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Abstract

Rigorous surveillance of protein quality control is essential for the maintenance of normal cardiac

function, while the dysregulation of protein turnover is present in a diverse array of common

cardiac diseases. Central to the protein quality control found in all cells is the ubiquitin

proteasome system (UPS). The UPS plays a critical role in protein trafficking, cellular signaling,

and most prominently, protein degradation. As ubiquitin ligases (E3s) control the specificity of the

UPS, their description in the cardiomyocyte has highlighted how ubiquitin ligases are critical to

the turnover and function of the sarcomere complex, responsible for the heart’s required

continuous contraction. In this review, we provide an overview of the UPS, highlighting a

comprehensive overview of the cardiac ubiquitin ligases identified to date. We then focus on

recent studies of new cardiac ubiquitin ligases outlining their novel roles in protein turnover,

cellular signaling, and the regulation of mitochondrial dynamics and receptor turnover in the

pathophysiology of cardiac hypertrophy, cardiac atrophy, myocardial infarction, and heart failure.
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1. Introduction

Rigorous surveillance of protein quality control is essestial for the maintenance of normal

cardiac function. Dysregulation of this routine protein turnover has been implicated in

common cardiac diseases, including cardiac hypertrophy, cardiac atrophy, ischemic heart

disease and heart failure. The ubiquitin proteasome system (UPS) is a fundamental regulator

of protein quality control in all cells, including the cardiomyocyte, which participates in

protein trafficking, cellular signal transduction, and in prominently, degradation. When

components of the UPS function normally, the integrity of proteins that make up the

sarcomere, mitochondria and cell membrane is maintained, allowing for normal heart

function. Conversely, cardiac dysfunction is prominently associated with alterations in UPS

function. As part of the UPS, ubiquitin ligases (E3s) have the key role of directing the

addition of ubiquitin to specific target proteins, thereby marking them for degradation,

decreasing their activity, and/or changing their physical location within the cell. By

maintaining protein quality control and regulating many critical cellular processes, cardiac

ubiquitin ligases are critically important to maintaining the heart in health and disease. The

role cardiac ubiquitin ligases have in health and disease is rapidly expanding, as new

research reveals novel protein targets as well as expanding novel functional roles for each

cardiomyocyte-specific ubiquitin ligase. This review provides an overview of the UPS in the

heart, focusing on ubiquitin ligase activity in cardiac health and disease.

2. The components of the UPS and how they interact

The process of protein quality control involves the turnover of cellular proteins as they

become damaged over time. This process occurs in multiple steps, whereby damaged

proteins (e.g. recognized as chronically misfolded proteins) are recognized and degraded so

that newly synthesized proteins can replace them. This process preserves critical cellular

functions throughout the cell. The rate of protein turnover varies widely between cellular

components, reflecting their function in the cell. For example, proteins in the nucleus and

cytosol may be degraded within minutes; muscle actin and myosin turnover occurs in days

to weeks [1]. There are two proteolytic systems responsible for protein degradation, the UPS

and autophagy-driven lysosomal degradation, and both of these systems are tightly

controlled by complex regulatory mechanisms to ensure that protein degradation occurs

selectively and in a timely manner [2–4]. The UPS is a tightly regulated signaling cascade

generally involving three classes of enzymes: E1 (ubiquitin-activating enzyme), E2

(ubiquitin-conjugating enzyme), and E3 (ubiquitin ligase). As the names of these enzymes

imply, the activated ubiquitin created by E1 is handed off to the E2 to prepare the ubiquitin

for conjugation, which then interacts with the E3 (Figure 1). In addition to disposing of

proteins as part of the cellular protein quality control process, the UPS is also involved in the

regulation of transcription factors, functioning of the immune system, the regulation of

lysosomal-mediated protein degradation (autophagy), and as a source of amino acids [5, 6].

3. The Role of Ubiquitin Ligases in Cardiac Disease

Ubiquitin ligases enact the final step in the ubiquitination cascade and give specificity to the

UPS by interacting with specific substrates and tagging them with ubiquitin. Of the
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hundreds of purported ubiquitin ligases identified in the genome, at least nine have been

found in cardiac myocytes and are critical to the pathophysiology of common cardiac

disease (summarized in Table 1). These include the muscle ring finger family (MuRF1, 2

and 3), atrogin-1/muscle atrophy F-box (MAFBx), c-terminus of heat shock protein 70-

interacting protein (CHIP), and the murine double minute 2 (MDM2). Casitas b-lineage

lymphoma (c-Cb1), ubiquitin-protein ligase E3A (UBE3A/E6AP), and cellular inhibitor of

apoptosis (cIAP) have also been described in the heart and most recently, F-box and leucine-

rich repeat protein 22 (Fbxl22) has been reported [7]. The number of ubiquitin ligases found

in the heart, and the fact that each ubiquitin ligase can target multiple proteins, illustrates the

high level of influence the UPS has on cardiac function.

Whereas the UPS plays a critical role in maintaining cellular homeostasis under physiologic

conditions, the regulation of protein degradation also occurs during the process of cardiac

hypertrophy and cardiac atrophy. In cardiac atrophy, increases in protein degradation occur

concomitantly with parallel decrease in protein synthesis [8]. Conversely, protein synthesis

increases to a greater degree than protein degradation during cardiac hypertrophy [9, 10].

Specific ubiquitin ligases have been implicated in the processes of cardiac hypertrophy and

atrophy. In mice lacking MuRF1 and atrogin-1, an exaggerated cardiac hypertrophy occurs

in response to pressure overload-induced; similarly, MuRF1 −/− mice are resistant to

dexamethasone-induced cardiac atrophy [11–14]. These studies have been interpreted to

illustrated how MuRF1 and Atrogin-1 inhibit pathologic cardiac hypertrophy [11, 12] and

how MuRF1 inhibits cardiac atrophy [13, 14], whereas other ubiquitin ligases, such as

MDM2 and CHIP, have demonstrated a protective role against cardiomyocyte apoptosis in

ischemia/reperfusion injury by targeting p53 for proteasomal degradation [15–18]. Although

our understanding of ubiquitin ligases in cardiac disease is growing (Table 1), many more

are yet to be found and our understanding of their mechanisms continues to grow.

4. Ubiquitin Ligases in Protein Turnover

Though the sarcomere is often envisioned as a static structure, the proteins that make up this

contractile unit undergo constant turnover to maintain homeostatic conditions and adapt to

physiologic changes. Initial studies of the protein turnover in the heart showed alterations to

both protein synthesis and degradation rates after starvation in rats and rabbits [8–10, 19,

20]. Prior to 2001, the proteasome itself had been implicated in sarcomeric protein turnover

[21], but the discovery of the involvement of muscle-specific ubiquitin ligases Atrogin-1 and

MuRF1 [22] opened the door for a greater understanding of this highly regulated pathway

(Table 1). Subsequent studies illustrated how these and other ubiquitin ligases facilitate the

degradation of older, damaged and misfolded sarcomeric proteins so they can be replaced.

While these studies illustrate a limited number of substrates for each E3, there is

considerable more complexity to E3s in cardiac disease than is suggested by our current

knowledge. However, many of the important details that make cardiac E3s disease / stressor

dependent is unclear-one possible reason is that the specific substrate may not exist until the

heart is stressed as is likely the case of MuRF1’s recognition of phospho-c-Jun in ischemia-

reperfusion injury (Table 1).
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Additionally, the types of ubiquitination chains added to substrates depends on the specific

E2(s) that various E3 partner with. Recent studies have illustrated that MuRF1 and CHIP,

for example, form different types of ubiquitin chains depending on the E2 they are partnered

with [23]. It is not clear how these studies are relevant in different cell types or in vitro vs. in

vivo systems-that is-we don’t know which E2(s) are present in cardiomyocytes, how they

may be species or disease condition specific, or even the actual interactions they are able to

make with E3s if they are present. Based on current literature, however, in certain disease /

stressed states cardiac sarcomeric proteins described as targets for E3-mediated degradation

in different contexts include critical proteins involved directly in muscle contraction and

cellular signaling, including myosin heavy chain, myosin light chain, the troponin complex

(troponins I/T/C), tropomyosin and titin – all of which have specific t1/2 values between

three to eight days [1]. Exciting new studies continue to identify novel cardiac ubiquitin

ligases that play a role in regulating sarcomere protein turnover critical to the maintenance

of heart, including f-box and leucine-rich repeat protein 22 (Fbx122), c-Cbl, and cMLCK.

The cardiac ubiquitin ligase Fbx122 localizes to the Z-disc and specifically degrades α-

actinin-2 and filamin C [7]. Increasing Fbxl22 expression experimentally in vitro initiates

degradation of α-actinin-2 and filamin C, whereas treatment of rat cardiomyocytes with the

proteasome inhibitor MG-132 results in α-actinin-2 accumulation and severe contractile

dysfunction [7]. When Fbx122 expression is decreased in zebrafish embryos using

morpholino-modified antisense oligonucleotides, normal cardiac function is disturbed [7].

Fbxl22’s role in maintaining cardiac function through the maintenance of α-actinin-2 and

filamin C is consistent with the role α-actinin-2 and filamin C have in cardiac contractility

and mechanosensing [24]. α-Actinin-2 binds actin and titin, among other Z-disc proteins, to

maintain proper sarcomere formation and structure [25, 26]. Mutations in α-actinin-2 result

in dilated and hypertrophic cardiomyopathies in humans [24, 27]. Filamin C is critical to

sarcomere integrity via interaction with actin, forming crosslinks that allow maintenance of

the sarcomere under mechanical stress associated with contractility [28]. Disorganization of

proteins at the sarcomere including filamin C can lead to a host of diseases categorized as

myofibrillar myopathies [29, 30]. Although the role of Fbxl22 in regulating α-actinin-2 and

filamin C turnover in cardiac diseases has not yet been investigated, its putative role in

regulating the turnover of these z-disc-associated proteins critical to sarcomere structure and

downstream signaling are likely to be involved in diseases associated with sarcomere

remodeling, including cardiac hypertrophy, heart failure, cardiac atrophy, and ischemic heart

disease.

The casitas b-lineage lymphoma protein (c-Cbl) has recently been identified as a ubiquitin

ligase regulating the turnover of myofibrillar proteins involved in focal adhesion in

cardiomyocytes. This was discovered through studies investigating the mechanisms by

which cathepsin G, released by neutrophils, induces myocyte detachment and apoptosis by

down regulating focal adhesion signaling during inflammatory cardiac injury [31].

Experimentally, increasing c-Cbl in isolated neonatal cardiomyocytes causes enhanced

degradation of focal adhesion kinase (FAK), paxillin, and troponin I [31]. Conversely,

deletion of c-Cbl in myocytes reduces focal adhesion protein degradation, myofibrillar

degradation, and reduced myocyte apoptosis induced by cathepsin G [31]. Proteasome

inhibition, but not lysosome or calpain inhibition, markedly attenuates the FAK and
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myofibrillar protein degradation [31]. FAK and paxillin have been implicated in the

pathogenesis of cardiac hypertrophy and ischemia-reperfusion injury [32–34]) and play a

role in physiologic cardiac development [35] and myocyte chemotaxis [36]. c-Cbl’s

regulation of troponin I, a key regulator of cardiac contractility, illustrates its importance in

regulating cardiac function. The activation of c-Cbl by cathepsin G is mediated by epidermal

growth factor receptor (EGFR) transactivation, supporting a model in which neutrophil

invasion in cardiac inflammation releases cathepsin G, promoting c-Cbl interaction with

FAK, paxillin, and troponin I, resulting in enhanced ubiquitination, myofibril degradation,

and down-regulation of anti-apoptotic signaling [31]. Although c-Cbl’s role in inflammation

has been established in the heart, its role in the inflammation associated with ischemic heart

disease and heart failure remains to be investigated.

Recent studies have implicated cardiac ubiquitin ligase(s) in the degradation and turnover of

the cardiac myosin light chain kinase (cMLCK), a protein that phosphorylates cardiac

myosin light chain 2 (MLC2). To determine the mechanisms involved in the process of

cardiac hypertrophy decompensation, cMLCK knockout and cardiac-specific transgenic

mice were generated to test the hypothesis that MLC2 phosphorylation is involved [37].

These mice were then challenged with pressure overload hypertrophy. Pressure overload led

to severe heart failure in cMLCK knockout mice, but not in the cMLCK transgenic mice

where cMLCK protein synthesis exceeded degradation [37]. The reduced cMLCK protein

during pressure overload was attenuated by proteasome inhibition, independent of both

Atrogin-1 and MuRF1, suggesting a role for cardiomyocyte ubiquitin ligases in accelerating

cMLCK protein turnover during the transition from compensated cardiac hypertrophy to

heart failure, resulting in reduced MLC2 phosphorylation [37]. The identity of these cardiac

ubiquitin ligases remains to be determined and indicates a role for the phosphorylation of the

sarcomere apparatus, critical to function during cardiac stress. Although our knowledge of

the mechanisms involved in cardiac sarcomere proteins turnover is incomplete (Table 2), it

is anticipated that many more ubiquitin ligases will be identified in the future that play a role

in the maintenance of sarcomere protein integrity and cardiac function. And as discussed

above, the cellular context of these E3s in vivo may be critically important to understand the

substrates being affected. The types of E2s ubiquitin ligases interact with, the cardiac

context (stress, disease, etc.), and the specific substrates affects in vitro and in vivo is largely

unaddressed in the current literature and is important to more broadly understand the UPS in

context of cardiac disease.

5. Ubiquitin ligases in the pathophysiology of myocardial infarction

In humans, myocardial infarction frequently leads to heart failure and is linked to high

mortality rates [38]. Although most patients now survive the immediate event by reperfusion

intervention, infarcted myocardial tissue undergoes scarring with concomitant structural and

functional remodeling of the heart, which may eventually lead to contractile dysfunction and

heart failure [38–40]. Despite major advances in the treatment of myocardial infarction,

limiting myocardial cell death following ischemia-reperfusion (I/R) injury remains a

challenging clinical endeavor. The role of the ubiquitin ligases Atrogin-1 and MuRF1 in

regulating the severity of myocardial infarction and I/R injury in response to coronary artery

occlusion has recently been reviewed [41]. Here we present subsequent studies implicating
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the ubiquitin ligases CHIP and parkin in the pathophysiology of I/R injury, demonstrating

their potential as therapeutic targets.

5.1 The ubiquitin ligase parkin mediates mitophagy in cardiac I/R injury

More than three decades ago, Decker and Widenthal demonstrated that 40 minutes of

ischemia and subsequent reperfusion resulted in increased autophagy in Langendorff

perfused rabbit hearts [42, 43]. Autophagy, the catabolic mechanism in which cells degrade

dysfunctional components through the lysosomal machinery, has recently been shown to be

a critical mechanism by which cardiomyocytes protect themselves in ischemic heart disease

models [44]. Autophagic clearance of damaged organelles including mitochondria is

beneficial for recovery of the myocardium following I/R, as this eliminates further cardiac

damage by dysfunctional mitochondria and fuels the process of mitochondrial biogenesis.

The selective removal of impaired mitochondria by autophagy (mitophagy) is critical for

sustaining optimal cellular function during ischemia, reperfusion and post-infarction

recovery since mitochondria are essential organelles that control energy homeostasis and

cell survival [45–47].

Recent studies have identified the ubiquitin ligase parkin as a regulator of mitochondria

quality control through its regulation of mitophagy. Senescent and damaged mitochondria

undergo selective mitophagic elimination and recent studies have illustrated that this occurs

through the post-translational modification of the mitochondrial fusion protein mitofusin-2

(Mfn2) in cardiomyocytes [48]. When damaged, Mfn2 recruits the cytosolic ubiquitin ligase

parkin to the mitochondria [48], a process that requires PTEN-induced putative kinase

protein 1 (PINK1) to phosphorylate Mfn2, which then promotes its parkin-mediated

ubiquitination (Figure 3A) [48]. In the absence of Mfn2 in cardiomyocytes, mitophagy is

suppressed and abnormal mitochondria with respiratory dysfunction accumulate. Mfn2 −/−

Drosphila suffer from a dilated cardiomyopathy, demonstrating the importance of parkin in

regulating the Mfn2 protein in mitochondrial protein quality control [48]. Parkin is also

purported to play an important role in ischemic preconditioning, which affords

cardioprotection during a subsequent infarct [49]. Failure to induce parkin translocation to

mitochondria and augment mitophagy blunts the cardioprotective effect of ischemic

preconditioning in parkin −/− mice [49]. Taken together, these data support an essential role

for parkin-mediated quality control of mitochondria in limiting cardiac injury during

myocardial infarction and imparting cardioprotective effects of ischemic preconditioning.

5.2 The ubiquitin ligase / co-chaperone CHIP regulates NF-kB and MAPK signaling in I/R
injury

In addition to parkin, several lines of studies have proposed that heat shock proteins (hsps)

and ubiquitin ligases that interact with HSPs are cardioprotective [50, 51]. Heat shock

proteins are chaperones that influence protein turnover and reverse protein-misfolding

events, thereby promoting cell survival. For example, expression of the inducible heat shock

protein hsp70 is augmented following ischemic injury and increasing hsp70 expression

experimentally improves functional recovery of the reperfused myocardium [52–54]. CHIP

is a co-chaperone/ubiquitin ligase that contains a tetratricopeptide repeat (TPR) domain at its

amino terminus, which interacts with members of the hsp family and reduces chaperone
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activity [55–57]. Both hsp70 and CHIP are present in most tissues of the body, with high

expression in the heart [55, 58, 59]. In concert with hspSP70/hsc70, CHIP acts as a ubiquitin

ligase to target specific proteins to refold and if unsuccessful, to be degraded in a UPS-

dependent manner (discussed below in section 6).

The physiological importance of CHIP as a master regulator of cardiac protein quality

control machinery was established by a series of recent studies. CHIP promotes myocardin

and Foxo1 degradation to attenuate smooth muscle cell differentiation [60, 61]. CHIP also

inhibits angiotensin II (Ang II)-induced cardiac fibrosis and inflammation through NF-κB

and MAPK pathway inhibition [62]. Specifically, in mice with increased CHIP expression,

cardiac apoptosis and fibrosis are attenuated in response to Ang II [62]. Furthermore, Ang

II-induced myocardial inflammation is significantly inhibited when CHIP expression is

increased in vivo [62]. Conversely, knockdown of CHIP in neonatal cardiomyocytes

increases Ang II-induced apoptosis, as well as the expression of proinflammatory cytokines,

a process which is dependent on the NF-κB and MAPK pathways. CHIP also functions as a

physiological regulator of cellular apoptosis due to its ability to inhibit apoptosis signal-

regulated kinase 1–mediated apoptosis via its degradation [18].

CHIP deficiency causes marked cell death of cardiomyocytes and endothelial cells in

response to ischemic injury [16]. Interestingly, increasing CHIP expression protects against

myocyte apoptosis during ischemia injury by promoting p53 degradation [63]. A screen of a

mouse heart cDNA library identified CHIP as a novel p53 antagonist wherein inverse

correlation was shown between CHIP and p53 protein levels, implying the possible

involvement of CHIP downregulation in the initiation of p53 accumulation after acute

hypoxic stress [63]. Indeed, CHIP protects cardiomyocytes from hypoxia-induced p53-

mediated apoptosis. Mice lacking CHIP (CHIP−/−) have unaltered cardiac function at

baseline [16]. However, in response to exercise, CHIP−/− mice respond with an enhanced

autophagic response and exaggerated cardiac hypertrophy without abnormalities in cardiac

function, signifying physiologic and not pathologic hypertrophy [64]. However, CHIP−/−

mice exhibit decreased survival, increased arrhythmias and myocardial injury when

challenged with I/R injury [16] (see Figure 2B), with increased arrhythmogenic

susceptibility during the reperfusion period and increased mortality independent of gender

[16]. Furthermore, CHIP−/− mice are highly susceptible to vascular and cardiomyocyte

apoptosis induced by coronary artery ligation and were more prone to sudden death after

induction of myocardial infarction [16]. These data allude to the powerful role played by

endogenous CHIP as a control point in offering protection against I/R injury. Despite this

protective role for CHIP, it still remains unclear how CHIP is activated in vivo. Nor is it

clear how CHIP exerts dual control of protein folding and degradation machinery.

Together, these data support the cardioprotective role of ubiquitin ligases against myocardial

infarction. Generation of mice with cardiac-specific deletion or overexpression of CHIP or

parkin will likely uncover cell-autonomous role of these targets in cardioprotection against

I/R and post-infarction injury. The pre-clinical evidence published to date support the

concept that enhancing protein quality control mechanisms in the myocardium may be an

effective interventional strategy in acute coronary syndromes.
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6. Ubiquitin Ligases Regulate Mitochondrial Fission and/or Fusion

Mitochondria are dynamic organelles best known for generating most of the cell’s energy

and are critical in regulating apoptosis, calcium homeostasis, lipid metabolism, aging, and

the production of reactive oxygen species [65]. Maintaining mitochondrial activity and

function involves a proper balance of fission and fusion of neighboring mitochondria.

Mitochondria fusion results in the mixing of mitochondrial contents, allowing

complementation of protein components, mtDNA and distribution of metabolic

intermediates. Conversely, division of mitochondria into smaller subunits (fission) increases

mitochondrial number and capacity, but may also help segregate damaged mitochondria by

selective mitophagy. Disruption of mitochondrial fission and fusion (mitochondrial

dynamics) is intimately tied to a cell’s regulation of apoptosis is linked to multiple cardiac

diseases, including cardiac hypertrophy, heart failure, dilated cardiomyopathy and ischemic

heart disease (as recently reviewed [66, 67]). Cardiac ubiquitin ligases and de-

ubiquitinylating enzymes that regulate mitochondria fission and fusion, also appear to have

direct roles in the pathophysiology of cardiac disease, including the ubiquitin ligase Siah2

and the de-ubiquitinylating enzymes UBP2 and UBP12.

Recent studies have identified a role for the ubiquitin ligase seven in absentia homolog 2

(Siah2) in the regulation of mitochondrial fission, resulting in the protection of

cardiomyocytes against ischemic insult [68]. These studies identified that hypoxia-induced

mitochondrial fission is dependent on the mitochondrial scaffolding protein AKAP121 (A

kinase anchor protein 1). AKAP121 inhibits the phosphorylation of dynamin-1-like protein

(Drp1) and the PKA-independent inhibition of the Drp1-Fis1 interaction (Figure 3B) [68].

Siah2 regulates AKAP121 levels, with cells lacking Siah2 having high AKAP121 levels,

resulting in attenuated fission and reduced apoptosis of cardiomyocytes under simulated

ischemia conditions in vitro [68]. Myocardial infarction challenge to Siah2 −/− mice results

in the reduction of infarct size (i.e. the degree of cardiac cell death) compared to wild type

controls, illustrating a role for Siah2 as a regulator of hypoxia-induced mitochondrial fission

in ischemic injury [68]. While its is possible that AKAP121 is a substrate of the ubiquitin

ligase Siah2, the mechanism by which these proteins interact, including the involvement of

ubiquitination or proteasomal degradation, been determined. Despite this, the clinical utility

of inhibiting ischemia-induced cell death through manipulation of AKAP121 and/or Siah2

may prove to be an interesting target for treatment of myocardial infarction.

The removing of ubiquitin from substrates by de-ubiquitinylating enzymes may also be

involved in regulating mitochondrial fusion in the heart. The de-ubiquitylating enzymes

UBP2 and UBP12 recognize ubiquitinated Fzo1, a mitofusion in yeast, resulting in the

inhibition of fusion [69]. UBP2 removes the ubiquitin chains from Fzo1 that target it for

degradation, whereas UBP12 recognizes chains that stabilize Fzo1 and promote

mitochondrial fusion [69]. Although the role of homolog de-ubiquitylating enzymes in the

mammalian heart have not currently been identified, these studies in yeast illustrate the

importance of how the UPS is fine tuned to both add and remove ubiquitin chains to regulate

mitochondrial fission and fusion critical to the health of the heart.
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7. Ubiquitin ligases involved in Cardiomyocyte Receptor and Gap Junction

Turnover

In addition to regulating sarcomeric protein quality control, signal transduction, and

mitochondrial dynamics, ubiquitin ligases can also regulate critical receptors and ion

channels in cardiomyocytes, including β-adrenergic receptors (β-ARs), the human ether-à-

go-go-related gene (hERG), and connexin 43. Given the clinical importance of these

pathways, delineating the mechanisms by which ubiquitin ligases target and regulate their

activity may offer additional insight to alternative therapeutic strategies.

7.1 MuRF1 and the β-Adrenergic Receptor

The importance of the increased sympathetic adrenergic activation in heart failure and

ischemic heart disease is most evident by current therapies utilizing β-adrenergic inhibition

as an effective therapy to decrease patient morbidity and mortality. β-AR stimulation

secondary to hypertension not only induces cardiomyocyte growth directly, but can also

affect metabolic substrate utilization and prevent cardiac atrophy [70–73], an effect

mediated by Atrogin-1 and MuRF1 [13, 14, 74]. Mice treated with 6-OH-DOPA to induce

cardiac sympathetic denervation develop cardiac atrophy over a period of thirty days.

Denervation-induced atrophic mice show increases in both Atrogin-1 and MuRF1 gene

expression as early as 24-hours post 6-OH-DOPA treatment [75]. Blocking β-AR activity in

these mice appears to decrease phosphorylated Akt, leading to increased FOXO

transcription factor signaling, which increases ubiquitin ligase activity and induces cardiac

atrophy. Conversely, atrophy is attenuated in denervated MuRF1 knockout mice [75].

Noradrenaline specifically activates β2-AR signaling that in turn represses MuRF1,

demonstrating that the effect of β2-AR signaling on cardiomyocyte size is intimately

associated with ubiquitin ligase activity [75]. Together, these findings illustrate a novel

connection between the ubiquitin ligase activity of MuRF1, denervation and cardiac atrophy.

Combined with MuRF1’s role at skeletal NMJs [76], it is clear that MuRF1 plays a role in

both skeletal and cardiac muscle innervation, highlighting a new therapeutic potential in

targeting MuRF1 for treatment of atrophy.

7.2 Nedd4 and the hERG receptor

The ubiquitin ligase Nedd4 (neural precursor cell expressed developmentally down-

regulated protein 4-2) is involved in ion channel protein turnover in the human derived renal

epithelial HEK293 cell line. Nedd4, in association with caveolin-3 (Cav3), binds and

ubiquitinates hERG channels, targeting them for degradation [77]. Potassium channel IKr,

encoded by hERG, is critical for cardiac repolarization: current reduction results in delayed

repolarization and long QT syndrome [78], whereas current increase results in short QT

syndrome [79], both of which cause cardiac arrhythmia. Therefore, maintenance of the IKr

ion channel is crucial in maintaining proper cardiac function and preventing arrhythmia [78].

Nedd4-2 can also ubiquitinate the KCNQ1 potassium channel, resulting in KCNQ1’s

removal from the cell surface, internalization and degradation by the proteasome [80], a

reaction that can be counteracted by the de-ubiquitinylating enzyme USP2 [81]. Nedd4-2

specifically interacts with the PY motif of both hERG and KCNQ1 [77, 80, 81], highlighting
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the importance of this motif and potential for further study in other ion channels. Although

these findings have been gleaned from in vitro studies, the results lead to the possibility of

future in vivo studies focusing on Nedd4’s ubiquitin ligase activity in ion channel regulation.

Because disruption of hERG channels, due to genetic mutation or drug side-effects, can

result in life-threatening arrhythmia [82, 83], understanding the mechanism by which Nedd2

facilitates protein turnover at these channels could be critical in developing novel

therapeutics for the treatment of arrhythmias.

7.3 Cardiomyocyte connexin 43 turnover by an unidentified ubiquitin ligase

Recent reports have identified that an unidentified ubiquitin ligase is responsible for

ubiquitinating phosphorylated connexin 43 (Cx43), resulting it its degradation by the

proteasome [84]. Connexin 43 is a cardiac ventricular gap junction protein crucial for

cellular communication and cardiac function [85]. Connexin 43’s critical role in cardiac

rhythms is exemplified in patients suffering from arrhythmogenic cardiomyopathy [86].

When connexin 43 activity is inhibited by mutations, it can lead to the development of an

arrhythmogenic cardiomyopathy and sudden death. Adrenergic stimuli increase Cx43

expression via the protein kinase A and MAPK pathways, whereas anti-adrenergic stimuli,

like adenosine, cause an opposing affect, promoting phosphorylation of Cx43 on Serine 368

by protein kinase C (PKC), subsequent ubiquitination, and proteasomal degradation [84].

Further studies are necessary to determine which ubiquitin ligase is ubiquitinating Cx43 as

well as to understand this mechanism in vivo in order to link connexin turnover to states of

cardiac pathology [84].

Altogether, the studies highlighted above, demonstrate novel roles for ubiquitin ligases in

the turnover of proteins involved in innervation, ion channels and gap junctions. When

combined with what is known about ubiquitin ligase control of sarcomeric and

mitochondrial protein turnover, the ‘ubiquitous’ need for ubiquitin ligases in the heart is

abundantly clear.

8. Ubiquitin ligases involved in Human Hypertrophic Cardiomyopathy

Recent studies have identified mutations in the MuRF1 ubiquitin ligase as a cause of human

hypertrophic cardiomyopathy (HCM) [87, 88]. Sequencing of 302 HCM probands identified

2 missense mutations (p.A48V and p.I130M) and a deletion (p.Q247*) variants in MuRF1

that were absent in 1,090 control subjects; these mutations appeared to be enriched in the

Caucasian HCM populations [87, 88]. While MuRF1 mutations are not commonly mutated

in hypertrophic cardiomyopathy populations in these studies, it does appear to be rare cause

of clinically significant disease.

Ubiquitin ligases may also be involved in the pathophysiology of HCM in another direct

way as well. Both MuRF1 and atrogin-1 have been implicated in targeting both wild type

and HCM-causing cardiac myosin binding protein C (cMyBP-C) for degradation [89]. These

ubiquitin ligases have been implicated in the rapid removal of cMyBP-C mutant proteins

and the turnover of wild type cMyBP-C in cell culture and interestingly parallel the rapid

degradation of mutant cMyBP-C in humans [89]. Since mutations in cMyBP-C are

considered one of the most common causes of hypertrophic cardiomyopathy, these studies

Willis et al. Page 10

J Mol Cell Cardiol. Author manuscript; available in PMC 2015 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



potentially shed light on one possible reason why MuRF1 mutations cause HCM – their lack

of cMyBP-C protein quality control [87, 88]. These studies also suggest how enhanced

protein turnover mechanisms themselves may be detrimental to the heart, since the rapid

degradation of mutant cMyBP-C proteins does not allow steady state protein levels to exist,

but disease may still occur. Future studies to investigate how HCM occurs when the UPS’s

protein quality control machinery is hijacked to clear mutant proteins, presuming that the

mutant proteins are no longer present to cause problems.

9. Summary

As a biological concept alone, the turnover of proteins has remained an integral area of

study for many years. The central dogma of biology, where from DNA comes RNA comes

protein, highlights the importance of proteins in every facet of life. The UPS and, in

particular, ubiquitin ligases are of critical importance in the maintenance of protein quality

control. Recent work has emphasized the role of ubiquitin ligases in the heart, both in vitro

and in vivo. Whereas previous work emphasized the importance of ubiquitin ligases in the

turnover of sarcomeric proteins, the role for these enzymes has become increasingly

apparent in the context of mitochondrial dynamics as well as cell signaling and receptor

protein turnover. Because these mechanisms are largely conserved between cells, tissues and

even species, they are highly applicable to human cardiac health and disease. For example,

CHIP’s role in attenuating apoptosis after myocardial infarction is dependent on

ubiquitination and subsequent degradation of misfolded or unfolded proteins. The

continuation of research to elucidate ubiquitin ligase activity in the heart is critical for

increasing our knowledge and improving treatment options for the myriad of cardiac

diseases that plague humans.
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Non-standard abbreviations

AChRs Acetylcholine receptors

AKAP121 A-kinase anchor protein 121

c-Cbl Casitas b-lineage lymphoma

Cav3 cavelin 3

CHIP c-terminus of Hsp70-interacting protein

cIAP cellular inhibitor of apoptosis

cMyBP-C cardiac myosin binding protein C

Drp1 dynamin-1-like protein

E1 ubiquitin-activating enzyme

E2 ubiquitin-conjugating enzyme
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E3 ubiquitin ligase

Fbxl22 F-box and leucine-rich repeat protein 22

Fis1 fission 1

hERG human ether-à-go-go-related gene

MAFBx atrogin-1/muscle atrophy F-box

MDM2 murine double minute 2

Mfn-1 (-2) mitofusin-1(-2)

OMM outer mitochondrial membrane

MuRF1(2, 3) muscle ring finger -1 (-2, -3)

Nedd4-2 neural precursor cell expressed developmentally down-regulated protein

4-2

Opa1 optic atrophy 1

Siah1a/2 Seven In Absentia Homolog-1a/2

PINK1 PTEN-induced putative kinase protein 1

UBE3A/E6AP ubiquitin-protein ligase E3A
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Highlights

• Sarcomere protein turnover in the heart is maintained by the ubiquitin

proteasome system (UPS)

• Dysregulation of protein turnover occurs in cardiac hypertrophy, atrophy, and

heart failure

• Ubiquitin ligases (E3) interact with specific sarcomere protein substrate(s) to

mediate turnover

• Cardiomyocyte E3s regulate cell signaling that controls cell functions including

cell death/apoptosis

• Cardiomyocyte E3 activities depend on disease context and substrate presence

and/or quality
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Figure 1. The ubiquitin-proteasome system
A. Post-translational modification of target proteins is necessary for degradation to occur via the UPS. Ubiquitin, a 76-amino

acid moiety, is the star player in these modifications: E1 enzymes activate free ubiquitin by using energy from ATP to generate

a high-energy thioester bond with ubiquitin. Activated ubiquitin is then transferred to an E2 enzyme, which then interacts with

an E3 enzyme. Ubiquitin ligases finally transfer this ubiquitin to a lysine residue in the target protein. Once mono-ubiquitination

occurs, this ubiquitin acts as an acceptor for the addition of multiple ubiquitin molecules via isopeptide linkages, resulting in

polyubiquitin chains. B. Ubiquitin has seven lysine residues available for polyubiquitin chains to be formed (Lys6, Lys11,

Lys27, Lys29, Lys33, Lys48, Lys63), though addition at Lys48 is considered the canonical polyubiquitin chain for protein

degradation via the proteasome. Polyubiquitination at Lys63 has been shown to modify target protein activity [90] such as

Atrogin-1’s role in regulating FOXO [91], regulate physiological cardiac hypertrophy [90] and play a role in DNA repair

mechanisms [92]. Other noncanonical lysines have not yet been implicated in specific functional roles. Similarly, mono-

ubiquitination does not lead directly to degradation and instead can alter activity by tagging proteins for shuttle to other cellular

compartments [93] or play a role in numerous aspects of signaling pathways, including receptor activity [94], cell-to-cell

electrical coupling [95, 96], apoptosis [97] and calcium regulation [98]. Recent studies have also identified that Lys63

ubiquitination targets proteins for autophagy-lysosomal degradation through poly-ubiquitination of beclin-1 [99].
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Figure 2. Role of CHIP-mediated ubiquitination of unfolded proteins in myocardial stress, e.g. infarction
A. Unfolded proteins accumulate within the cardiomyocyte when exposed to various biological stressors. CHIP promotes

elimination of misfolded or unfolded proteins via ubiquitination in cooperation with co-chaperones heat shock cognate protein

70 (hsc70) and hsp70 in a BAG1-dependent manner, leading to the subsequent proteasomal degradation of dysfunctional

proteins. B. However, myocardial stress can overwhelm CHIP’s capacity to clear unfolded proteins, resulting in the formation of

unfolded protein aggregates or toxic inclusion bodies that contribute to myocardial apoptosis. Activation of CHIP via increasing

CHIP expression attenuates myocardial injury following ischemia by preventing the accumulation of unfolded proteins and

ensuing cell death. Conversely, inhibition of CHIP by CHIP deletion exacerbates cardiac injury following myocardial infarction.

Figure based on recently published reports [16, 55, 56, 100–107].
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Figure 3. Post-translational ubiquitination regulates proteins involved in mitophagy and mitochondrial fission
During mitochondrial fusion, Mfn1 facilitates the initial GTP-dependent outer mitochondrial membrane (OMM) tethering; Mfn2

then mixes the juxtaposed outer membranes and docks the inner mitochondrial membrane. Optic atrophy-1 (Opa1) then tethers

the inner mitochondrial membranes at the cristae necks while maintaining the complex folded structure of the inner membrane.

During mitochondrial fission, the Fis1 protein localizes the dynamin-related protein-1 (Drp1) to the OMM and mediates

constriction and scission, resulting in GTP-dependent mitochondrial division. Multiple ubiquitin ligases have recently been

reported to regulate mitochondrial fission and fusion proteins. A. The cytosolic ubiquitin ligase parkin ubiquitinates Mfn2 when

it is phosphorylated by the mitochondrial kinase PINK1, targeting damaged mitochondria for mitophagy. Loss of the inner

mitochondrial membrane gradient stabilizes PINK1 on damaged organelles, which phosphorylate Mfn2. Parkin then

ubiquitinates phosphorylated Mfn2, tagging Mfn2 for mitophagy [48]. B. The ubiquitin ligase Siah2 regulates the protein levels

of the kinase AKAP121 during hypoxia-mediated mitochondrial fragmentation. Siah1a/2 inhibits AKAP121 activity, which

normally functions to block the interaction between Drp1 and Fis1 [68].
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Table 2

Role of ubiquitin ligases in cardiac protein turnover

Ubiquitin Ligase Function References

MuRF Family
MuRF1
MuRF2
MuRF3

Targets troponin I (MuRF1), β-MHC (MuRF1, MuRF3), MHCIIa (MuRF1, MuRF3) for
proteasome-mediated degradation

Interacts with titin (MuRF1, MuRF2, MuRF3), troponin T (MuRF1, MuRF2), MLC2 (MuRF1,
MuRF2), myotilin (MuRF1, MuRF2), telethonin (MuRF1, MuRF2), creatine kinase (MuRF1)

[1, 12, 108, 124–
127]

CHIP
Interacts with chaperones HSP 70, HSP90 and UNC-45 to mediate myosin degradation, folding

and sarcomere placement
Controls fine-tuning of AMPK activation in stress response by targeting LKB1 for degradation

[1, 116, 128]

Fbxl22 Targets α-actinin-2 and filamin C for degradation [7]

c-Cbl Activated by Cathepsin G to target focal adhesion and myofibrillar proteins for degradation,
including FAK, paxillin and troponin I [31]

Unknown Regulates cMLCK levels to alter phosphorylation of MLC2v [37]
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