The reader is directed to a comprehensive recent review of glycan metabolism and the GI 

microbiota by Koropatkin and colleagues 46. These authors provide great detail on the 

chemical nature and distribution of the carbohydrates in the GI, the microbial enzymes and 

species that degrade them, and a description of the mucus layers present in distinct locations 

in the intestinal tract. The essential role of the GI microbiota in diet and obesity was recently 

highlighted in a study in which intestinal bacteria were disrupted in early mouse 

development via sub-therapeutic levels of antibiotics 47. Marked changes in metabolism 

were observed, and were shown to cause an increase in animal fat mass and obesity. At the 

molecular level, increased carbohydrate to short-chain fatty acid ratios were associated with 

changes in microbial gene expression, and changes in the regulation of hepatic metabolism 

lipids and carbohydrates were also observed in the host.

We clearly need our natural intestinal microflora, not just for proper energy metabolism, but 

also for keeping pathogenic microbes at bay. Bacterial pathogens commonly employ 

virulence genes to initiate a colonizing infection at the GI epithelium but then, once 
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established, they typically must shift from the epithelium to the GI lumen to compete for 

carbohydrate sources of energy. In the healthy GI, though, such potential pathogens are 

outcompeted in the lumen by the non-pathogen symbiotic bacteria that thrive there. This was 

recently demonstrated in elegant detail in germ-free animals lacking an intact GI 

microbiota 48. Thus, commensals usually promote pathogen elimination by ousting the 

nascent pathogens through more efficient carbohydrate metabolism.

More details on how the disruption of normal microbiota impacts pathogen proliferation was 

provided in 2013, when it was shown that Salmonella and Clostridium difficile employ 

unique and distinct strategies of using the mucosal glycans liberated by the healthy 

microbiota 49. Salmonella utilizes fucose and sialic acid obtained from the lumen, and relies 

on a specific set of its own genes to do so. C. difficile, in contrast, scavenges for sialic acid 

produced, but tossed aside, by B. theta. sialidases. Thus, pathogens can employ what healthy 

commensals leave behind. Such data point to specific genes in Salmonella and C. difficile 

that are essential for expansion of these pathogens during GI infections, and suggest that 

other gene products might be found in other potential pathogens in the GI.

Time, of course, matters, too. Diet, drugs, and other compounds can modify not only GI 

microbial composition but also transit time, an important factor in this dynamic 

compartment. For example, increasing the rate by which material transits the mouse GI was 

shown to decrease levels of Peptococcaceae, Eubacteriaceae, and Anaeroplasmataceae, and 

to the relative increases in levels of Bacteroides and Peptostreptococcacea 50. In contrast, the 

antidiarrheal compound loperamide was found to increase the Firmicute:Bacteroides ratio, 

and to significantly decrease Lachnospira taxa. Inclusion of factors that vary transit time 

would be an interesting addition to future studies on GI function and the microbiota.

Humans do not encode the enzymes necessary to digest most dietary fibers, so we rely on 

our GI microbiota to perform the saccharification and fermentation necessary to free the 

simple mono- and di-saccharides we need for energy generation. For example, plant cell 

wall xyloglucans (XyGs) are branched carbohydrates impenetrable to human systems. A 

complex gene locus in GI-resident Bovatus bacteria was found to process XyGs using 

specific gene products that encode, for example, carbohydrate binding proteins, glycoside 

hydrolases, and a specific endo-xyloglycanase that cleaves the XyGs into 

monosaccharides 51. It was further found that these loci are restricted to only a few species 

of bacteria, but that the locus is found widely in the human gut metagenomes in-hand. As 

such, these data provide an excellent example of “specialization” within the GI microbiota.

Finally, an excellent and comprehensive recent report significantly advances our 

understanding of certain aspects of the chemistry, enzymology, and species composition of 

the GI microbiota and its relationship to human diet 52. Human meat-eaters, which produce 

more bile acids, were found to contain more bile acid-tolerant Alistipes, Bilophila and 

Bacteroides taxa than vegans. Carnivores also exhibited decreased levels of Firmicutes, 

specifically Roseburia, Eubacterium rectale and Ruminococcus bromii, which efficiently 

process plant dietary polysaccharides. The expected converse results were observed with 

vegans, who were shown to contain more GI-resident plant-processing bacteria and 

expressed gene products. Additional intriguing and detailed data were also provided at the 
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species and enzyme level. For example, Bilophila wadsworthia, which increases with meat 

consumption, appears to link dietary fat, bile acids and GI inflammatory responses. B. wads. 

was found to grow well upon bile acids, and to express sulfite reductases that produce the GI 

irritant H2S. Generally, both bile salt hydrolases and sulfite reductases demonstrated 

increased expression upon animal-based diets. Thus, such data set the stage for future 

research into the specific molecular and enzymatic dysfunctions associated with a range of 

GI diseases.

GI Microbiota and Atherosclerosis

Recent links between atherosclerosis and the GI microbiota have focused on trimethylamine 

(TMA) and enzymes expressed by both the microbes and the host. For example, dietary 

choline can be converted to TMA via a glycyl-radical intermediate through the actions of a 

set of microbial enzyme that were recently characterized in detail 53. Circulating plasma 

levels of the TMA metabolite trimethylamine N-oxide (TMAO) created by mammalian 

flavin mono-oxygenases, including FMO1 and FMO3, are linked to atherosclerosis 54. 

Bennett and colleagues showed that FMO3 expression was impacted by androgens and bile 

acids and controlled by circulating TMAO levels. Using deuterium-labeled eggs consumed 

by human volunteers with and without antibiotics, a direct link between choline and 

phosphatidylcholine metabolism, the GI microbiota, and TMAO was also recently 

established 55. With antibiotics, less labeled TMAO was observed in human plasma 

samples, demonstrating in healthy human subjects the direct role the GI bacteria play in 

producing this risk marker of atherosclerosis.

L-carnitine from red meat is also metabolized by GI microbiota to TMAO, and specific 

bacteria were recently associated with TMAO production 56. For example, Prevotella and 

some Clostridia species were observed more, while some Bacteroidetes and Lachnospira 

less, in the GI microbiota of omnivores relative to those of vegans and vegetarians. It was 

further found that TMAO appears to inhibit reverse cholesterol transport, and TMAO levels 

in an impressive >2,500 patients were found to be associated with CVD, myocardial 

infarction, stroke, and death. Thus, these data link diet to specific microbial and mammalian 

processes that affect cholesterol homeostasis and CVD progression.

GI Microbiota, Crohn’s Disease and Ulcerative Colitis

One of the most important interactions between the GI microbiota and host systems involves 

innate and adaptive immunity and the control of inflammation. We know that disruptions in 

these processes contribute to the progression of numerous diseases, including Crohn’s 

Disease and ulcerative colitis, and even colitis-associated colorectal cancer. To keep “our 

side of the street” in proper immunological check, we need tight epithelial cell junctions and 

a layer of protective mucus, along with a range of secreted antimicrobial peptides and IgA 

molecules. Furthermore, on and within our cells, we need our pattern recognition receptors, 

including Toll-like receptors (TLRs), inflammasome-associated nucleotide-binding domain 

leucine-rich repeat (NLR) proteins, and C-type lectin receptors (CLRs), which monitor 

specific microbial factors, like cell wall components, pili and pilus-associated proteins, 

flagellar factors, and nucleic acids 57. These systems control our responses to our GI 

microbiota, and a failure to control these responses properly appears to significantly 
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contribute to the disease states listed above. Indeed, mutations in the NLR Nod2 are 

associated with development of Crohn’s disease. It was recently shown that the 

inflammasome-containing NLRP6 protein is required in mice for mucus secretion in the 

large intestine 58. NLRP6 controls the exocytosis of mucin granules from goblet cells, and 

lack of NLRP6 eliminates proper goblet cell autophagy and mucin secretion, leading to the 

inability of mice to clear pathogenic bacteria.

With respect to mucosal homeostasis and GI inflammation, the antigen-presenting molecule 

CD1 on GI epithelial cells is known to present self and microbial lipid antigens to natural 

killer T-cells, (NKTs), and reductions in surface CD1 molecules leads to GI 

inflammation 59. The mechanism of CD1’s protective effects is through STAT3-dependent 

IL-10 production, along with HSP110 and more CD1, and all are involved in controlling 

inflammation. Deletions of any of these factors leads to a colitis-like pathology likely 

through improperly controlled inflammation. One mechanism for mammalian immune 

system regulation by specific bacterial-derived chemicals appears to involve 

glycosphingolipids. It was recently shown that a specific GI B. fragilis isolate produced an 

alpha-galactosylceramide capable of agonizing NKTs 60. Furthermore, it is clear that the 

receipt of proper microbial signals, in the form of bacterial cellular debris, collected by GI-

proximal immune cells is required to produce IL-1β, which then employs the GM-CSF from 

innate lymphoid cells (ILCs) to produce the proper level of regulatory T-cells (Treg) for 

immune system homeostasis 61. Diet also impacts local and systemic inflammation through 

the production of short chain fatty acids (SCFAs) like butyrate and acetate, which impact 

Treg cell function 40.

If homeostasis is disrupted through tissue injury, neutrophils are central inflammatory 

responders, and the microbiota are involved in controlling neutrophils in the GI. What about 

elsewhere in the organism? Rawls and colleagues showed that GI bacteria lead to increases 

in serum amyloid A protein and NF-κB activation, and then to the subsequent neutrophil 

increases and migration to tissue injury sites 62. Direct connections between diet, bile acid 

conjugation in the liver, and GI bacteria that lead to inflammation were provided in 2012 63. 

High-milk-fat fed mice showed increased GI levels of B. wads., a potential pathogen that 

produces H2S. Proinflammatory T helper type 1 cells (Th1) increase as a result, and this 

leads to colitis in IL- 10-knockout mice. The molecular pathway appears to involve the 

production of taurineconjugated bile acids in the liver, which when sent to the GI provides 

more sulfur to B. wads. in the dysbiotic GI, and the sulfur is used by this species to produce 

more GI-damaging H2S.

The microbiota are involved in colitis-associated colorectal cancer (CRC). In the 

inflammatory state associated with CRC, increases in Proteobacteria were observed 64. 

Furthermore, if IL10-knockout mice are colonized with normal Escherichia coli, they 

develop CRC. Removal of the polyketide synthase (PKS) genotoxic island from E. coli, 

however, leads to less CRC in IL-10-knockout mice without impacting inflammation. Thus, 

inflammation appears to allow bacteria capable of producing toxic compounds, like those 

generated by the E. coli PKS, to become isolated in particular sub-niches of the GI, and to 

promote subsequent neoplastic phenotypes. Indeed, PKS-containing bacteria are known to 

be associated with the mucosa of patients with CRC.
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GI Microbiota and Autism

Even the incredibly complicated etiology of autism is now preliminarily linked to the GI 

microbiota. Using a mouse model that reflects symptoms of autism, researchers noted 

gastrointestinal barrier function defects and microbial dysbiosis 65. However, they found 

that providing B. fragilis to these mice early in development reduced their autism-like 

behavior. They further showed that elevations in GI-produced 4-ethylphenylsulfate (EPS) 

were directly linked to symptoms of autism in mice. Providing EPS, which was elevated 

more than 40-fold in the mice with autism-like symptoms, to normal mice resulted in some 

of the behavior abnormalities associated with the autistic model mice. Such data intriguingly 

highlight the intimate communication at play between our GI-resident bacteria and the 

systems that control our neurodevelopment and behavior, but await further validation in 

future studies.

GI Microbiota, Drugs and Xenobiotics

It has been known for decades that the microbiota, particularly in the GI, can play a 

significant role in the efficacy and elimination of drugs and other xenobiotic compounds 66. 

Recent data have provided an exceptional framework for understanding how therapeutic 

reagents can impact the GI microbiota. Maurice and colleagues defined elegant means for 

distinguishing between healthy and non-healthy GI microbes, and then measured how both 

antibiotics and non-lethal drugs altered this equilibrium 67. As expected, antimicrobial 

compounds significantly shifted the balance towards a less healthy GI microbiota. They 

found that the more highly active cells in xenobiotic-treated GIs were of the Firmicute order, 

while the Bacteroidetes were decreased; within the less active microbes, enrichments in 

Bacteroidetes, Bifidobacteria, and Lachnospiraceae were also observed. A view of family-

level gene expression data revealed that antibiotic resistance pathways were up-regulated in 

the presence of antimicrobial compounds. With all the therapeutics examined, increases in 

bacterial xenobiotic metabolism factors, as well as stress response genes, were also 

observed. Interestingly, these authors also linked specific microbial enzymes (reductases), 

transporters (for sugars and small molecules), and transcription factors that were impacted 

by specific drugs such as digoxin, nizatidine, sulfasalazine. Such results indicate that we are 

perhaps ready to examine how individual enzymes expressed by the GI bacteria can impact 

individual drugs.

Indeed, the same group went on to do just that, studying how the cardiac glycoside digoxin 

is inactivated by enzymes expressed by a single GI-resident microbial species, Eggerthella 

lenta 68. This bacterium up-regulates the expression of a unique genetic operon in response 

to the presence of digoxin. The operon encodes enzymes determined to be cardiac glycoside 

reductases termed Cgr1 and Cgr2, both of which are homologous by sequence to bacterial 

cytochromes and are expected to be able to use digoxin as an alternative electron acceptor. 

The only difference between activated and inactivated dihydrodigoxin is the reduction of a 

single double-bond in the drug. Based on where these reductases are located in the metabolic 

network of Eggerthella, the authors predicted that the operon would be repressed by dietary 

arginine or dietary protein, and their results supported this hypothesis. In gnotobiotic mice 

and in mice provided specific diets or dietary supplements, predicted changes to serum and 

urinary digoxin metabolites were observed. These data support the conclusion that we can 
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understand and harness the actions of single gene products in the vast and diverse GI 

microbiome, and that knowledge could, with considerable future development, support 

clinical care.

A more direct connection between specific enzymes and clinical outcomes was provided by 

the author and colleagues in 2010, when it was demonstrated that the GI microbiome can be 

selectively modulated using targeted small molecules 69. The problem addressed was the 

acute dose-limiting toxicity of the anticancer drug irinotecan (CPT-11), a mainstay treatment 

in colorectal, pancreatic, and other solid and non-solid cancerous malignancies. Irinotecan is 

inactivated by the human sugar-conjugating UDP-glucuronosyltransferase (UGT) enzymes, 

the primary Phase II drug metabolism process, and these drug-glucuronic acid conjugates 

are sent to the GI for elimination. There, though, they are substrates for sugar scavenging β-

glucuronidase enzymes expressed by the GI microbiota. These GI bacterial enzymes 

produce the active form of irinotecan, which kills the epithelial cells lining the large GI and 

generates severe diarrhea. In most cases, this side effect requires reductions in or 

terminations of Irinotecan treatment, resulting in losses in antitumor activity.

We identified potent and non-lethal inhibitors of bacterial β-glucuronidases that proved 

effective in living aerobic and anaerobic bacteria, and ameliorated Irinotecan-induced 

diarrhea in mice 69. The non-lethality of these compounds was considered important in 

stopping this single catalytic activity without disrupting the microbiota essential for GI 

health. Furthermore, these inhibitors were highly selective for the bacterial enzymes relative 

to the human enzyme, which is essential for the lysosomal processing of larger glycan 

substrates 70. Germ line disruptions of human β-glucuronidase gene causes the lethal 

lysosomal storage disease Sly Syndrome. These data establish that the two million genes of 

the microbiome, which dwarfs our human genome by 100-fold, contains tractable 

therapeutic targets for unmet medical needs 71.

This approach has proven effective with an orthologous group of drugs with a distinct type 

of GI toxicity – the NSAIDs, which produce longitudinal small intestinal ulcers in addition 

to their wellappreciated gastric toxicity 72. It is known that 40% of fatalities caused by 

NSAID toxicity are due to intestinal, not stomach, damage. In mouse models of toxicity 

caused by three NSAIDs, diclofenac 73, indomethacin 74, and ketoprofen 75, oral delivery of 

bacterial glucuronidase inhibitors significantly reduced small intestinal ulcers.

Two recent reports connect the GI microbiota, systemic immune function, and therapeutics 

in a highly intriguing manner. First, Iida and coworkers demonstrated that for two anticancer 

drugs, CpG-oligonucleotides and platinum compounds, efficacy required the commensal GI 

microbiota such that tumor-infiltrating myeloid-derived cells would find their way to the 

tumor-microenvironment 76. Once in place, these immune cells generate the reactive oxygen 

species and other cytotoxic factors that attack the tumor. Second, it was shown that the 

anticancer drug cyclophosphamide works in part by the same mechanism of generating a 

host anti-tumor immune response. Viaud and colleagues demonstrated that 

cyclophosphamide requires the Gram-positive bacteria themselves to relocate to lymphoid 

tissues 77. There, the microbes stimulate particular pathogenic T helper cells, as well as Th1 

factors, that effectively tackle the tumor. Taken together, these data significantly advance 
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and specify our understanding of how the innate immune system can be ramped up by 

antineoplastic compounds and the GI microbiota to attack tumors located at distant sites in 

the body. The implications of this work are both direct and indirect in terms of 

understanding how specific drugs might be improved, and appreciating opportunities to 

develop new therapeutic approaches to chemotherapy.

Finally, a 2014 paper in Immunity connects a specific metabolite, indole 3-propionic acid, 

produced by a specific intestinal microbe, Clostridium sporogenes, to changes in 

mammalian gene expression that directly impact GI integrity 78. This bacterial tryptophan 

derivative was shown to be involved in activating the mammalian nuclear xenobiotic 

receptor PXR. Through PXR, this compound up-regulates the expression of proteins 

involved in intestinal tight junctions, and down-regulates enterocyte TNAα expression, 

which in turn decreases levels of the Toll-like receptor TLR4. TLR4 activates the innate 

immune system in response to bacterial lipopolysaccharides. Thus, these authors establish 

that a mammalian transcription factor is regulated by a microbial compound to keep GI 

barrier function intact, and to limit the immune system’s response to the constant presence 

of bacteria in the GI. These data further deepen our appreciation of chemical mutualism at 

play in mammalian-microbial symbiosis, and hint at additional targets that could be 

modulated for therapeutic intervention.

FUTURE DIRECTIONS

With continually evolving microbiota sequencing efforts well in place, we now have vast 

opportunities to gain new knowledge about the microbiota and its chemical symbiosis with 

mammalian tissues, particularly in understanding how local and non-local disruptions in 

healthy mucosal epithelial-microbial interactions contribute to disease in the nasal, lung and 

intestinal compartments. As outlined above, it is when models of disorder, as well as studies 

in humans, are combined with sequencing, molecular and microbial biology, chemistry, and 

biochemistry that we gain our most powerful appreciation of our complex microbiota and 

their niches of function. Examples of important recent steps forward include identifying 

specific glycan-cleaving enzymes associated with energy generation 44, pathogenesis 48,49, 

and drug toxicity 67, as well as the reductases linked to drug inactivation with digoxin 68. 

These insights indicate that basic and applied understandings of chemical symbiosis is 

highly tractable, and even capable of modulation by rational small molecules 69. Future 

studies of interest might include carefully mapping within the gastrointestinal tract, for 

example, longitudinal and cross-sectional changes in microbial ecology and gene expression 

in response to perturbations, focusing initially on already established targets of interest (e.g., 

see Refs. 67-69). The nasal-sinuses and upper-airways were also highlighted in this review 

in part because of the relative ease with which novel therapeutics might be delivered to these 

tissues.

From a structural and chemical biology perspective, a conceptually simple but powerfully 

tractable line of investigation would be the detailed characterization of the sugar-cleaving 

enzymes encoded by the GI microbiota. As outlined elegantly in 2010, these highly active 

and diverse carbohydrate-active enzymes (CAZymes) are really only present in our 

microbiota 79. As humans, we encode only a handful, and yet we can access a huge amount 
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of dietary material because of our mutualistic partners in the GI, who use a modular set of 

sugar-active enzymes and other systems to get what they need, before we take what they 

leave behind. Such approaches could also be applied to the lung and nasal-sinus 

compartments with respect to mucin-processing factors, for example, with an initial focus on 

energy generation, a key driver of relative microbial success. We started understanding 

biochemistry decades ago by studying metabolism, and this could continue now with efforts 

to map the manner in which energy utilization impacts the microbiota, the mucosal epithelia, 

and human health.
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HIGHLIGHTS

• Complex symbioses exist between human systems and the microbiota

• The most intimate contacts between domains of life occur at the mucosal 

epithelia

• Three mucosal compartments are considered: the nasal-sinuses, lungs, and 

intestines

• New opportunities for the rational modulation of the microbiota are reviewed
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Figure 1. 
The small 18 cm2 surface area of the Nasal-Sinus Compartment is skin-like at the nostrils 

but is then lined by mucosal epithelia (mucosa) and colonized with microbiota (orange). Air, 

including particulate and some biological matter, is passed through on its way to the lungs, 

the major output, although some mucus-entrapped matter is passed to the gastrointestinal 

tract. Small arrows across the mucosa indicate local absorption and secretion, including 

mucus delivery. Chemicals absorbed across this still external nasal-sinus mucosa then enter 

the human body, passing through the plasma and into the heart for circulation. Diseases 

associated with the nasal-sinus compartment represented are Staphylococcus aureus 

infection and rhinosinusitis, with some features highlighted (see text for details).
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Figure 2. 
The larger 70-100 m2 surface area of the Lung Compartment is composed of the UPPER 

more microbial colonized airways and the LOWER airways that are non-sterile but contain 

microbiota (orange). Local exchange of materials across the mucosal epithelia that line this 

compartment (mucosa) are indicated by the small arrows, and materials absorbed into the 

human body via this route, including O2, are carried by the plasma to the heart for 

circulation. Microbiota features of the lung diseases cystic fibrosis (CF), chronic obstructive 

pulmonary disorder (COPD), and asthma associated are highlighted, and are elaborated in 

the text.
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Figure 3. 
The vast 250 m2 surface area of the Intestinal Compartment is colonized by a diverse 

community of trillions of commensal bacterial cells (orange) and lined by mucosal epithelia 

(mucosa) unique in structure and function to each region of the GI tract. Local exchange 

across the mucosa are indicated by small arrows. Distinct from the other major mucosal 

tissues presented here, materials absorbed from the intestinal compartment pass via the 

portal vein to the liver (red) prior to potentially reaching systemic circulation. Furthermore, 

this compartment is also distinct in having two major input sources, the food and other 

materials from the oral cavity, and the liver-generated bile (blue) and other secretions from 

the local organs like the pancreas and gall bladder. Features associated with the microbiota 

and diet and obesity, cardiovascular disease (CVD), inflammation, and drug toxicity are 

highlighted. Some links to the unique roles the bile and liver play in sending and receiving, 

respectively, material from the GI are noted. As indicated, the GI microbiota also impact the 

other compartments considered via the immune system.
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