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Abstract

The cell-permeant peptide inhibitor of MAPKAP kinase 2 (MK2), MMI-0100, inhibits MK2 and 

downstream fibrosis and inflammation. Recent studies have demonstrated that MMI-0100 reduces 

intimal hyperplasia in a mouse vein graft model, pulmonary fibrosis in a murine bleomycin-

induced model and development of adhesions in conjunction with abdominal surgery. MK2 is 

critical to the pathogenesis of ischemic heart injury as MK2 −/− mice are resistant to ischemic 

remodeling. Therefore, we tested the hypothesis that inhibiting MK2 with MMI-0100 would 

protect the heart after acute myocardial infarction (AMI) in vivo. AMI was induced by placing a 

permanent LAD coronary ligation. When MMI-0100 peptide was given 30 minutes after 

permanent LAD coronary artery ligation, the resulting fibrosis was reduced/prevented ~50% at a 2 
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week time point, with a corresponding improvement in cardiac function and decrease in left 

ventricular dilation. In cultured cardiomyocytes and fibroblasts, MMI-0100 inhibited MK2 to 

reduce cardiomyocyte caspase 3/7 activity, while enhancing primary cardiac fibroblast caspase 3/7 

activity, which may explain MMI-0100’s salvage of cardiac function and anti-fibrotic effects in 

vivo. These findings suggest that therapeutic inhibition of MK2 after acute MI, using rationally-

designed cell-permeant peptides, inhibits cardiac fibrosis and maintains cardiac function by 

mechanisms that involve inhibiting cardiomyocyte apoptosis, while enhancing primary cardiac 

fibroblast cell death.
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Introduction

Ischemic heart disease is the most common cause of death in the world; in the United States 

alone, an estimated 785,000 people will have a myocardial infarction (MI) each year, 

approximately 1 per minute [1]. The adverse remodeling that occurs after MI contributes to 

the impaired function and heart failure that commonly develops post-MI. Interventional 

advances - largely early reperfusion therapies - have improved patient survival, but the 

adverse remodeling processes that lead to heart failure proceed unabated [2–4]. The size of 

the infarcted area, the infarcted wound healing, and chronic left ventricular (LV) remodeling 

determine the extent of the resulting heart failure [2–4]. To minimize the extent of heart 

failure after a large or recurrent MI, therapeutic strategies are needed to limit infarct wound 

healing in the early phase.

Use of rationally designed cell-permeant peptides that inhibit Mitogen Activated Protein 

Kinase Activated Protein Kinase II (MK2) activity and downstream fibrosis and 

inflammation is a unique approach. Recent studies have reported that the cell-permeant 

peptide MMI-0100 inhibits inflammation and fibrosis (intimal hyperplasia) in a mouse vein 

graft model [5], bleomycin-induced pulmonary fibrosis [6] and abdominal adhesions post-

surgery [7]. These peptide drugs target the substrate-binding site of MK2, are carried into 

cells via cell-permeant domains and are rapidly taken up by macropinocytosis and targeted 

to endosomal compartments, where they are retained for up to 7 days [8]. MK2 is critical for 

both fibrosis and inflammation; therefore, MK2-driven processes central to the exuberant 

cardiac fibrosis and cytokine release that occur post-myocardial infarction remodeling 

represent an excellent therapeutic target.

Myocyte death during lethal myocardial infarction, cardiac dysfunction, and fibrosis during 

post-MI remodeling and hypertrophy are associated with sustained activation of p38 [9–11]. 

Recent studies in MK2 −/− mice have illustrated that MK2 acts downstream of p38 and is 

responsible for p38-induced heart failure [12]. Similarly, MK2 −/− mice are resistant to 

ischemia reperfusion injury [13], indicating a critical role of MK2 in ischemic heart disease 

experimentally. Based on these recent findings, the present study tested the hypothesis that 

MMI-0100 therapy post-myocardial infarction would inhibit the extent of fibrosis in vivo. 
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We demonstrated that MMI-0100 reduced fibrosis that developed after 2 weeks in a standard 

murine myocardial infarction model induced by permanent ligation of the left anterior 

descending (LAD) coronary artery. Since cardiomyocyte cell death, fibroblast differentiation 

to myofibroblasts and the secretion of a variety of extracellular matrix proteins, including 

collagen (resulting in fibrosis) are impacted by MK2, we determined whether MMI-0100 

confers cardioprotective benefits by acting on both cell types independently in vitro. We 

found that MMI-0100 inhibits MK2 activity in both cardiac-derived cells (H9C2 and HL-1) 

and in primary rat cardiac fibroblasts, inhibiting cardiomyocyte caspase 3/7 activity, while 

enhancing fibroblast caspase 3/7 activity in vitro. These studies report for the first time that 

the cell-permeant peptide MMI-0100 can inhibit fibrosis associated with myocardial 

infarction, while illustrating mechanisms by which inhibition of MK2 in turn inhibits 

cardiomyocyte apoptosis and reduces fibrosis by direct effects on cardiac fibroblasts.

Materials and Methods

Cell permeant peptide synthesis and delivery

The MMI-0100 peptide (YARAAARQARAKALARQLGVAA) was synthesized using 

standard Fmoc chemistry, as previously described [14]. MMI-0100 (MW=2283.67g/mol; 

Moerae Matrix, Inc.) was prepared and delivered daily intraperitoneally in PBS (50 μg/kg), 

as previously described [6]. In cell line studies, the peptide was dissolved in DMSO before 

adding to the cell media (final [0.5%] to target peptide intracellularly), as previously 

described [7], to give a final MMI-0100 concentration of 20 μM or 100 μM.

Animals and myocardial infarction (MI) model

Twelve week-old male C57BL/6 mice (25–30 g) were obtained from Jackson Laboratories 

(Bar Harbor, ME) and maintained in the University of North Carolina at Chapel Hill 

facilities for at least 7 days with free access to standard rodent food and water. Myocardial 

infarction was induced by permanent ligation of the left anterior descending (LAD) coronary 

artery as described previously [15, 16]. Post-surgery, mice were immediately treated with 

lidocaine (6 mg/kg IM) and atropine (0.04–0.10 mg/kg IM) upon surgical closure, followed 

by lidocaine and atropine every 2–4 hours for the first 24 hours to prevent arrhythmias. Post-

anesthesia, mice were given 0.1mg/kg buprenorphine every 12 hours for the first 48 hours. 

Within the first hour post-MI, 50 μg/kg/day MMI-0100 peptide (or PBS control) was given 

intraperitoneally and repeated for a total of 14 days. In parallel, control groups underwent: 

1) a sham operation that included every step except the coronary artery ligation; 2) daily 

MMI-0100 (50 μg/kg/day) intraperitoneally for 14 days. Cardiac function was measured by 

conscious echocardiography using a Vevo 2100 ultrasound biomicrscopy system 

(VisualSonics, Inc., Toronto, Canada) at baseline, 7, and 14 days, as previously described 

[17–19].

Histological analysis of fibrosis

Mice were euthanized by isoflurane and cervical dislocation at day 14, fixed in fresh 4% 

paraformaldehyde for 24 hours, paraffin-embedded, processed, and stained with standard 

hematoxylin and eosin (H&E) and Masson’s trichrome (MT). Starting at the ligation with 

fully faced tissue, 14–15 levels were cut on each block at 50 μm (one slide for H&E, one for 

Xu et al. Page 3

J Mol Cell Cardiol. Author manuscript; available in PMC 2015 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MT, and 3 unstained; 50 μm skipped and then repeated). Controls were similarly cut starting 

at a comparable level. The area of fibrosis was analyzed in 3–4 blindly chosen hearts, each 

heart at 14–15 levels (point of ligation to apex), 3 sections at each level. Analysis of 

collagen was performed blinded to treatment on these 42–45 sections per heart. Slides were 

scanned using an Aperio ScanScope (Aperio Technologies, Vista, CA) and analyzed using 

Aperio ImageScope. The Algorithm Positive Pixel Count v9 was used to measure the 

Masson’s trichrome staining of collagen (representing both fibrosis and collagen in 

extracellular matrix), hue value (0.66) and hue width (0.1) were used analyzed the tissue 

outlined using the pen tool. Each section was analyzed and exported. The N positive/N total 

value (representing the % collagen of the entire section) was used to determine a weighted 

average for each slide.

Immunofluorescence staining of cardiac histological sections for vimentin, αSMA, TGF-β1 
and TUNEL

Immunostaining was performed as described previously [20, 21]. Cardiac sections adjacent 

to histological levels 1 and 7 (of 14-see histological analysis of fibrosis) were stained with 

antibodies against α-SMA (1:250, Abcam, Cambridge, MA), Vimentin (1:100, Santa Cruz, 

Dallas, TX), and TGF-β-1 (1:100, Abcam), or an irrelevant isotype mouse, rabbit or goat 

IgG (as a negative control) at 4°C overnight. Slides were then incubated with Alexa Fluor 

488-conjugated secondary antibodies and counterstained with 4,6-diamidino-2-phenylindole 

(DAPI) (Vector Laboratories, Burlingame, CA).

Identification of apoptosis was determined in histological sections by identifying the 

presence of fragmented DNA by terminal deoxynucleotidyl transferase dUTP nick end 

labeling (TUNEL) using the Roche TUNEL in situ staining kit (Roche Molecular 

Biochemicals, Basel, Switzerland), according to the manufacturer’s instructions. To detect 

DNA fragmentation associated with apoptosis, we used a fluorescence-based TUNEL 

followed by counterstaining with 4,6-diamidino-2-phenylindole (DAPI). Histological 

sections treated with a recombinant DNase I to allow TUNEL labeling of all nuclei were 

used as positive controls.

Cell culture of primary cardiac fibroblast cells and cardiomyocyte cell lines

The H9C2 is a myoblast cell line derived from rat myocardium obtained from ATCC® 

(CRL-1446, ATCC, Manassas, VA) and cultured according to the recommended protocols. 

Briefly, cells (p2) were maintained at 37°C with 5% CO2 in DMEM supplemented with 

10% fetal bovine serum and antibiotics (100 U/ml penicillin, 100 mg/ml streptomycin) and 

split at a ratio of 1:4 using 0.05% trypsin every 36 hours. HL-1 cells were obtained from Dr. 

William Claycomb and cultured according to the published protocols [22, 23]. Briefly, cells 

(p67) were cultured in Claycomb medium (JRH Biosciences, USA) supplemented with 10% 

fetal bovine serum (JRH Biosciences), 2 mM L-glutamine (Gibco, Grand Island, NY), 100 

μM norepinephrine (Sigma, USA), 100 U/mL penicillin, and 100 μg/mL streptomycin 

(Gibco) in flasks precoated with fibronectin and gelatin (Sigma), then incubated at 37°C in 

5% CO2. Cells were split at a ratio of 1:4 using 0.05% trypsin every 48 hours. Primary 

cardiac fibroblasts were obtained from 2–4-day-old Sprague Dawley® rats, according to 

previously described protocols (primary cardiomyocyte isolation kit, cat.#LK003300, 
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Worthington Biochemical Corp., Lakewood, NJ) [24, 25]. Harvested fibroblasts (p2) were 

seeded in 10 cm FALCON polystyrene dishes (BD Biosciences), and incubated for 45 min 

in DMEM with 10% fetal bovine serum and antibiotics. Cardiomyocytes that did not attach 

to the non-coated plates were rinsed away and the remaining fibroblasts were given fresh 

medium, grown to confluence, trypsinized (0.05%) and passaged twice before being used in 

experiments.

Induction of hypoxia and determination of cell death in vitro and effects of MMI-0100 given 
at the start of ischemia time

Cells were rinsed in PBS and grown in DMEM (cat.#11966-025, Gibco) for 2 hours prior to 

initiating hypoxia (simulated ischemia). Hypoxia was induced by placing cells in a hypoxia 

chamber (HERACELL 150i, Thermo Scientific) in a mixture of 5% CO2/95% N2 to attain a 

1% oxygen concentration, according to the manufacturer’s instruction. Three experimental 

groups were tested for each cell type: 1) Final [0.5% DMSO]; 2) 20 μM MMI-0100 peptide 

[in a final 0.5% DMSO]; and 3) 100μM MMI-0100 peptide [in a final 0.5% DMSO] at 3 

time points. The MMI-0100 peptide was added to the cells at the start of the ischemia time. 

Cells were cultured in 12 well plates. At the time of performing the experiments, all cultures 

were approximately 70–90% confluent. 3 different time points were adopted for each of the 

3 cell lines according to the severity of cell death under hypoxia determined by LDH 

release: for H9C2 cell line: 8hr; 16hr; 24hr; for HL-1 cell line: 4hr; 8hr; 12hr; for cardiac 

fibroblast cell line: 16hr; 32hr; 48hr.

Cell death was first determined using an LDH release assay (cat.#630117, Clontech), 

according to the manufacturer’s instructions. Briefly, after MMI-0100 peptide treatment and 

challenge with hypoxia (or normoxia control) conditions, 100 μl of culture medium was 

assayed for LDH release using LDH assay kits; in parallel, 100 μl of the Catalyst and the 

Dye were assayed and read at 490 nm (CLARIOstar, BMG LABTECH GmbH, Ortenberg, 

Germany). All data were run in triplicate and presented as a percentage of parallel cells 

treated with a final of 1%Triton-X-100. Caspase 3/7 activity was next determined using a 

commercial Caspase 3/7 activity kit (cat.#G8091, Promega, Madison, WI 53711) in a 384 

well plate (cat.#781903, Greiner bio-one) according to the manufacturer’s instructions. 

Briefly, cells were harvested in 35 μl ice cold Passive Lysis Buffer (cat.#E194A, Promega), 

rocked for 5 min at RT, then stored at −80C. The resulting cell lysates were centrifuged at 

10,000 ×g for 10 min. The resulting cell lysates (25 μl, with 0.6ug total protein) and 

Caspase-Glo 3/7 Reagent were added to each well in a 1:1 ratio and the luminescence was 

read (CLARIOstar, BMG LABTECH GmbH).

Immunoblot analysis of MK2 activity

Leftover cell lysates from the Caspase activity assay were used for Western blots. Cell lysate 

was first fractionated by SDS-4~10% polyacrylamide gel electrophoresis and transferred to 

PVDF membranes (cat.#162-0177, Bio-Rad, Berkeley, California ). After blocking with 

recommended blocking reagents for 1h at room temperature, membranes were incubated 

overnight at 4°C with primary antibodies in TBS-T, then incubated with secondary 

antibodies conjugated with HRP in TBS-T. hnRNPA0, MAPK2, and phospho-MAPK2 

proteins were detected using anti-hnRNPA0 (cat.#HPA036569, 1:1000, Sigma-Aldrich), 
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anti-MAPKAPK2 (cat.#SAB4300553, Sigma-Aldrich) and anti-phospho-MAPKAPK2 

(cat.#SAB4300241, 1:1000, Sigma-Aldrich). As a loading control, βactin was detected using 

anti-βactin (cat.#A2228, 1:6000, Sigma-Aldrich). Goat anti-rabbit IgG (whole molecule)–

Peroxidase antibody (cat.#A9169, 1:1000, Sigma-Aldrich) and anti-Mouse IgG (Fab 

specific)–Peroxidase antibody produced in goat (cat.#A9917, 1:6000, Sigma-Aldrich) were 

used as secondary antibodies. Lumigen ECL Ultra (cat.#TMA-100, Lumigen, Southfield, 

MI) chemiluminescence was detected using the BioSpectrum Imaging System (Biospectrum 

510, UVP, Upland, CA). Quantity One 1-D Analysis Software (cat.#170-9600, Bio-Rad 

Laboratories, Inc., Hercules, CA) was utilized for densitometry analysis.

Cytokine analysis of cell media for TNFα, IL-1β, and IL-6

Cytokine analysis of TNFα, IL-1β, and IL-6 was performed for either mouse (HL1) or rat 

(H9C2 and primary cardiac fibroblasts) using Luminex multiplex assays (LUM000, 

LUM401, LUM406, LUM410, LUR000, LUR401, LUR406, LUR410, R&D Systems, Inc., 

Minneapolis, MN) run on a Bio-Plex 200 (Bio-Rad, Hercules, CA) using standard curves 

run in parallel with each experiment.

Statistical analysis

SigmaPlot (Systat Software, Inc., San Jose, CA) was used to determine statistical 

significance for survival, physiology, in vitro studies, and histology. Differences in survival 

curves were compared using a Log-rank (Mantel-Cox) test. A one-way ANOVA was 

performed for both in vivo physiologic and histologic studies and in vitro studies at each 

terminal time point in experiments run in parallel. If significance was reached (p<0.05), a 

post-hoc all pairwise Multiple Comparison Procedures (Holm-Sidak method) was performed 

between each of the groups to determine significance. Prism 6 (GraphPad, La Jolla, CA) was 

used to statistically compare immunofluorescence between groups using a One-Way 

ANOVA (single staining) or Two-Way ANOVA (double staining). A Tukey’s multiple 

comparisons test was performed post-hoc (One-Way ANOVA). Significance was defined as 

p<0.05.

Results

Based on initial studies demonstrating that MMI-0100 blocks MK2 to inhibit inflammation 

and fibrosis in non-cardiac disease models [5–7], we tested its utility in a model of acute 

myocardial infarction in vivo. Based on MK2’s involvement in acute MI in genetic models 

of disease [12, 13], we hypothesized that MMI-0100 treatment, started at a clinically 

relevant 30 minutes post-LAD ligation, would modify the extracellular matrix changes that 

occur in AMI remodeling [26].

1.1 Treatment of acute myocardial infarction with MMI-0100 peptide protects cardiac 
function and attenuates dilation in vivo

To determine the effect of MMI-0100 on acute MI in vivo, three groups were investigated: 

1) an acute myocardial infarction (AMI) experimental group; 2) an AMI experimental group 

given MMI-0100 thirty minutes after the completion of the permanent LAD occlusion at the 

previously established dose (50 μg/kg given daily [5], illustrated in Figure 1A); and 3) a 
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sham control group (receiving a thoracotomy and sham ligation). Baseline echocardiography 

was performed on each of the groups, followed by echocardiography at 7 and 14 days post-

AMI to determine systolic cardiac function and size (Figure 1B). Two weeks after the 

permanent ligation of the LAD (AMI), ejection fraction decreased 26% and fractional 

shortening depressed 37% (Figure 1C, left column) compared to sham-operated control 

mice. Treatment of AMI with MMI-0100 reduced these loses in EF% and FS% to 12% and 

20%, respectively (Figure 1C, left column). MMI-0100 similarly attenuated the increase in 

LV volume and LV end diastolic diameter (LVEDD) characteristic of AMI heart failure 

(Figure 1C, middle & right columns). Representative M-mode and 2-D video can be found 

in Figure 1D, Table 1 and online (1.2_WeeksShamSurgery, 2.2_Weeks_AMI, 

3.2WeeksAMI_MMI-0100, respectively). Treatment of mice with MMI-0100 alone did not 

have any affect on cardiac function (Table 2) or survival (Supplemental Figure 1).

1.2 Treatment of acute MI with MMI-0100 treatment decreases cardiac fibrosis in vivo

Myocardial infarction triggers an inflammatory reaction that results in the formation of a 

scar. Healing from myocardial infarction is associated with alterations in the left ventricle, 

including dilation and hypertrophy [27]. In early stages of an acute MI, TGF-β has been 

proposed to play a role in deactivating macrophages and suppressing endothelial cell 

cytokine synthesis [27]. In later stages, TGF-β activates fibroblasts to deposit extracellular 

matrix (collagen) which contributes to left ventricular remodeling by promoting fibrosis in 

the non-infarcted myocardium, in addition to the myocardium directly affected by ischemia 

[27]. Consequences of this cardiac remodeling driven by TGF-β and fibrosis have been 

associated with myocardial stiffness and systolic and diastolic cardiac dysfunction, resulting 

in reduced cardiac output, heart failure and arrhythmias [28].

In our first studies, we identified that daily treatment with MMI-0100 preserved cardiac 

function and reduced the amount the heart dilated post-MI (Figure 1). We next investigated 

how MMI-0100 affected myocardial remodeling after acute MI by extensively analyzing the 

heart histologically for fibrosis in Masson’s trichrome stained sections in a systemic manner 

(Figure 2A). Based on 4 hearts, analyzed blinded to treatment and objectively using 

computer algorithms recognizing fibrosis based on its hue, we demonstrated that mice 

subjected to AMI that then received MMI-0100 exhibited 50% less fibrosis than mice 

subjected to AMI alone (Figure 2B). These analyses, based on weighted averages of 168–

180 cross sectional areas taken from the point of ligation all the way through the apex, 

demonstrated that the 20.6±2.2% fibrosis seen in AMI could be reduced to 11.1±2.2% 

fibrosis following treatment with MM1-0100 (Figure 2B). Since Masson’s trichrome is a 

stain designed to detect collagen, which is present to a small extent in normal healthy hearts, 

we also performed analysis of the three control groups, including the thoracotomy and sham 

ligation, the no surgery and no drug group, and the group given daily MMI-0100 that did not 

undergo surgery. Extensive analysis of these hearts, paralleling methods used in the 

experimental groups, illustrated that collagen was present in less than 1% of the heart area 

(normal extracellular matrix and basement membranes) (Figure 2B). Taken together, these 

findings demonstrate that, in the setting of experimental AMI, MMI-0100 significantly 

reduces fibrosis response by 50% during the remodeling process, even when given 30 

minutes after the ischemic insult.
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With such a dramatic decrease in fibrosis, we next sought to characterize how this 50% 

decrease in fibrosis after AMI occurred in more detailed histological analysis. 

Representative histological sections from multiple individual hearts illustrated two general 

types of fibrosis sparing. First, fibrosis that occurred distant to the site of ischemia in AMI, 

illustrated in Figure 2C with arrows, was not found to the same extent in the heart sections 

treated with MMI-0100 (Figure 2D), although it was still present (see single arrow). The 

second observation was that fibrosis at the site of infarction after AMI was generally 

complete (all fibrotic), whereas when the MMI-0100 peptide was given, islands of viable 

myocytes (see asterisk, Figure 2D, top panel) could be identified. When investigated at a 

higher magnification, islands of myocyte sparing within the ischemic region scar were found 

routinely in hearts where MMI-0100 was given (Supplemental Figure 2D–F), in contrast to 

the complete fibrosis seen after AMI in all animals uniformly in multiple representative 

sections (Supplemental Figure 2A–C). Extent of sparing varied, being more localized to the 

endocardium at times (Supplemental Figure 2D, 2F, arrows), while being more transmural in 

others (Supplemental Figure 2E, see asterisk corresponding to asterisk in Figure 2D, top 

panel). These findings illustrate that MMI-0100’s therapeutic benefit in the setting of AMI 

results in both critical muscle sparing at the site of ischemic insult, while at the same time 

reducing the distant non-ischemic site fibrosis that contributes to detrimental effects on 

cardiac function, consistent with functional findings in the same hearts (Figure 1). Given the 

mechanistic role of TGF-β in promoting fibrosis in non-infarcted myocardium, it is not 

surprising the MMI-0100’s anti-TGF-β effect (via MK2 inhibition [5, 7]) reduced non-

infarcted myocardial fibrosis, resulting in long-term protective effects on cardiac function.

1.3 MMI-0100 peptide post-hypoxia inhibits cardiomyocyte apoptosis in vitro by inhibiting 
MK2 activity

Our in vivo studies of AMI identified that MMI-0100 had an effect on both sparing cell 

death, including cardiomyocytes within the ischemic region itself, and in reducing non-

infarcted myocardial fibrosis. Therefore, we next sought to determine underlying 

mechanisms by which MMI-0100 may afford cardiomyocytes and fibroblasts protection in 

these two processes. We first investigated how MMI-0100 affected cardiomyocytes by using 

cell lines derived from atrial (HL1) and ventricular (H9C2) cardiomyocytes, which have 

been established in models of acute myocardial infarction by culturing under anoxic (1% 

oxygen) conditions that induce cell death [29–33], at time points optimized in our hands. 

Activation of caspase 3/7 and LDH release were followed to monitor cell death in the 

presence of MMI-0100 at doses previously shown to suppress MK2 activity (20 and 100 

μM) [5, 7].

When ventricular H9C2 myocyte-derived cells were challenged with 1% hypoxia (Figure 

3A), caspase 3/7 activity increased <5 fold at 8 hours compared to cells harvested at the start 

of hypoxia challenge. At 16 and 24 hours, caspase 3/7 increased 15–20 fold (Figure 3B), 

paralleling increases in LDH release of 60–80% in the same cells (Figure 3C). The 100 μM 

MMI-0100 inhibited caspase 3/7 activity at 16 and 24 hours, suggesting that MMI-0100 

inhibited apoptotic pathways at this time point (Figure 3B). Both 20 and 100 μM MMI-0100 

significantly enhanced LDH release at 8 hours in cells challenged with 1% hypoxia, while 

only the 100 μM MMI-0100 concentration induced enhanced LDH release at 16 hours 
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(Figure 3B). Subsequent studies to determine the effect of MMI-0100 on LDH release in 

H9C2 cells in normoxic conditions demonstrated that MMI-0100 did not enhance LDH 

release in the absence of hypoxia at 8 hours (Supplemental Figure 3A). This confirms that 

MMI-0100 does not enhance LDH release directly, while parallel studies investigating 

MMI-0100 effects on the LDH assay itself found that MMI-0100 had no effect on the 

colorimetric assay itself (data not shown).

We next confirmed that the doses of MMI-0100 tested inhibited MK2 activity in the actual 

H9C2 cells tested in Figure 3. A recent study in mesothelial cells demonstrated that 

inhibiting MK2 activity with MMI-0100 reduced expression of downstream p-hnRNPA0 in 

response to fibrotic stimuli [5, 7]. Another study indicated that levels of total MK2 and p-

MK2 protein were decreased [6]. Therefore, we investigated effects of MMI-0100 on 

hnRNPA0, total MK2, and p-MK2 at all time points tested in the caspase 3/7 activity and 

LDH release studies (Figure 4). 100 μM MMI-0100 significantly inhibited hnRNPA0 

expression after being induced by hypoxia (Figure 4A), whereas total MK2 and p-MK2 

protein levels were not changed significantly by MMI-0100 at either 20 or 100 μM 

MMI-0100 concentrations (Figure 4B).

When atrial HL1 myocyte-derived cells were challenged with 1% hypoxia (Figure 5A), 

caspase 3/7 activity increased 6 fold at 4 hours (Figure 5B). At 8 and 12 hours, caspase 3/7 

activity increased ~10 fold (Figure 5B), paralleling increases in LDH release of 20–60% in 

the same cells (Figure 5C). 100 μM MMI-0100 inhibited caspase 3/7 activity at 12 hours, 

suggesting that MMI-0100 inhibited apoptotic pathways at this time point (Figure 5B). Both 

20 and 100 μM MMI-0100 significantly enhanced LDH release at 4 hours in cells 

challenged with 1% hypoxia, while only 100 μM MMI-0100 enhanced LDH release at 8 

hours (Figure 5C). Subsequent studies to determine the effect of MMI-0100 on LDH release 

of HL1 cells in normoxic conditions demonstrated that MMI-0100 did not enhance LDH 

release in the absence of hypoxia at 4 hours; unexpectedly, 100 μM MMI-0100 significantly 

inhibited LDH release (Supplemental Figure 3B).

We next confirmed that the doses of MMI-0100 tested inhibited MK2 activity in actual 

H9C2 cells tested in Figure 5. 100 μM MMI-0100 significantly inhibited hnRNPA0 

expression at 4 and 8 hours after being induced by hypoxia (Figure 6A), whereas total MK2 

and p-MK2 protein levels were not changed significantly by MMI-0100 peptide at either 20 

or 100 μM MMI-0100 concentrations (Figure 6B). This confirms that MMI-0100 does not 

enhance LDH release directly.

1.4 MMI-0100 treatment post-hypoxia enhances primary cardiac fibroblast cell death in 
vitro despite inhibiting MK2 activity

Fibroblasts make up 70% of the cells in the heart [34, 35]; they are integral to repair of the 

heart, contributing to the remodeling process after ischemia, fibrosis and the progression of 

heart failure [36]. By physical and biochemical interaction with cardiomyocytes and the 

extracellular matrix, fibroblasts are positioned to sense and respond to injury. Since initial 

studies investigated MMI-0100’s ability to inhibit fibrosis by inhibiting MK2 [6], we 

isolated primary cardiac fibroblasts as previously described in models of acute MI in culture 

[37–40], challenging them with 1% hypoxia in the presence or absence of MMI-0100 to 
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determine the peptide’s effects on cell death. These studies were designed to parallel the 

cardiomyocyte studies (Supplemental Figure 3A), except with longer time points due to their 

relative resistance (compared to cardiomyocytes) to apoptosis (Supplemental Figure 3B) and 

LDH release (Supplemental Figure 3C). In contrast to the cardiomyocyte-derived cell lines 

described above, 100 μM MMI-0100 peptide treatment of cardiac fibroblasts significantly 

enhanced caspase 3/7 activity at 16 and 32 hours of hypoxia (Supplemental Figure 4B). 

LDH release was also significantly enhanced in cultured primary cardiac fibroblasts at 16, 

32, and 48 hours of hypoxia (Supplemental Figure 3C). Subsequent studies to determine the 

effect of MMI-0100 on LDH release by primary cardiac fibroblasts in normoxic conditions 

demonstrated that MMI-0100 did not enhance LDH release in these cells in the absence of 

hypoxia at 4 hours (Supplemental Figure 4B). At the time points investigated, MMI-0100 

did not change MK2 activity, as measured by hnRNPA0 protein levels by immunoblot at 16, 

32, or 48 hours (Supplemental Figure 5A); similarly, protein levels of MK2 and p-MK2 did 

not significantly differ in the presence of MMI-0100 compared to hypoxia alone 

(Supplemental Figure 5B). Taken together, these studies suggest that MMI-0100 enhances 

cell death in the presence of hypoxia, and may suggest that decreased fibroblast viability is 

one mechanism by which treatment with MM1-0100 reduces fibrosis, leading to the 

decreased fibrosis seen in vivo (Figure 2).

1.5 MMI-0100 treatment reduces fibroblast number, increases arteriole density, and 
reduces cells with TGF-β1 in histological sections at two weeks post-AMI

The apparent decrease in fibroblasts (and presumably fibrosis), in addition to the inhibited 

cardiac cell death afforded cardiomyocytes when treated with MMI-0100 (Figure 3, Figure 

4, Figure 5, Figure 6), represent two mechanisms by which MMI-0100 may improve cardiac 

function and attenuate cardiac dilation after AMI (Figure 1). To test this hypothesis, we 

returned to adjacent histological sections investigated above and quantified fibroblast 

numbers using anti-vimentin immunofluorescence (Figure 7A). Double-blinded non-biased 

computer analysis of the histological sections identified that MMI-0100 treatment resulted in 

a significant decrease in the number of vimentin-positive fibroblasts. Analysis of αSMA 

positive cells in these histological sections (Figure 7B) found that MMI-0100 given post-

AMI also significantly increased the number of arterioles seen on cross-sectional analysis 

(also analyzed in a double-blinded non-biased manner)(Figure 7D).

Cardiac remodeling and fibrosis is driven by a number of factors, including release of TGF-

β1. Since previous studies have demonstrated that MMI-0100 inhibits TGF-β1 secretion, we 

hypothesized that daily treatment with MMI-0100 during the post-AMI remodeling process 

would reduce TGF-β1 found histologically (Figure 8A). Blinded, non-biased quantitative 

analysis of TGF-β1 post-AMI by immunofluorescence confocal microscopy illustrated that 

MMI-0100 inhibited TGF-β1-positive cells by >50% (Figure 8B). In parallel, these adjacent 

histological sections had a significant reduction in TUNEL-positive cells, with a significant 

increase in the number of vimentin-positive cells (fibroblasts) that co-stained with TUNEL. 

Taken together, MMI-0100 treatment post-MI reduced the number of apoptotic cells 

histologically, while a greater number of primary fibroblasts underwent apoptosis in vivo, 

paralleling our findings of our in vitro studies.
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Discussion

In the present study, we demonstrated for the first time the therapeutic benefit of cell-

permeant peptide MK2 inhibitor, MMI-0100, when given 30 minutes after an acute 

myocardial infarction in vivo, followed by daily treatment. MMI-0100’s cardioprotection 

includes a reduction in cardiac fibrosis and muscle sparing at two weeks. Functionally, 

MMI-0100 significantly preserves systolic function one week after MI, attenuating the rate 

at which systolic function is lost. Using two cardiomyocyte cell lines and primary cardiac 

fibroblast cell culture, we demonstrated that MMI-0100 inhibits MK2 to reduce 

cardiomyocyte caspase 3/7 activity, while enhancing primary cardiac fibroblast caspase 3/7 

activity, which may explain MMI-0100’s salvage of cardiac function and anti-fibrotic 

effects. Immunofluorescence analysis of fibroblast numbers and TGFβ1 positive cells in 

histological sections at two weeks post-MI supports these in vitro findings, suggesting that 

MMI-0100 decreases fibroblast numbers and TGFβ1 activity in vivo. These findings build 

upon MMI-0100’s anti-inflammatory and anti-fibrotic properties shown in the settings of 

intimal hyperplasia associated with bypass surgery, bleomycin-induced pulmonary fibrosis, 

and post-surgical abdominal adhesions [5–7].

p38 MAPK activates (phosphorylates) MAPK Activated Protein Kinase-2 (MK2), to 

regulate ischemic injury in the heart. When mice lacking MK2 (MK2−/−) were compared to 

MK2 +/+ mice on a transgenic p38 background, transgenic p38-induced heart failure in 

MK2−/− mice was significantly protective [12]. Similarly, MK2−/− mice are resistant to 

ischemia reperfusion injury [13], implementing a critical role of MK2 in ischemic injury. 

Consistent with a MK2-p38 axis mediating ischemic cardiac damage, inhibiting p38 

activation protects the heart against ischemic insult and cardiac dysfunction [41–45]. At the 

cellular level, ischemic activation of the MK2-p38 signaling pathway induces cardiac 

apoptosis [46], specifically in cardiomyocytes [9–11]. In fibroblasts, p38 regulates 

extracellular matrix proteins in primary cardiac fibroblasts during oxidative stress [47]. 

Consistent with a critical role for the MK2-p38 signaling axis, therapeutic inhibition of MK2 

in the present studies was cardioprotective in vivo and resulted in decreased caspase 3/7 

activity, which enhanced cell death (i.e. caspase 3/7 activity) in primary cardiac fibroblasts. 

While the blunt cell culture studies are helpful to delineate mechanistic insight into how 

MK2 inhibition may affect cell death in the complex microenvironment of the intact heart, 

the more detailed autocrine and paracrine effects of MK2 inhibition may be critical to 

understanding its mechanism(s) in the intact heart and may not be completely replicated in 

vitro.

MMI-0100 is a synthetic 22 amino acid cell-permeant peptide that enters cells to inhibit 

MAPKAP kinase 2 (MK2). The peptide inhibitor was derived from the heat shock protein 

b-1 consensus sequence for phosphorylation, and it inhibits the phosphorylation of HSPB1 

at serine 86 by MK2 [48]. A cell-penetrating peptide (CPP) sequence was then added to this 

consensus sequence to facilitates its entry into cells to inhibit HSPB1 phosphorylation [7, 

14, 49, 50]. Phase 1 human trials were begun in August 2014 in the Netherlands as a first-in-

class inhibitor of MK2 to access safety, tolerability, and pharmacodynamics (http://

www.drugdevelopment-technology.com/news/newsmoerae-matrix-begins-phase-i-trial-of-

mmi-0100-treat-idiopathic-pulmonary-fibrosis-4336040). Pre-clinically, the drug has been 
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shown to attenuate fibrosis in idiopathic pulmonary fibrosis models and abdominal 

adhesions in vivo and to inhibit total MK2 levels [6] and HNRNPAO [7] in bleomycin-

induced pulmonary fibrosis and abdominal adhesions, respectively. The cell types and 

temporal parameters of these studies differ in many ways compared to the present studies in 

isolated cardiac-derived cells and fibroblasts, which may explain the lack of demonstration 

of their MMI-0100’s inhibition (MK2). Furthermore, signal transduction generally occurs 

over a small increment of time. Even with time course intervals as small as 4 hours, it is 

possible we either missed the inhibited time point or other yet-to-be-discovered signaling 

pathways in cardiomyocytes or cardiac fibroblasts were inhibited to results in the 

downstream inhibitory effects seen.

Peptides containing cell-penetrating domains, like MMI-0100, are taken up rapidly by cells 

and rapidly hydrolyzed in serum by peptidases. Despite this short serum half-life, the 

biologic effects of CPP-peptides are considerably longer, in the range of multiple days in 

several settings. The vasoactive CPP AZX100 prevents subarachnoid hemorrhage-induced 

vasospasm in a non-craniotomy rat model, observed typically 48 hours after the hemorrhage 

[51]. The cell-penetrating domain in AZX100 is identical to that found in the MMI-0100 

peptide in the present studies. When fluorescently-tagged AZX100 is followed in cell 

culture in human fibroblasts, it can be identified for a week in culture [8]. This prolonged 

effect has been described for KAI-9803, a selective δ-PKC inhibitor (with a CPP) that 

comprises a peptidic fragment of the δ-PKC C2 domain (δ V1-1) conjugated by disulfide 

bond to a CPP (TAT47-57). Post-cerebral ischemia, KAI-9803 significantly reduces 

infarction size in the transient MCAO model, with effects maintained for at least seven days 

after administration [52]. The pharmacodynamics of MMI-0100 is similarly extended in a 

rat model of a jugular vein to carotid interposition graft. A single MMI-0100 dose (10^-6M 

for 20 minutes) at the time of explantation inhibits the development of intimal hyperplasia 

28 days later [5].

A consistent finding in cardiomyocyte-derived cells (H9C2 and HL-1) and the primary 

cardiac fibroblast responses to hypoxia in vitro was that LDH release preceded the 

identification of apoptosis (specifically increased caspase-3/7 activity). The release of LDH 

from cells, reflecting the loss of cellular membrane integrity that occurs with cellular 

necrosis, has generally been shown to occur after the activation of caspases (e.g. caspase 

3/7) that initiate apoptosis. For example, in adult cardiomyocytes, caspase activation occurs 

within the first few hours after the initiating stimuli, even if the ultrastructural changes and 

DNA fragmentation do not occur until many hours later (9+ hours) [53].

While MMI-0100 persists for some time in vivo, the point at which it is given is another 

important consideration. In the present study, we started MMI-0100 therapy 30 minutes after 

LAD ligation as a proof of concept. In the context of health delivery systems, this represent 

an optimistic time point in which heart attack might be able to receive therapy. Importantly, 

the processes that we initially were targeting were those that occur during the days and 

weeks after MI, involving fibroblasts and the remodeling process that occurs after ischemia, 

resulting in fibrosis and progression of heart failure [36]. By physical and biochemical 

interaction with cardiomyocytes and the extracellular matrix, fibroblasts are positioned to 

sense and respond rapidly to injury, uniquely aiding in repair after myocardial infarction [28, 
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54, 55]. So immediate inhibition may not be a therapeutic goal, given the way in which 

MMI-0100 targets fibroblasts post-MI. Importantly, it is the ongoing reactive fibrosis that 

occurs over weeks and months, characterized by increased extracellular matrix, that 

increases the likelihood of arrhythmias and sudden death [28]. Similarly, direct coupling of 

cardiomyocytes to myofibroblasts increases the likelihood of arrhythmias, in contrast to 

non-activated fibroblasts [56–58]. This reactive ongoing fibrosis leads to increased 

myocardial stiffness that contributes to systolic and diastolic dysfunction and heart failure 

progression [2, 59]. Beyond the unexpected effects of MMI-0100 on preventing 

cardiomyocyte apoptosis when given 30 minutes after AMI experimentally, the chronic late 

protective effects on fibroblasts likely do not depend on the rapid infusion (e.g. 30 minutes 

post-MI) of MMI-0100.

Interestingly, the inhibition of apoptosis using caspase inhibitors has been shown to result in 

enhanced necrosis [53]. In the present study, the enhanced necrosis seen with MMI-0100 

corresponds with time points in which caspase-3/7 activity is inhibited, which may 

correspond to studies which illustrate that the caspase inhibition protecting cells from 

apoptosis results in increased levels of necrosis. This relationship is thought to be due to the 

perseverance of damaged mitochondria that do not apoptose (as the mitochondrial 

permeability transition is inhibited) [60]. The consequences of maintaining dysfunctional 

mitochondria is a bioenergetics catastrophe, culminating in the disruption of the plasma 

membrane, resulting in necrosis [60, 61], which may explain the divergent apoptosis and 

necrosis results MMI-0100 affords cardiomyocytes in the present study. The unexpected 

early LDH release and necrosis occurring before caspase-3/7 activation may have to do with 

the use of DMSO as vehicle, which has been reported to attenuate oxidative stress induced 

apoptosis via inhibiting p38 to exert a cardioprotective effects via regulation of heme 

oxygenase-1 [62, 63].

The mechanisms by which MMI-0100 protects against systolic dysfunction may be, in part, 

by its effects on inhibiting cytokine release. The role of MK2 in the innate immune system is 

well established [64], with MK2 inhibition suppressive the inflammatory responses in 

experimental arthritis [65, 66] and other autoimmune diseases [67]. Similarly, fibroblasts 

and cardiomyocytes can be considered to have innate immune responses, as hypoxia-

induced inflammatory activation of p38 MAPK in cardiac fibroblasts, for example, 

stimulates the release of IL-1α, TNFα, and MMP-3 [68]. These cytokines can directly 

cardiomyocyte contractility depression, in addition to stimulating cardiomyocyte secretion 

of IL-1, IL-6, and TNFα. Since IL-1, IL-6, and TNFα all directly depress cardiac function 

and mediate heart failure [69], these non-cell death induced effects are critical to the 

dysfunction found in acute MI. In the present study, we investigated IL-1, IL6, and TNFα in 

the media of cardiomyocyte and primary cardiac fibroblasts at each of the time points tested. 

However, IL-1, IL6, and TNFα were undetectable (see Supplemental Table 1 and 

Supplemental Table 2). Either these cytokines were released and utilized much earlier than 

assayed, or this may be a limitation of using single cell suspensions that do not replicate the 

cross talk between cells (e.g. cardiomyocytes and fibroblasts) that occurs in vivo and plays 

an important role in cardiac function.
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Anti-fibrosis strategies are limited and are not particularly targeted; currently, ACE 

inhibition, angiotensin receptor antagonism, and HMG-CoA-reductase inhibition are 

available [3, 70, 71]. While these have shown some beneficial effects (see Brown, et al., 

[72], more effective prevention focused at the level of the fibroblast is needed [73]. To this 

end, drugs that inhibit fibrosis more specifically are needed. Multiple anti-fibrotic agents 

have demonstrated potential therapeutic benefits in heart disease, including Perfenidone [74] 

and Transilast [75]. However, clinical utility of these compounds is limited by multiple 

undesirable side effects, including liver toxicity [76]. Novel anti-fibrotic agents based on the 

core structure of Transilast (FT011) have subsequently been approved for pre-clinical 

development of diabetic nephropathy and have been tested for treatment of experimental 

diabetic cardiomyopathy [77, 78]. Use of relaxin to reduce fibrosis post-AMI has been 

reported [79] and use of recombinant relaxin in Phase 2 and Phase 3 clinical of acute heart 

failure and decompensated congestive heart failure have been completed, with results in 

process [80–82].

Conclusion

Therapeutic inhibition of Mitogen Activated Protein Kinase Activated Protein Kinase II 

(MK2) activity using rationally designed cell-permeant peptides after acute MI inhibits 

cardiac fibrosis and retains cardiac function at 2 weeks, by mechanisms that involve 

inhibiting cardiomyocyte apoptosis, while enhancing primary cardiac fibroblast cell death.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Glossary

AMI Acute myocardial infarction

LAD Left anterior descending

MK2 Mitogen Activated Protein Kinase Activated Protein Kinase II

MMI-0100 cell permeant peptide inhibitor of MK2 activity

PBS phosphate buffered saline

TGF-β transforming growth factor beta
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Highlights

• MK2 −/− mice are resistant to ischemia reperfusion injury

• MMI-0100 is a cell-permeable peptide inhibitor of MK2 that prevents lung 

fibrosis

• MMI-0100 therapy after LAD ligation reduces fibrosis ~50% and protects 

function

• MMI-0100 inhibits MK2 to reduce ischemia-induced cardiomyocyte apoptosis

• MMI-0100 enhances ischemia-induced fibroblast apoptosis to provide anti-

fibrosis
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Figure 1. 
Experimental design of acute myocardial infarction (AMI) with 50 μg/kg/day MMI-0100 

peptide or PBS intraperitoneal treatment given 30 minutes after insults with survival 

analysis. A. Echocardiography schedule in relation to acute myocardial infarction (AMI) and 

thoracotomy and sham ligation surgical intervention. B. Daily drug delivery schedule of 

MMI-0100 peptide or PBS control. C. Conscious echocardiographic analysis of AMI 

(thoracotomy and permanent LAD coronary artery ligation), thoracotomy and sham ligation 

(threaded, but not tied, removed), and AMI followed by intraperitoneal MMI-0100 peptide 

in PBS vehicle, started 30 minutes AFTER permanent LAD ligation placed. D. 
Representative M-mode tracing from three experimental groups at baseline, 1 week, and 2 

weeks after AMI surgical intervention. LVEDD, left ventricular end-diastolic dimension; 

LVESD, left ventricular end-systolic dimension; LV Vol;d, LV volume in diastole; LV 

Vol;s,, LV volume in systole; FS, fractional shortening, calculated as (LVEDD-LVESD)/

LVEDD × 100; EF%, ejection fraction calculated as (end Simpson’s diastolic volume – end 

Simpson’s systolic volume)/end Simpson’s diastolic volume * 100. A Kruskal-Wallis One-
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way ANOVA was performed at each terminal time point in experiments setup and ran in 

parallel. If significance was reached (p<0.05), a post-hoc all pairwise Multiple Comparison 

Procedures (Tukey Test) was performed between each of the groups to determine 

significance. *p<0.05 vs. thoracotomy and sham ligation (control); **p<0.05 vs. other two 

groups. Image in A from: http://www.clipartbest.com/clipart-RTA6ngxgc
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Figure 2. 
After surgical induction of acute MI (permanent LAD coronary artery ligation), daily 

treatment with 50 μg/kg/day MMI-0100 peptide (first given 30 minutes post-AMI) in vivo 

results in a significant reduction in fibrosis at day 14. A. The area of fibrosis was analyzed in 

3–4 blindly chosen hearts each heart at 14–15 levels, 3 sections at each level, and analyzed 

blinded fibrosis analysis of trichrome stained histological sections using Aperio (42 sections 

analyzed per mouse heart). B. Histological analysis of fibrosis (collagen staining blue by 

Aperio algorithm analysis) of 3–4 hearts per group resulting from acute myocardial 

infarction at 14 days post-AMI. C. Representative trichrome-stained sections from mouse 

hearts challenged with permanent AMI (~21% of the area stains blue, including primarily 

interstitial fibrosis). D. Representative trichrome-stained sections from mouse hearts 

challenged with permanent AMI treated daily with 50 μg/kg/day MMI-0100 peptide starting 

30 minutes post-infarction (~11% of the area stains blue, including primarily interstitial 

fibrosis). E. Representative trichrome-stained sections from mouse control hearts, including 

the thoracotomy + sham ligation, no surgery + no drug, and no surgery+50 μg/kg/day 

MMI-0100 peptide. (0.9% of the area stains blue, representing connective tissue and vessels; 

no interstitial fibrosis evident in any analyzed section). A Kruskal-Wallis One-way ANOVA 

was performed on the fibrosis % from serial sections using 3–4 hearts per group; each single 

fibrosis per heart was the weighted mean of 126–180 sections described in A. above. If 

significance was reached (p<0.05), a post-hoc all pairwise Multiple Comparison Procedures 

(Tukey Test) was performed between each of the groups to determine significance. *p<0.05 

vs. all other groups.

Xu et al. Page 23

J Mol Cell Cardiol. Author manuscript; available in PMC 2015 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
In H9C2 cardiomyocytes challenged with 1% hypoxia, MMI-0100 peptide reduces caspase 

3/7 activation. A. H9C2 cells were challenged with 1% hypoxia for 8, 16, and 24 hours; the 

media was collected for LDH release and cells immediately harvested for caspase 3/7 

activity and Western blot analysis at each time point. Each bar represents 3 wells performed 

in triplicate in experimental conditions repeated on at least 2 independent occasions. B. 
Caspase 3/7 activity of harvested cells at 8, 16, and 24 hours in the presence or absence of 

MMI-0100 peptide; 0 μM (vehicle only, 0.1% DMSO final), 20 μM, or 100 μM MMI-0100 

peptide. C. LDH detection in media from the same experimental conditions as the caspase 

activity described above. A Kruskal-Wallis One-way ANOVA was performed at each 

terminal time point in experiments setup and ran in parallel. If significance was reached 

(p<0.05), a post-hoc all pairwise Multiple Comparison Procedures (Tukey Test) was 

performed between each of the groups to determine significance. *p<0.05 vs. 0 μM group 

(DMSO vehicle control); **p<0.05 vs. other two groups.
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Figure 4. 
In H9C2 cardiomyocytes challenged with 1% hypoxia, MMI-0100 peptide reduces MK2 

activity measured by downstream HNRNPA0 protein expressed, but not phospho- or total 

MK2 levels. A. H9C2 cells were challenged with 1% hypoxia for 8, 16, and 24 hours; 

desitometric analysis of Western immunoblot (right, representative 1 of 3 replicates per bar) 

demonstrated significant decreases in HNRNPA0 protein expression. B. Densitometric 

analysis phospho- and total MK2 levels (below). A Kruskal-Wallis One-way ANOVA was 

performed at each terminal time point in experiments setup and ran in parallel. If 

significance was reached (p<0.05), a post-hoc all pairwise Multiple Comparison Procedures 

(Tukey Test) was performed between each of the groups to determine significance. 

**p<0.05 vs. other 2 groups.
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Figure 5. 
In HL1 cardiomyocytes challenged with 1% hypoxia, MMI-0100 peptide reduces caspase 

3/7 activation. A. HL1 cells were challenged with 1% hypoxia for 4, 8, and 12 hours; the 

media was collected for LDH release and cells immediately harvested for caspase 3/7 

activity and Western blot analysis at each time point. Each bar represents 3 wells performed 

in triplicate in experimental conditions repeated on at least 2 independent occasions. B. 
Caspase 3/7 activity of harvested cells at 4, 8, and 12 hours in the presence or absence of 

MMI-0100 peptide; 0 μM (vehicle only, 0.1% DMSO final), 20 μMand 100 μM MMI-0100 

peptide. C. LDH detection in media from the same experimental conditions as the caspase 

activity described above. A Kruskal-Wallis One-way ANOVA was performed at each 

terminal time point in experiments setup and ran in parallel. If significance was reached 

(p<0.05), a post-hoc all pairwise Multiple Comparison Procedures (Tukey Test) was 

performed between each of the groups to determine significance. *p<0.05 vs. 0 μM group 

(DMSO vehicle control); **p<0.05 vs. other two groups; *** p<0.05 vs. 20 μM MMI-0100 

peptide group.
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Figure 6. 
In HL1 cardiomyocytes challenged with 1% hypoxia, MMI-0100 peptide reduces MK2 

activity measured by downstream HNRNPA0 protein expressed, but not phospho- or total 

MK2 levels. A. H9C2 cells were challenged with 1% hypoxia for 4, 8, and 12 hours; 

desitometric analysis of Western immunoblot (right, representative 1 of 3 replicates per bar) 

demonstrated significant decreases in HNRNPA0 protein expression. B. Densitometric 

analysis phospho- and total MK2 levels (below). A Kruskal-Wallis One-way ANOVA was 

performed at each terminal time point in experiments setup and ran in parallel. If 

significance was reached (p<0.05), a post-hoc all pairwise Multiple Comparison Procedures 

(Tukey Test) was performed between each of the groups to determine significance. *p<0.05 

vs. 0 μM group (DMSO vehicle control).
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Figure 7. 
MMI-0100 reduces the number of vimentin-positive fibroblast cells and increases vessel 

density two weeks after chronic AMI. Quantification of cardiac fibroblasts and vessels was 

detected by immunofluorescence using anti-vimentin and anti-α-smooth muscle actin 

(αSMA), respectively from serial sections in hearts reported in Figure 1 and Figure 2. MI 

only (permanent AMI + Daily PBS), MMI-0100 (permanent AMI + daily MMI-0100), and 

Sham (Thoractomy +Sham Ligation) sections from 3 independent animals per group were 

quantitatively analyzed. Microphotographs of representative A. anti-vimentin and B. anti-α-

smooth muscle actin immunofluorescence illustrate that MMI-0100 treatment after MI C. 
reduces vimentin positive fibroblasts and D. increases αSMA-positive arterioles. Staining 
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positive cells was calculated by using Meta-Morph analysis software (Molecular Devices, 

Sunnyvale, CA) quantitative unbiased software with the average value of at least 4 random 

fields from each section in double-blind fashion. The relative number of positive cells 

identified determined the relative numbers of αSMA, vimentin, and TGF-β1-positive cells. 

Groups were statistically compared using a One-Way ANOVA, followed by a post-hoc 

multiple comparisons test (Tukey’s Test). *p<0.001 vs. all other groups.
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Figure 8. 
MMI-0100 reduces the number of TGF-β1-positive fibroblast cells and decreases the total 

number of TUNEL positive cells, despite a relative increase in TUNEL positive fibroblasts 

two weeks after chronic AMI. Quantification of TGF-β1-positive cells was detected by 

immunofluorescence and apoptosis was detected by TUNEL staining and co-localization 

with anti-vimentin (fibroblasts) from serial sections in hearts reported in Figure 1 and Figure 

2. MI only (permanent AMI + Daily PBS), MMI-0100 (permanent AMI + daily MMI-0100), 

and Sham (Thoractomy +Sham Ligation) sections from 3 independent animals per group 

were quantitatively analyzed. Microphotographs of representative A. anti-TGF-β1 and 

quantification of B. TGF-β1-positive cells, and C. the total TUNEL positive cells (light 

gray) that co-stain with anti-vimentin (fibroblasts) illustrating the effects of MMI-0100 

treatment after chronic AMI C. reduces vimentin positive fibroblasts and D. increases 

αSMA-positive arterioles. The number of positively stained cells was calculated by using 

sing Meta-Morph analysis software (Molecular Devices, Sunnyvale, CA) quantitative 

unbiased software with the average value of at least 4 random fields from each section in 

double-blind fashion. The relative number of positive cells identified determined the relative 

numbers of TGF-β1–, TUNEL-, and vimentin-positive cells histologically. Staining was 

quantified using MetaMorph software analysis by identification of tissue apoptotic nuclei in 

10 random fields for each individual mouse. A One-Way ANOVA was used to analyze 

differences in TGF-β1; a Two-Way ANOVA was used to analyze the role of MMI-0100 on 
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TUNEL–positivity and the role of fibroblasts in these changes. *p<0.001 vs. all other groups 

(all TUNEL positive cells in C); §p<0.001 vs. other vimentin-positive cells in other groups.
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