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Abstract

The replication of herpes simplex virus type 1 (HSV-1) is associated with a high degree of 

homologous recombination, which is likely to be mediated, in part, by HSV-1-encoded proteins. 

We have previously shown that the HSV-1 encoded ICP8 protein and alkaline nuclease UL12 are 

capable of catalyzing an in vitro strand-exchange reaction. Here, we show, by electron 

microscopy, that the products of the strand exchange reaction between linear double-stranded 

DNA and circular single-stranded DNA consist of the expected joint molecule forms: sigma, 

alpha, and gapped circles. Other exonucleases, such as lambda Red α, which, like UL12, digests 

5′-3′, as well as Escherichia coli exonuclease III (ExoIII), which digests 3′-5′, could substitute for 

UL12 in the strand exchange reaction by providing a resected DNA end. ICP8 generated the same 

intermediates and strand exchange products when the double-stranded DNA substrate was 

preresected by any of the nucleases. Using substrates with large regions of non-homology we 

found that pairing by ICP8 could be initiated from the middle of a DNA molecule and did not 

require a homologous end. In this reaction, the resection of a DNA end by the nuclease is required 

to reveal homologous sequences capable of being paired by ICP8. This study further illustrates the 

complexity of the multi-functional ICP8 protein.
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Introduction

The herpes simplex virus type 1 (HSV-1) is a DNA virus that replicates in the nucleus of its 

host. The 152 kb double-stranded viral genome is packaged as a linear molecule containing 

both nicks and gaps that are randomly distributed along its length.1 The mechanism for the 

replication of HSV-1 DNA is not fully understood, but the complex nature of the replication 
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intermediates implies that several steps are involved in this process. Until recently, it was 

thought that the replication of HSV-1 follows the pathway used by lambda phage in which 

the HSV-1 DNA circularizes upon entering the host nucleus, and replication begins in the 

theta mode.2 According to the model, at some point a switch occurs and head-to-tail 

concatemers of the genome are produced which are subsequently cleaved into unit-length 

linears. We have long held that homologous recombination is likely to be an integral part of 

the replication process,3 on the basis of several observations: (1) a high level of 

recombination is observed in cells infected with HSV-1, and it is specifically associated with 

viral DNA replication temporally and in its requirement for viral genes;4–8 (2) 

recombination rates between different strains co-infecting the same cells are high;5,9–12 (3) 

unique regions of the genome that are bounded by repeated elements invert relative to one 

another during replication and such inversions are detectable as soon as newly replicated 

DNA is detected;13–15 (4) replication intermediates in HSV-1-infected cells are present in a 

non-linear structure which cannot enter a pulsed-field gel, even after digestion with a 

restriction enzyme which has a single recognition site within the HSV genome;13,14,16,17 (5) 

the intermediates of HSV-1 replication are head-to-tail concatemers that are highly 

branched, with X and Y junctions;18–22 (6) we have shown previously that virus-encoded 

proteins are capable of participating in recombination events.23,24 It is possible that HSV-1 

uses both viral and cellular recombinases to mediate the recombination associated with its 

replication.25 Here, we focus on the viral recombinase.

The HSV-1 protein that is clearly central to these recombinational events is ICP8, which is 

an extraordinary protein, in that it is the first example of a protein that shares properties with 

two different distinct classes of DNA-binding proteins: the single strand-binding proteins 

(SSBs) such as Escherichia coli SSB, T4 gene 32 protein, and RPA, and secondly, the 

recombinases such as RecA, UvsX and Rad 51. As an SSB, ICP8 stimulates HSV-1 

replication in vitro and binds single-stranded DNA tightly, melting secondary structure.26,27 

It also facilitates the reannealing of two complementary single-stranded DNAs, a hallmark 

of the SSBs.28 On the other hand, while the filaments formed by the classic SSBs on ssDNA 

are smooth or beaded in appearance, the ICP8-ssDNA filaments are helical, a structural 

feature of RecA, UvsX and Rad 51. Furthermore, ICP8 protein, like RecA, forms helical 

self-filaments in solution in the absence of DNA.29 In a study from one of our laboratories, 

ICP8 was found to catalyze strand transfer over homologous DNAs of ∼1 kb.24 While this 

activity may have been facilitated by an exonuclease activity, this study did reveal a recA-

like property.

ICP8 interacts with many HSV-1 proteins, including the alkaline nuclease, encoded by the 

UL12 gene.30,31 UL12 is part of a family of exonucleases that share homology and that are 

now known to be encoded by many, if not all linear double-stranded viruses of plants, 

insects, bacteria and mammals.32,33 For instance, all herpes viruses sequenced to date, as 

well as the insect virus, baculovirus, encode a nuclease member of this family.32,34 This 

evolutionary conservation suggests that these nucleases play an important role in the life-

cycle of dsDNA viruses with linear genomes. Several of these exonuclease family members 

have been shown to associate with strand-pairing proteins, forming a unit that has 

recombinase activity. The lambda Red alpha and beta proteins and E. coli RecE/T are 
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examples of these protein pairs that have proven recombinase activity.35–37 Recently, UL12 

and ICP8 have also been shown to work together to mediate a robust strand exchange 

activity in vitro.23 This activity, indicative of recombinases, suggests that UL12/ ICP8 

constitute a recombinase and could contribute to the recombination associated with HSV-1 

replication. While UL12 is not an essential gene, viruses lacking UL12 are severely 

defective, producing 100– 1000-fold fewer progeny virus.38 Furthermore, cells infected with 

the UL12 null virus contain replicating DNA that has an aberrant structure.17

The strand exchange reaction catalyzed by UL12 and ICP8 involves the 5′′3′ resection by 

UL12 of the double-stranded DNA, followed by annealing of the revealed single-stranded 

tail to another homologous single-stranded region, which is mediated by ICP8. This reaction 

is depicted in Figure 1A. However, many details of its mechanism of action are still 

unknown. Here, we sought to examine the strand exchange reaction catalyzed by UL12 and 

ICP8 in more detail, including the examination of the reaction products by electron 

microscopy (EM). Our results verify that the strand exchange reaction mediated by UL12 

and ICP8 produced intermediates that are typical of classical strand transfer reactions. We 

also show that the UL12/ICP8 strand exchange reaction could be separated into two parts, 

resection and annealing. Furthermore, other exonucleases could substitute for UL12 in the 

reaction, including those that digest in the 3′-5′ direction. ICP8 was also capable of pairing 

strands even when there was a region of non-homology blocking the end of the DNA to be 

transferred. Overcoming this block to pairing did, however, require the action of a nuclease, 

in order to reveal homologous single-stranded DNA beyond the non-homologous region.

Results

EM visualization of the intermediates and products in a UL12/ICP8-catalyzed strand 
exchange reaction reveals structures typical of classic strand exchange reactions

We previously demonstrated that ICP8 and the UL12 alkaline nuclease together mediate a 

strand exchange reaction in vitro.23 The substrates used for the reaction were circular single-

stranded M13 virion DNA, and linear double-stranded M13 DNA. The outline of this 

reaction and its products are shown in Figure 1A. Here, we have further analyzed this 

reaction by electron microscopy, and we have confirmed that the structures typical of classic 

strand exchange reactions are in fact produced by UL12/ICP8.

The DNA substrates used for this analysis consisted of the M13 substrates described above, 

as well as similar substrates prepared from bacteriophage ϕX174 DNA. Both sets of 

substrates gave rise to the same strand exchange products. The strand exchange reaction is 

carried out at a buffer pH that is less favorable for UL12 nuclease activity (pH 7.5 rather 

than pH 8–9), but is more physiological. In addition, the conditions supporting low nuclease 

activity prevent excessive degradation of the substrates and the products. The assay buffer 

includes 1 mM MgCl2 and 40 mM NaCl, conditions which support all of the processes 

necessary for strand exchange—resection, strand pairing, and strand melting. The molar 

ratio of ICP8 to UL12 is approximately 125:1. ICP8 is present at an amount sufficient to 

coat all of the ssDNA in the assay, at a ratio of ten bases per ICP8 molecule.39 This ratio of 

ICP8: ssDNA was found to be optimal for the strand exchange reaction.23 The ICP8 protein 

used in the assays was prepared by two different protocols.23,40 Both preparations of ICP8 
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yielded the same results. Figure 1B shows the products of the strand exchange assay using 

ϕX174 DNA as analyzed by agarose gel electrophoresis. ICP8 alone could not mediate 

strand exchange, even after an extended incubation (Figure 1B, lane 3). This demonstrates 

that ICP8 is unable to mediate pairing between long dsDNA substrates and ssDNA. When 

both UL12 and ICP8 were incubated with the DNA, strand exchange products were 

detectable as species that migrate more slowly than the original DNA substrates. The initial 

products (Figure 1B, lanes 4–6) migrate more slowly than the products found after a longer 

incubation (Figure 1B, lanes 7–9). This is consistent with their assignment as sigma and 

alpha forms which would be expected to migrate more slowly than the gapped circle form, 

the end-point of the strand exchange reaction. To confirm the identity of these various 

forms, we analyzed the products of the reaction by electron microscopy. Samples were 

prepared for visualization using two different protocols. In one, UL12 and ICP8 were not 

removed from the DNA prior to visualization (Figure 2A – C), and in the other, the proteins 

were removed by treatment with proteinase K. In the latter case, the DNA was subsequently 

coated with E. coli SSB, which extends and thickens the single-stranded DNA (SSB-bound 

ssDNA is extended to about one-third the length of an equivalent segment of dsDNA) 

(Figure 2D – F). ICP8-bound ssDNA tends to collapse and coil on itself, making it difficult 

to follow the contour of these structures. Nevertheless, the sigma (Figure 2A), alpha (Figure 

2B), and gapped circle (Figure 2C) forms are readily seen. Deproteinization followed by 

complexing with SSB gave an even clearer picture of these structures. The sigma form 

(Figure 2D) represents the first step of pairing of the resected double-stranded molecule with 

the circular single-stranded DNA. As strand exchange progresses, the nonpairing strand of 

the dsDNA substrate is extruded, forming one tail of the alpha structure (indicated by an 

arrow in Figure 2E). This 5′ single-stranded tail is a substrate for the UL12 nuclease and, 

upon longer incubation, more of the alpha structures found had a shortened or eliminated 5′ 

tail (data not shown). The sigma and alpha forms were more predominant in reactions that 

were incubated for a short time, while the gapped circle form (Figure 2F) was the most 

common form found upon extended incubation (Table 1). The identification of these forms, 

which are characteristic of classic strand exchange reactions,41–43 demonstrates that UL12/

ICP8 produces the same products as bona fide recombinases and supports our previous 

suggestion that this two-enzyme complex functions as such in infected cells.23

ICP8 alone catalyzes strand exchange when presented with preresected ends of dsDNA 
complementary to a ssDNA circle

We have demonstrated that UL12 and ICP8 together mediate a robust strand exchange 

reaction, and ICP8 alone is unable to accomplish this over the full-length M13 and ϕX174 

templates. However, the reaction consists of two elements, resection and annealing, and we 

wanted to test whether these two processes were separable. Such a separation has been 

demonstrated for RecE/T, where RecT is able to pair DNA that has been preresected by 

RecE.35 Figure 3A shows that ICP8 was also able to pair DNA that had been preresected by 

UL12. In this experiment, the dsDNA substrate was a 1.5 kb PCR-generated fragment that 

was labeled uniformly with [32P]dCTP during synthesis. Use of this substrate allowed the 

amount of digestion by UL12 to be monitored by measuring the acid-soluble radioactivity 

released during the course of the preresection. This nuclease assay showed that the DNA 

was resected an average of 330 bases per strand (data not shown). The resected DNA was 
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deproteinized, purified and used for the strand exchange assay shown in Figure 3A. The 

ssDNA acceptor used was M13mp18 with the 1.5 kb fragment inserted into the BamHI and 

EcoRI sites, which is referred to as M13wins (for “M13 with insert”). UL12 and ICP8 

produced a slowly migrating strand exchange product when the mock-preresected 1.5 kb 

fragment was used for strand exchange (Figure 3A, lane 4). The exchange product was not 

observed when the DNA substrates were incubated with UL12 (lane 3) or ICP8 (lane 2) 

alone. In contrast, when the DNA had been resected by nuclease, ICP8 alone was competent 

to produce strand exchange products (lane 6). These results were confirmed by electron 

microscopic analysis. In this experiment, full-length linear ϕX174 dsDNA was first resected 

by UL12, and the DNA was deproteinized and repurified. The DNA was then incubated 

with the ssDNA and ICP8 for strand exchange. For better visualization, following strand 

exchange, the DNA was deproteinized and coated with E. coli SSB. Figure 3B, C, and D, 

demonstrate that all of the joint molecule forms, sigma, alpha, and gapped circle, were 

produced by the incubation of ICP8 alone with the ssDNA and preresected dsDNA. In these 

experiments, the single-stranded tail of the alpha form was generally longer and was 

detectable upon extended incubation, in contrast to reactions conducted in the presence of 

UL12. The presence of the alpha form indicates that ICP8 was not merely pairing two 

complementary single-stranded regions, but was performing true strand exchange, with 

displacement of the non-pairing strand.

Other exonucleases can substitute for UL12 in the strand exchange reaction

We have demonstrated that the strand exchange reaction could be separated into two steps, 

resection and annealing. We therefore asked whether other exonucleases could substitute for 

UL12. We used both phage lambda Red α (lambda exo), which digests 5′-3′, as well as E. 

coli exonuclease III (ExoIII), which digests 3′-5′. Figure 4A demonstrates that all of the 

exonucleases could enable ICP8 to catalyze strand exchange, seen clearly at the 20 and 40 

minute time-points (Figure 4A, lanes 4–5, 7–8, and 10–11). For electron microscopic 

analysis, ϕX174 DNA that had been preresected by lambda exo and by ExoIII was 

incubated with ICP8. Figure 4 (B–E) presents examples of the resulting products. These 

products appear identical with those seen with UL12 and include all of the joint molecule 

forms. This shows that other exonucleases are capable of providing ICP8 with the single-

stranded DNA necessary to initiate strand exchange. It also demonstrates that ICP8 can 

mediate strand exchange irrespective of the polarity of the single-stranded end; pairing can 

begin with either a 3′ or a 5′ end.

Strand exchange by ICP8 past regions of non-homology

We have shown that ICP8 is capable of mediating strand exchange when it is presented with 

either a 3′ or 5′ single-stranded end. We next asked whether ICP8 required a homologous 

end in order to initiate the pairing reaction. Previous studies have shown that joint molecule 

formation by RecA is blocked by non-homology at the 3′ end of the pairing strand.44–46 To 

examine this, we used substrates with regions of terminal non-homology to determine 

whether these regions would block strand transfer by ICP8. Figure 5A – D outlines the 

substrates, based on M13wins, used for these experiments. The rectangle represents the 1.5 

kb insert region. When the RF DNA is cut with EcoRI, the 1.5 kb insert is at the 3′ end of 

the pairing strand, which would represent a block of non-homology when UL12/ICP8 are 
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used to pair this DNA with ssM13mp18. Cutting the dsDNA with BamHI results in the 

positioning of the 1.5 kb region at the 5′ end of the pairing strand, and digestion with PacI 

leaves 2 kb of homology at the 3′ end before the homology is interrupted by the 1.5 kb 

insert. These substrates were used for strand exchange mediated by UL12 and ICP8. When 

the dsM13wins substrates were paired with the homologous ssM13wins DNA, the normal 

strand exchange products were seen by agarose gel analysis, all displaying the same kinetics 

(data not shown). However, when the dsM13wins substrates were paired with ssM13mp18 

DNA, different patterns of strand exchange products were produced, depending upon the 

position of the region of homology within the dsDNA. Figure 5E shows that the DNA 

digested with BamHI (lanes 1–5) displays normal kinetics, with early strand exchange 

products migrating more slowly than later products. With this substrate, pairing begins with 

DNA that shares homology with M13mp18, so there is no delay in producing a strand 

exchange product (Figure 5B). The final strand exchange products would be expected to 

have a 1.5 kb unpaired region at the 5′ end of the pairing strand. The products of this 

reaction, as analyzed by EM, were practically indistinguishable from reactions with 

perfectly homologous DNA pairs. The expected 1.5 kb tail was most likely removed by the 

action of the UL12 nuclease, since it was not usually found on the gapped circles produced 

(Figure 6A, left, and B). However, a rare example of a late alpha form shown on the right in 

Figure 6A provides a view of the strand exchange process with this substrate. It presents an 

interesting example in which the strand exchange reaction has almost gone to completion 

judging from the very small section of ssDNA left in the circle. At the same time, a dsDNA 

tail of aproximately 1.6 kb is still attached to the strand exchange junction, as is the SSB-

coated ssDNA displaced strand. It appears that in this case UL12 digestion at the 5′ non-

homologous end was very limited. These results taken together confirm that strand exchange 

by UL12/ICP8 progresses without interference when substrates possessing non-homology at 

the 5′ end of the pairing strand are used.

Strand exchange with EcoRI-cut M13wins resulted in a different distribution of products on 

the agarose gel. The early time-points indicate that the DNA underwent more degradation 

than strand exchange, and diffuse strand exchange products were produced only at later 

time-points (Figure 5E, lanes 6–10). Thus, the 1.5 kb region of non-homology at the 3′ end 

of the pairing strand appeared to present a block to strand transfer, but only a temporary one. 

Ultimately, strand exchange products were produced that could be visualized by EM, 

although they were difficult to discern on the agarose gel (Figure 5E, lanes 8–10). EM 

analysis of these products clearly showed the unpaired 1.5 kb region as a tail on the gapped 

circle molecules (Figure 6C – E). This demonstrates that ICP8 does not require a 

homologous end in order to initiate strand pairing and transfer.

The substrate cut with PacI is useful for testing whether ICP8, once it has initiated strand 

transfer, is capable of driving the transfer past large regions of non-homology. The agarose 

gel shows that strand exchange products are produced early (Figure 5E, lane 12). This is 

expected, since the 3′ end of the pairing strand begins with 2 kb of sequence homologous to 

M13mp18 (Figure 5D). Later products are more diffuse, and it appears that much of the 

DNA has been degraded (Figure 5E, lanes 13– 14). EM analysis of this reaction revealed 

gapped circle molecules with a looped-out region of single-stranded DNA (Figure 6F – H). 

Measurement of the various segments of these molecules showed that the initial 2 kb were 
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paired in each of the molecules (marked by an arrow), followed by the 1.5 kb single-

stranded region (marked by a star). The region that is paired beyond the 1.5 kb loop was 

found to be short, due to extensive digestion of the 5′ end of this DNA by UL12. The 

extensive digestion seen at the 5′ end of the pairing strand suggests that more UL12 

digestion was also needed at the 5′ end of the displaced strand to obtain strand exchange 

final products with the PacI cut DNA than was required when the other substrates were 

used. This implies that UL12 digestion beyond the 1.5 kb region of non-homology was 

required in order for ICP8 to continue pairing the homologous DNA. It appears that ICP8 

was able to mediate strand transfer past a region of non-homology, but only if the 

complementary DNA to be paired was revealed as single-stranded DNA by further nuclease 

action.

In order to test this hypothesis, we used a 3.5 kb substrate which was generated and 32P-

labeled by PCR using the M13wins DNA as template. The substrate has the 1.5 kb non-M13 

region at the 3′ end of the pairing strand, and the remaining 2 kb is M13 sequence. Two 

more substrates were also used, one with the entire 1.5 kb fragment removed, leaving only 

the 2 kb region, and another truncated such that 170 bp of the insert sequence remains at the 

3′ end of the pairing strand. The 3.5 kb substrate does produce a stable “strand exchange” 

product when boiled and allowed to anneal with M13mp18 (data not shown). These 

substrates were paired with either M13mp18 or M13wins ssDNA in a UL12/ICP8-mediated 

strand exchange reaction. Samples were removed for assay of nuclease digestion at each 

time-point. The results of these experiments are presented in Figure 7. These data show that 

when the 2 kb substrate is used, which is completely homologous to both M13mp18 and 

M13wins, the strand exchange products with both acceptor ssDNAs are produced with the 

same kinetics (Figure 7A). When there is a 170 bp region of non-homology at the 3′ end of 

the pairing strand, there is a delay in pairing this DNA with M13mp18 (Figure 7B). The 

delay appears to correlate with the amount of time required to remove the 170 bp of non-

homology and reveal homologous DNA (Figure 7D). It should be noted that the rate of 

nuclease digestion in these experiments is slower than in the other experiments presented, 

due to the lower concentration of the dsDNA substrates. When the 3.5 kb fragment is used, 

which has the 1.5 kb region at the 3′ end of the pairing strand, no significant strand 

exchange is detected when this substrate is paired with M13mp18 (Figure 7C). During the 

time-course of this experiment, nuclease digestion did not progress past the 1.5 kb region of 

non-homology. In addition, since the 3.5 substrate is shorter than the full-length M13wins 

substrates used earlier, digestion of the substrate to remove the 1.5 kb region of non-

homology would leave the DNA with little left to pair, assuming that UL12 digestion is 

occurring on both ends of the molecule. These results imply that in order to initiate strand 

exchange, ICP8 requires that two complementary regions be single-stranded. Once strand 

exchange has begun, ICP8 does use strand melting to displace the non-pairing strand. 

However, it appears that ICP8 does not use strand melting to find regions of homology when 

it is bound at a stretch of non-homologous DNA.

Discussion

The strand transfer reaction mediated by the HSV-1 UL12 and ICP8 proteins generates 

products typical of classical strand exchange reactions, thus confirming the identification of 
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UL12/ICP8 as a recombinase. We showed that this reaction can be separated into two steps 

in vitro, and that other exonucleases can replace UL12. Although the in vitro results do not 

demonstrate any preference toward the UL12 nuclease in this assay, it is possible and even 

likely that such a preference does occur in vivo. This was shown to be true for the analogous 

proteins lambda Red α/β and E. coli RecE/T. Although these protein pairs have similar 

activity and Red mutants can be compensated for by RecE/T, in vivo recombination requires 

that each synaptase be paired with its cognate exonuclease. In other words, RecT does not 

mediate exchange in vivo with Red a.37 Other observations suggest that UL12 and ICP8 

work in concert in vivo. UL12 and ICP8 bind each other in solution,30,31,47 and we have 

found that ICP8 specifically modulates UL12 activity whereas, other SSBs do not (N.B.R. 

and S.K.W., unpublished results).

Our results show that DNA preresected by several different nucleases can be paired by 

ICP8; however, the efficiency of this process is dependent upon the particular substrate 

used. When full-length M13mp18 cut at the polylinker region was preresected by UL12 and 

then incubated with ICP8, significant strand exchange products were not detected (data not 

shown). However, as we have shown, ICP8 was capable of pairing other preresected DNA 

substrates. The likely explanation is that the M13 origin region contains a cluster of inverted 

repeats which form highly stable hairpins in the single-stranded viral DNA. Indeed, in early 

studies of strand transfer by the Rad 51 protein, which had traditionally utilized M13 

substrates, it was the use of ϕX174 templates that made it possible to show significant 

recombinase activity for Rad 51.48 It was for this reason that the ϕX174 templates were used 

for the EM studies presented here. In contrast to the preresected M13 DNA, when M13 

DNA is incubated with UL12 and ICP8 together, a robust strand exchange reaction is 

achieved.23 In this situation, it is likely that UL12 digestion reveals the single-stranded 3′ 

end of the DNA to ICP8, which binds it before it has the opportunity to form a hairpin 

structure. It is possible that such a coordination of activities in vivo also prevents secondary 

structure of ssDNA from forming in the viral DNA, thus facilitating efficient strand pairing.

We have demonstrated that ICP8 can initiate pairing with either a 3′ or a 5′ single-stranded 

tail, and can pair internal stretches of complementary DNA when the end is blocked by non-

homology. Nimonkar et al. have also found that ICP8 is capable of using either a 3′ or 5′ 

end to initiate D-loop formation, although non-homology at the ends blocks this process.49 

The structures of the joint molecules produced by either UL12 or lambda exo, both 5′-3′ 

exonucleases, or by ExoIII, a 3′-5′ exonuclease, in conjunction with ICP8 suggest that 

pairing, once initiated, continues in the same direction in which it was begun. The 

mechanism appears to be one of continuous pairing, as alpha structures were formed in all 

the reactions tested. The alpha structures are proof of the strand displacement aspect of the 

reaction, showing that as one strand is paired another is displaced. Since alpha structures 

were formed regardless of the direction of the strand pairing, we conclude that pairing is 

continuous in both directions. However, despite the ability of ICP8 to pair DNA when 

provided with a 5′ single-stranded end, it is unlikely that this reaction would be utilized 

productively in vivo. The annealing of a 3′ end to a single-stranded region allows this end to 

be used as a primer for DNA synthesis. Such recombination-directed replication has been 

proposed to be an important part of HSV-1 replication,3 and has been observed in an in vitro 
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assay model.50 The annealing of a 5′ end has no such opportunity. Replicating DNA in cells 

infected with a UL12 null virus is in a fragile, aberrant form, and few viral progeny are 

produced.17,38 It is possible that in the absence of UL12, cellular nucleases could resect the 

HSV-1 DNA. If viral DNA is resected by a 3′ to 5′ cellular nuclease and ICP8 anneals the 

resulting 5′ tails, a dead-end product would be generated, likely to be oddly branched and 

ineligible for further replication and packaging. This scenario is consistent with the defective 

phenotype of the UL12 null mutants.

Strand exchange using the substrates with regions of non-homology demonstrated that 

pairing by ICP8 could be initiated at an internal site, but also shed light on other 

requirements for pairing by ICP8. The data suggest that the pairing mechanism requires two 

complementary single-stranded regions for ICP8 to begin the strand exchange process. Since 

ICP8 is capable of strand melting, it might have been assumed to be sufficient to provide 

ICP8 with a region of single-stranded DNA to bind. We therefore expected that an internal 

complementary region within the double stranded portion of the molecule would be revealed 

by ICP8 strand melting and paired. Results with the partially non-homologous substrates 

showed, however, that this is not the case. It appears rather that nuclease digestion is 

required to reveal complementary single-stranded DNA for pairing. This is likely to hold 

true even when ICP8 has successfully initiated strand exchange, as in the case of M13wins 

cut with PacI. Instead of ICP8 melting of DNA beyond the non-homologous region, it 

appears that nuclease digestion is required to again reveal homologous DNA beyond the 1.5 

kb block. This mechanism is similar to that of RecA, where strand transfer is blocked by 

regions of non-homology. For instance, joint molecule formation by RecA is blocked by 

non-homology at the 3′ end of the pairing strand.44–46 RecJ, a 5′-3′ DNA exonuclease, 

greatly enhances the efficiency with which RecA is able to traverse regions of non-

homology, allowing it to pair substrates with a 187-base region of non-homology which 

otherwise blocked strand pairing.51 It was suggested that exonucleases might enhance the 

strand pairing by RecA in vivo by helping it to continue pairing past regions of non-

homology, as well as by preventing the renaturation of the original substrate.51 The blocks 

of non-homology used in our studies were rather large, from 170 bp to 1.5 kb. It will be 

interesting to see how smaller interruptions of homology affect strand pairing by ICP8, and 

how tolerant ICP8 is in pairing semi-complementary DNA.

This study has demonstrated the potent capability of ICP8 to pair and promote strand 

exchange when presented with two complementary single-stranded regions. This could give 

the impression that the source of the single-stranded DNA is unimportant, yet several 

observations point to the importance of a nuclease in this process. Nimonkar et al. 

demonstrated that ICP8 could mediate strand exchange of short double-stranded substrates 

with circular ssDNA in conjunction with the HSV-1 helicase/primase.52 However, this 

reaction had to be performed in two steps, with a change of reaction conditions midway. In 

addition, the yield of strand exchange products was much lower than that we have reported 

with UL12 and ICP8. In our hands, the helicase/primase along with ICP8 did not promote 

strand exchange when the full-length M13 substrate was used; furthermore, the addition of 

helicase/primase to the ICP8/UL12 reaction did not increase the yield or rate of appearance 

of strand exchange products (N.B.R. and S.K.W., unpublished results). Therefore, the 
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presence of a nuclease is critical for ICP8 to promote strand exchange using long and 

potentially complex double-stranded substrates such as M13. These data suggest that 

although ICP8 can participate in limited strand exchange either in the presence of the 

helicase-primase or when sufficient single-stranded DNA is present, a more robust reaction 

will likely require the presence of nuclease activity. On the basis of previously demonstrated 

interaction between UL12 and ICP8,30,31,47 it is reasonable to assume that UL12 is likely to 

be the nuclease responsible for allowing ICP8 to display its potent recombinase activity; 

however, we cannot rule out the participation of host nucleases. As discussed above, 

nuclease action has also been shown to enhance recombination by RecA. In addition, in the 

case of the lambda Red and RecE/Trecombinases, it is clear that the nuclease partners play 

an important role in the recombination mediated by the pairing proteins. In summary, on the 

basis of data presented here, combined with work previously reported by us and others, we 

propose that during HSV infection, UL12 and ICP8 function as a potent two-component 

recombinase and that these activities are essential for efficient and normal DNA replication 

leading to the production of longer than unit-length viral DNA suitable for processing by the 

viral encapsidation machinery. This model is supported by the observation that aberrant 

DNA is produced in cells infected with a UL12 null mutant virus.17,38

Materials and Methods

Materials

α[32P]ATP and α[32P]dCTP were from Dupont-NEN. All other materials were reagent 

grade.

DNA

M13mp18 replicative form (RF) was purified from infected E. coli UT481 [Δ(lac-

pro)hsdS(r−m−)lacIqlacZ] cells using the Qiagen maxi plasmid kit. M13mp18 ssDNA was 

purified from M13 phage-infected UT481 cells according to standard protocols.53 Phage 

ϕX174 RF and virion DNA were from New England Biolabs (NEB). DNA fragments were 

purified from agarose gels using the GeneClean® Spin kit (Bio-101) or the Qiagen Qiaquick 

gel extraction kit.

Enzymes and proteins

Restriction endonucleases and ExoIII were from New England Biolabs. Lambda 

exonuclease was generously provided by Richard S. Myers. Some experiments were also 

performed with lambda exonuclease purchased from Novagen. Proteinase K was from 

Roche. The UL12 protein was prepared by Joshua Goldstein from insect cells infected with 

recombinant baculoviruses as described.54 ICP8 was also purified from recombinant 

baculovirus-infected insect cells in each of our laboratories by two different protocols, as 

described.23,40 In both preparations, the protein was greater than 95% pure as determined by 

SDS-PAGE and Coomassie staining and did not contain detectable levels of nuclease 

activity.
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Substrates for strand exchange assays

M13 with a 1.5 kb insert was constructed by cloning the BamHI-EcoRI fragment from 

pFastBacUL12.547 (coresponding to nucleotides 25007–26510 of the HSV-1 genome with 

flanking sequences added encoding the restriction sites) into the same sites in M13mp18, to 

create M13wins. Full-length unlabeled dsDNA substrates were prepared by cleaving 

M13mp18, M13wins, and ϕX174 RF DNA with restriction endonucleases (as indicated in 

the Figure legends) and the DNA fragments were purified from agarose gels. To obtain 

preresected ϕX174 dsDNA, the following enzymes and protocols were used: for UL12 

preresection, the enzyme was incubated with XhoI-cut linear dsDNA in strand exchange 

buffer for 10–20 minutes at 37 °C at a ratio of 100 ng of DNA to 18.8 ng of UL12. 

Preresection with lambda exonuclease and ExoIII was done for two minutes at 37 °C at a 

ratio of five units of lambda exo or 100 units of Exo III per 1.5 mg of dsDNA. Digested 

DNA was deproteinized with 100 ng/µl of proteinase K, 0.5% (w/v) SDS and 50 mM EDTA 

for one hour at 558C and cleaned through a QIAquick spin column. Radiolabeled double-

stranded fragments were prepared by PCR using the M13wins RF DNA as template. The 

primers used for amplification were phosphorylated at the 5′ end. The dNTP mixes used for 

PCR included α[32P]dCTP or both α[32P]dCTP and α[32P]dATP. For the 1.5 kb fragment, 

the primers used for amplification were: primer A, 5′ ATGTGGTCGGCGTCGGTGATC; 

primer B, 5′TCAGC GAGACGACCTCCCCGTC. The 3.5 kb fragment was amplified using 

the same template, and the following primers: primer C, 

5′TGACCTTCATCAAGAGTAATC; primer D, 5′AGCGGATAACAATTTCACACAG. In 

order to prepare substrates with varying amounts of non-homology, the 3.5 kb labeled 

substrate was prepared. Portions of this substrate were cleaved with either BamHI or EcoNI, 

and the 2.0 kb and 2.17 kb fragments were gel-purified.

Strand exchange assay

The reaction was carried out in a final volume of 20 µl and consisted of: 100 ng of circular 

single-stranded M13mp18 DNA, M13wins, or ϕX174 DNA, 7–200 ng of linear double-

stranded DNA (as indicated in the Figure legends), 18.8 ng of UL12 (13.9 nM), 4.5 µg of 

ICP8 (1.75 µM), 20 mM Tris–HCl (pH 7.5), 40 mM NaCl, 1 mM MgCl2, and 1 mM DTT. 

The reaction mixture was incubated at 37 °C for the times indicated in the Figure legends 

and stopped, for visualization on agarose gels, by adding 5 µl of 5× stop buffer (50% (v/v) 

glycerol, 50 mM EDTA, 1% SDS, 0.2% (w/v) bromphenol blue). Samples were 

electrophoresed on a 1% (w/v) agarose gel with 0.7 µg/ml of ethidium bromide, using TAE 

buffer (0.04 M Tris–acetate, 0.001 M EDTA). Gels were photographed, and those with 

radiolabeled DNA were dried and exposed to phosphorimager screens (National 

Diagnostics). The ImageQuant version 5.0 software package was used for quantification of 

the results.

Nuclease assay

DNA and proteins were incubated in 20 µl reaction volumes as in the strand exchange assay. 

The assay was terminated by the addition of 5 µl of 3.5 mg/ml of salmon sperm DNA and 25 

µl of 20% TCA. After ten minutes on ice, samples were centrifuged for ten minutes at 

Reuven et al. Page 11

J Mol Biol. Author manuscript; available in PMC 2015 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



14,000g, and radioactivity in 25 µl of the supernatant fraction was determined by 

scintillation counting. The results presented are averages of duplicate determinations.

Preparation of strand exchange complexes for electron microscopy

The reactions were carried out as described above, with substrates and incubation times as 

indicated in the Figure legends. The reactions were stopped with 50 mM EDTA when 

observation of DNA-ICP8 complexes was desired. The EDTA incubation was done for 30 

minutes on ice to remove magnesium ions and open the ICP8 complexes for better 

visualization by EM. When complete removal of UL12 and ICP8 proteins was desired, the 

reactions were deproteinized with 50 mM EDTA, 1% SDS and 100 ng/µl of proteinase K, at 

55 °C for one hour. The deproteinized samples were then cleaned through a 2 ml Biogel 

A50-m column and eluted in TE buffer (10 mM Tris–HCl pH 7.5), 0.5 mM EDTA. 

Fractions containing DNA were further prepared for EM analysis by incubation with 40 

ng/µl of E. coli SSB for 15 minutes at room temperature, for visualization of single-stranded 

DNA within the expected structures.

Electron microscopy

To eliminate unwanted buffers and/or free protein from samples, the reaction mixtures were 

loaded onto 2 ml Biogel A50-m columns previously equilibrated in TE buffer. The same 

buffer was then used to elute the samples from the columns and 250 µl fractions were 

collected. Aliquots of the protein–DNA containing fractions were mixed with a buffer 

containing spermidine55 for three seconds and quickly applied to a mesh copper grid coated 

with a thin carbon film, glow-charged shortly before sample application. Following 

adsorption of the samples to the EM support for two to three minutes, the grids were 

dehydrated through a graded water–ethanol series to 100% ethanol and then air-dried. The 

samples were then rotary shadowcast with tungsten at 10−7 Torr and examined in a Tecnai 

TEM instrument at 40 kV. Micrographs, taken at 46,000×, were scanned using a Nikon 

LS-4500AF film scanner and panels were arranged using Adobe Photoshop.
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Figure 1. 
Strand exchange by UL12 and ICP8. A, A representation of the strand exchange reaction 

involving UL12, ICP8, and bacteriophage-derived ssDNA circles and linearized dsDNA. 

The products of the reaction, with structures referred to as sigma, alpha and gapped circle 

are shown. B, Strand exchange by UL12 and ICP8 using ϕX174 DNA as substrates. Assay 

conditions were as described in Materials and Methods, using 100 ng of each of the DNA 

substrates per 20 µl reaction. Incubations were at 37 °C for 1–20 minutes, as indicated. Lane 

1, Invitrogen 1 kb ladder marker; lane 2, no protein control; lane 3, incubation of the DNA 

substrates with ICP8 only; lanes 4–9, incubation of the DNA substrates with ICP8 and UL12 

for 1, 2, 5, 7, 10, and 20 minutes, respectively. A photograph of the ethidium bromide-

stained gel is presented. Se, strand exchange products; ds, ϕX174 dsDNA linearized by 

XhoI; ss, ϕX174 ssDNA.
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Figure 2. 
EM analysis of strand exchange mediated by UL12 and ICP8. Strand exchange reactions 

were run as described for Figure 1 and further prepared for electron microscopy as described 

in Materials and Methods. A–C show examples of DNA/ICP8/UL12 complexes formed as a 

result of strand exchange. Images in D–F were obtained when strand exchange products 

were deproteinized and the ssDNA complexed with E. coli SSB (see Materials and 

Methods). The classic strand exchange structures, sigma (A and D), alpha (B and E), and 

gapped circle (C and F) are shown. The arrow in E points to the displaced strand of the alpha 

structure. ssDNA circles covered with SSB protein are seen in panels D and F. The scale bar 

represents the length of 1000 bp of dsDNA.
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Figure 3. 
ICP8 mediates strand exchange of preresected dsDNA. A, The 1.5 kb 32P-labeled dsDNA 

fragment was incubated in strand exchange buffer for 20 minutes in the presence (for lanes 

5–8) or absence (for mock, lanes 1–4) of UL12. DNA was deproteinized with proteinase K, 

extracted with phenol/chloroform, and ethanol-precipitated. This material was resuspended 

in low TE (10 mM Tris–HCl (pH 7.5), 0.1 mM EDTA) and used in the strand exchange 

assay. The strand exchange reaction was performed as described in Materials and Methods 

with 1.6 nM ssM13wins DNA (100 ng) and 1 nM (approximately 20 ng) 1.5 kb 32P-labeled 
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dsDNA as substrates. Incubation was for 20 minutes at 37 °C. The phosphorimage of the 

dried gel is presented. B–D, Linear double-stranded ϕX174 DNAwas preresected with UL12 

and then incubated with circular ϕX174 ssDNA in the presenceofICP8in strand exchange 

buffer for 10–20 minutes at 37 °C. The samples were deproteinized and complexed with E. 

coli SSB to extend the single-stranded segments and further prepared for EM as described in 

Materials and Methods. The expected strand exchange products are seen: alpha (B), sigma 

(C), and gapped circle (D). The scale bar represents the length of 1000 bp of dsDNA.
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Figure 4. 
Other exonucleases can perform strand exchange with ICP8. A, Strand exchange with full-

length M13mp18 substrates was performed as described in Materials and Methods. 

Incubations were at 37 °C for 10–40 minutes, as indicated. All of the lanes included 100 ng 

of ssM13mp18 DNA and 100 ng of dsM13mp18 DNA linearized by EcoRI. Lane 1, no 

protein control; lane 2, 40 minutes incubation with ICP8 only; lanes 3–5, incubation with 

ICP8 and 13.9 nM UL12 for 10, 20, and 40 minutes, respectively; lanes 6–8, incubation with 

ICP8 and five units of lambda exonuclease for 10, 20, and 40 minutes, respectively; lanes 9–
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11, incubation with ICP8 and 100 units of ExoIII for 10, 20, and 40 minutes, respectively. A 

photograph of the ethidium bromide-stained gel is presented. Se, strand exchange products; 

ds, M13mp18 dsDNA linearized by EcoRI; ss, M13mp18 ssDNA. B–E, Visualization of 

ICP8 catalyzed strand exchange reactions using dsDNA preresected with lambda 

exonuclease and ExoIII. Linear double-stranded ϕX174 DNA was subjected to digestion by 

lambda exonuclease (B and C) or ExoIII (D and E) as described in Materials and Methods. 

The nuclease-treated DNA was then used in strand exchange reactions. The classic strand 

exchange products are seen: sigma (B), alpha (D), and gapped circles (C and E). The scale 

bar represents the length of 1000 bp of dsDNA.
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Figure 5. 
Strand exchange using substrates with interrupted homology. A–D, A representation of the 

DNA substrates used for the strand exchange assay. The rectangle represents the 1.5 kb 

region derived from HSV-1 DNA. The wavy line and filled rectangle represent the strand 

complementary to the ssDNA substrates. B–D, Schematic representations of the pairing of 

ssM13mp18 DNA with dsM13wins DNA linearized by BamHI, EcoRI, and PacI, 

respectively. E, Strand exchange was performed by UL12 and ICP8 as described in 

Materials and Methods with 100 ng of ssM13mp18 DNA (2 nM) and 100 ng dsM13wins 

DNA (0.8 nM) linearized by the following restriction endonucleases: lanes 1–5, BamHI; 
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lanes 6–10, EcoRI; lanes 11–14, PacI. Reactions were incubated for 15–60 minutes, as 

indicated. C, No protein control.
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Figure 6. 
Visualization of strand exchange products using substrates with interrupted homology. 

M13wins dsDNA was linearized with BamHI (A and B), EcoRI (C–E), or PacI (F–H). 

Strand exchange reactions using these DNAs, ssM13mp18 DNA, UL12 and ICP8, as 

described in Materials and Methods, were examined. Examples of an alpha structure (A) and 

gapped circles (A–H) are shown to illustrate how the position of the non-homologous 1.5 kb 

fragment within the dsDNA substrate affected the resulting strand exchange products. 

Arrows in F–H point to a 2 kb region of dsDNA followed by ssDNA loops (identified by 
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stars) which are formed by the non-homologous DNA within the gapped circle product. The 

scale bar represents 700 bp (A and B) and 1000 bp (C–H) of dsDNA.
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Figure 7. 
Non-homology at the 3′ end of the pairing strand delays strand exchange. Strand exchange 

was performed by UL12 and ICP8 as described in Materials and Methods with either 

ssM13mp18 (filled squares) or ssM13wins (open circles). The dsDNA substrates used were 

prepared by PCR as 32P-labeled 3.5 kb fragments using M13wins as template. Both 

[α-32P]dCTP and [α-32P]dATP were used for labeling of this substrate. The 1.5 kb block of 

HSV-1 sequence, represented by rectangles, is at the 3′ end of the pairing strand, and the 

remaining 2 kb are M13mp18 sequence. The wavy line/filled rectangle represents the strand 

complementary to the ssDNA substrates. The 3.5 kb fragment was cut with BamHI to 
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completely remove the 1.5 kb region of non-homology, and the 2 kb fragment was purified. 

This substrate was used in A. The 3.5 kb fragment was also cut with EcoNI, to create a 

substrate possessing 170 bases of DNA non-homologous to M13mp18. The 2.17 kb 

fragment was purified and used for strand exchange illustrated in B. In C, the full-length 3.5 

kb fragment was used, which has 1.5 kb of DNA non-homologous to M13mp18. Percentage 

strand exchange was calculated as the percentage of radioactivity in slowly migrating 

species representing strand exchange products, out of the total radioactivity in the lane. 

Results are the averages of two independent experiments. D, The results of the nuclease 

digestion of the dsDNA substrates during the course of the strand exchange assay. Results 

are the averages of at least three DNA samples per time-point.

Reuven et al. Page 27

J Mol Biol. Author manuscript; available in PMC 2015 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Reuven et al. Page 28

T
ab

le
 1

E
le

ct
ro

n 
m

ic
ro

sc
op

ic
 a

na
ly

si
s 

of
 th

e 
pr

og
re

ss
io

n 
of

 s
tr

an
d 

ex
ch

an
ge

 r
ea

ct
io

ns
 a

s 
a 

fu
nc

tio
n 

of
 in

cu
ba

tio
n 

tim
e

T
im

e 
(m

in
)

St
ru

ct
ur

es

L
in

ea
r 

ds
D

N
A

Si
gm

a
A

lp
ha

G
ap

pe
d 

ci
rc

le
s

1
52

24
25

1

2
38

29
29

4

5
37

6
26

31

7
41

3
10

46

10
29

2
4

65

20
12

0
2

86

St
ra

nd
 e

xc
ha

ng
e 

re
ac

tio
ns

 u
si

ng
 ϕ

X
17

4 
su

bs
tr

at
es

 a
s 

de
sc

ri
be

d 
in

 F
ig

ur
e 

1 
w

er
e 

an
al

yz
ed

 b
y 

E
M

. A
t e

ac
h 

tim
e-

po
in

t, 
10

0 
D

N
A

 m
ol

ec
ul

es
 w

er
e 

co
un

te
d 

an
d 

id
en

tif
ie

d 
as

 e
ith

er
 li

ne
ar

 d
sD

N
A

 (
in

pu
t 

ds
D

N
A

) 
or

 o
ne

 o
f 

th
e 

st
ra

nd
 e

xc
ha

ng
e 

st
ru

ct
ur

es
 f

or
m

ed
. s

sD
N

A
 m

ol
ec

ul
es

 w
er

e 
no

t i
nc

lu
de

d 
in

 th
e 

co
un

ts
.

J Mol Biol. Author manuscript; available in PMC 2015 April 28.


