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Abstract
We have reported that compounds containing a bi-aryl linked unit (Ar-X-Ar′) modulated Na+

currents by promoting slow inactivation and fast inactivation processes and by inducing frequency
(use)-dependent inhibition of Na+ currents. These electrophysiological properties have been
associated with the mode of action of several antiepileptic drugs. In this study, we demonstrate
that the readily accessible (biphenyl-4-yl)methylammonium chlorides (compound class B)
exhibited a broad range of anticonvulsant activities in animal models and in the maximal
electroshock seizure test the activity of (3′-trifluoromethoxybiphenyl-4-yl)methylammonium
chloride (8) exceeded that of phenobarbital and phenytoin upon oral administration to rats.
Electrophysiological studies of 8 using mouse catecholamine A– differentiated cells and rat
embryonic cortical neurons confirmed that 8 promoted slow and fast inactivation in both cell types
but did not affect the frequency (use)-dependent block of Na+ currents.

Lacosamide1(1) is a first-in-class antiepileptic drug (AED) that has been introduced in 34
countries, including the US, as an adjunctive therapy for the treatment of partial-onset
seizures.2 Whole-cell, patch-clamp electrophysiology showed that 1 reduced Na+ channel
availability by a mechanism consistent with its increasing the transition of Na+ channels to
the slow-inactivated state without affecting the fast inactivation process.3-5 (For an
alternative mechanism where the agent blocks Na+ channel fast-inactivated channels with
very slow kinetics, see reference 6). We demonstrated that lacosamide analogs in which the
N-benzyl amide group was extended by an additional aryl unit to give compound class A
exhibited pronounced anticonvulsant activity in proven rodent seizure models.7

Electrophysiologic examination of A in neuronal-like catecholamine A–differentiated
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(CAD) cells showed that these compounds promoted Na+ channel slow inactivation and that
several compounds were 40-80–fold more potent than 1. 8 Interestingly, we found that
members of compound class A, unlike 1, affected Na+ channel fast inactivation and
exhibited frequency (use)-dependent inhibition of Na+ channel firing. We investigated the
origin of A's increased potency, compared with 1, for Na+ channel slow inactivation and
showed that both the core “lacosamide unit” and the “bi-aryl linked unit” (Fig. 1) promoted
slow inactivation.9

In this study, we asked if compounds conforming to the bi-aryl linked unit exhibited
anticonvulsant activity in rodents. Here, we focus on substituted (biphenyl-4-
yl)methylammonium chlorides (B) wherein the aryl linker (X) is a single bond. We report
that compound class B showed a broad profile of anticonvulsant activity, and when a
selected compound of class B was given orally to rats potent activity in the maximal
electroshock seizure10 (MES) model that was comparable to the clinical agents
phenobarbital and phenytoin was seen.11

Results and Discussion
Choice of Compounds

We selected 10 (biphenyl-4-yl)methylammonium chlorides (B) in which the substituent (Y)
and the site of substitution on the terminal aryl unit were varied (Table 1, compounds 2–11).
Both electron-withdrawing and electron-donating substituents were chosen. In most
instances, the groups were placed at either the 3′ (5, 7, 8, 12, 13) or the 4′ (6, 8, 11) position
since earlier structure-activity relationship studies on 112 and compound class A7 derivatives
showed substitution at these sites provided compounds with excellent anticonvulsant
activities. In the case of the trifluoromethoxy (CF3O) substituent, we prepared the 2′, 3′, and
4′ regioisomers (9–11). The compounds were purified and tested as their hydrochloride salts.

Chemistry
The (biphenyl-4-yl)methylammonium chlorides 2–11 were prepared using Suzuki
coupling13 of 4-bromobenzyl amine (12) with the appropriate, commercially available
substituted phenylboronic acids (13–21) to give the amines, which were then were
immediately converted to their hydrochloride salts 3–11 (Scheme 1). For hydrochloride salt
2, we treated a commercial sample of 4-(phenyl)benzylamine with HCl in dioxane.
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Pharmacological Activity
Compounds 2–11 were tested for anticonvulsant activity at the Anticonvulsant Screening
Program (ASP), of the National Institute of Neurological Disorders and Stroke (NINDS) at
the U.S. National Institutes of Health. Screening was performed using the procedures
described by Stables and Kupferberg.14 The anticonvulsant activity data from the MES,10

psychomotor 6 Hz,15 and scMetrazol16 (scMet) tests are summarized in Table 1, along with
similar results obtained for 1 and the clinical AEDs phenytoin,11 valproate,11 and
phenobarbital.11 All compounds were administered intraperitoneally (ip) to mice and ip or
orally (po) to rats. For compounds that showed significant activity, we report the 50%
effective dose (ED50) values obtained in quantitative screening evaluations. We also provide
the median doses for 50% neurological impairment (TD50) in mice (rotorod test17) and in
rats18 (behavioral toxicity effects).

Compounds 5 and 8 displayed activities (50–100 mg/kg) in mice (ip) in the three seizure
models (MES, 6 Hz, scMet), while 2, 3, 4, 7, 9, and 10 displayed activities (30–100 mg/kg)
in two of the three assays. The observed seizure protection of 3, 5, and 8 in the scMet model
was interesting since 112 and compounds belonging to class A7 did not display
anticonvulsant activity in this model. The broad whole-animal pharmacological profile for
several Bs suggested that these compounds exert their anticonvulsant activities through
multiple pathways. For the trifluoromethoxy-substituted compounds 7–9, we found that the
3′-trifluoromethoxy derivative 8 was the most potent in the MES test (mice, ip). Finally, for
2–11, we did not observe a clear trend on the effect of the electronic properties of the
terminal aryl substituent (Y) in 2–11 on anticonvulsant activity.

In mice (ip), 8 was among the most active (biphenyl-4-yl)methylammonium chlorides. We
observed ED50 values of 25 mg/kg, 43 mg/kg, and 81 mg/kg in the MES, 6 Hz, and scMet
seizure models, respectively. When 8 was tested in the MES model in rats (po), the ED50
value was 8.7 mg/kg. Compound 8 showed no neurotoxicity in rats (po) at doses as high as
500 mg/kg, providing a protective index (PI = TD50/ED50) of >57. The oral activity of 8
exceeded that of phenytoin,11 phenobarbital,11 and valproate11 and was approximately
twofold less active than 1.1 Similar activity for 8 was observed in the rat after ip
administration (MES ED50 = 16 mg/kg; TD50 = 72 mg/kg). When tested in the iv Metrazol
test18 (mice, ip) at 25 mg/kg and 81 mg/kg there was no statistical difference from the
control group in seizure threshold.

The excellent activity observed for 8 led us to examine its cellular activity by patch-clamp
electrophysiology using CAD cells. We have previously shown that CAD cells express
endogenous tetrodotoxin-sensitive Na+ currents with rapid activation and inactivation
kinetics upon membrane depolarization and are likely mediated by NaV1.7, NaV1.1, and
NaV1.3 channels.5,9 Moreover, we found that the Na+ channel properties of 1 in CAD cells5

were similar to those reported in cultured neurons and mouse N1E-115 neuroblastoma
cells.3 Accordingly, we used readily accessible CAD cells to evaluate the effect of 8 on
neuronal function, recognizing in advance that CAD cells do not express the same
complement of Na+ channels expressed in central nervous system (CNS) neurons. We found
that 8 preferentially promoted Na+ channel slow inactivation (Fig. 2A-D). The Na+ slow
inactivation IC50 value at −50 mV was 2.7 μM, which was approximately 30-times more
potent than 1 (IC50 = 85 μM).5 We chose the potential of −50 mV for three reasons: (1) a
large fraction of the channels undergo steady-state inactivation, which involves
contributions from slow and fast inactivation pathways,19,20 where −50 mV is within the
steep voltage-dependence range for each; (2) it is near the resting membrane potential and
approaches the action potential firing threshold for CNS neurons,21 where slow inactivation
appears to be physiologically relevant during sustained subthreshold depolarizations;22 and
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(3) changes in the Na+ channel availability near −50 mV can impact the overlap of Na+

current activating and inactivating under steady-state conditions.19,22

We found that 8 did not affect Na+ channel steady-state activation, defined as the
relationship between voltage and a shift of channels from closed to open confirmations, but
did modify steady-state fast inactivation, defined as the relationship between voltage and a
shift of channel gating from open to inactivated confirmations over several hundred
milliseconds (Fig. 3). Steady-state fast inactivation was assessed using a previously
described protocol designed to induce a fast-inactivated state.5,8,9 Cells were held at −80
mV, stepped to inactivating prepulse potentials ranging from −120 to −10 mV (in 10-mV
increments) for 500 ms, then the cells were stepped to 0 mV for 20 ms to measure the
available current (Fig. 3, top left protocol). A 500-ms conditioning pulse was used because it
allowed all of the endogenous channels to transition to a fast-inactivated state at all
potentials examined. Steady-state, fast inactivation curves of Na+ currents from DMSO-
treated and various concentrations of 8-treated CAD cells were well fitted with a single
Boltzmann function (R2 > 0.935 for all conditions) and are illustrated in Figure 3 (leftmost
curves). The V1/2 value for inactivation of 0.1% DMSO-treated cells was −71.6 ± 0.6 mV
(n=6), which was significantly different from the V1/2 values of all concentrations of 8-
treated CAD cells (p > 0.05; ANOVA with a post-hoc Dunnett's test). The 1 μM
concentration of 8 caused a significant hyperpolarizing shift of ∼11.2 mV while the 30 μM
concentration of 8 caused a significant hyperpolarizing shift of ∼26.5 mV with no
commensurate significant changes in slope values compared with control cells. The slopes
of fast inactivation were not affected by 8. Steady-state activation, as measured by 15 ms
depolarizing pulses from −70 mV to +80 mV (in 10-mV increments) produced equivalent
V1/2 and slope values in all conditions. Finally, we found that 8 did not exhibit frequency
(use)-dependent inhibition of Na+ currents as currents recorded from cells treated with 10
μM 8 displayed no statistically significant differences in trend or amplitude compared with
control (Fig. 4). The whole-cell, patch-clamp electrophysiology for 8 mirrored aspects
observed for 22 in CAD cells.9 For 22, the IC50 value for Na+ channel slow inactivation was
2.1 μM, and like 8, it affected fast inactivation. However, 22 displayed frequency (use)-
dependent blockage of Na+ currents, while 8 did not.

We also tested the activity of 8 in rat embryonic cortical neurons. These neurons typically
express Na+ channel isoforms NaV1.1, NaV1.2, NaV1.3, and NaV1.6.24 The slow
inactivation, steady-state inactivation, fast inactivation, and use-dependence of Na+ currents
in cortical neurons grown for 7-10 days in vitro (Fig. 5A, D, G, and J) were examined using
protocols mostly similar to those described for CAD cells with a few exceptions noted in the
legend to Figure 5. A single concentration (20 μM) of 8 was chosen as it represented almost
8– fold the IC50 value for slow inactivation based on CAD cell data. At this concentration,
the extent of slow inactivation induced by 8 was significantly greater than neurons treated
with the vehicle DMSO: 0.17 ± 0.03 (n=5) versus 0.41 ± 0.0.05 (n=7), respectively (p>0.05,
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one-way ANOVA Fig. 5B, C). Steady-state activation was also unchanged between the two
conditions with the V1/2 and k values being statistically similar (Fig. 5E, F). Steady-state,
fast inactivation curves of Na+ currents from DMSO-treated and 20 μM 8-cortical neurons
were well fitted with a single Boltzmann function (R2 > 0.995 for both conditions) and are
illustrated in Figure 5I. The V1/2 value for inactivation of 0.1% DMSO-treated cells was
−53.9 ± 1.2 mV (n=4), which was significantly different from the V1/2 value of −69.6 ± 1.2
mV (n=5) for 8-treated neurons (p < 0.05; ANOVA with a post-hoc Dunnett's test). The 20
μM concentration of 8 caused a significant hyperpolarizing shift of ∼15.7 mV with no
commensurate significant changes in slope values compared with control cells. Finally, we
found that 8 did not exhibit frequency (use)-dependent inhibition of Na+ currents in cortical
neurons (Fig. 5K, L).

Compound 8, and the other agents in this study, contained a biphenyl unit. This motif is
considered a privileged substructure and has been shown to bind to many proteins, including
G-protein-coupled receptors.25-27 Accordingly, we determined the binding of 2–11 at UNC's
Psychoactive Drug Screening Program against 43 receptors. We observed appreciable
binding of most compounds at 10 μM to several serotonin (e.g., 5-HT2A, 5-HT2B, 5-HT5A,
5-HT6, 5-HT7) and adrenergic (e.g., alpha 2A, 2B, 2C) receptors, the DAT, NET, and SERT
transporters, and the sigma-1 and -2 receptors (Supplementary Table 1). The importance of
these interactions on the observed anticonvulsant activities has not been determined.

Conclusions
Our previous finding that the bi-aryl linked unit (Fig. 1) promoted Na+ channel slow
inactivation in CAD cells9 led to the discovery that compounds conforming to class B
exhibited anticonvulsant activities in proven whole animal seizure models. Structurally, B is
exceedingly simple, readily synthesized, and soluble in water (≥300 μM). The
anticonvulsant activity for 8 in the MES seizure model (rat, po) rivaled that of established
AEDs. Compound 8 appears to exert its activity, in part, by inhibiting Na+ channel currents.

Experimental Section
General Methods

The general methods used in this study are identical to those previously reported.7 The
compounds were checked by TLC, 1H NMR, and 13C NMR, MS, and elemental analyses.
The analytical results, except for 6, are within ± 0.40% of the theoretical value. The NMR
and analytical data confirmed the purity of the products was ≥95%.

(Biphenyl-4-yl)methylammonium Chloride28 (2)
To a solution of 4-(phenyl)benzylamine (1.00 g, 5.5 mmol) in CH2Cl2 (50 mL) was added
an HCl solution in dioxane dropwise (1.5 mL, 4 N) with stirring at room temperature (1 h).
The resulting precipitate was filtered, washed with hexanes, dried in vacuo to give 2 (1.03 g,
86%) as a white solid: Rf = 0.00 (hexanes/EtOAc 1/1); mp 301-303 °C (lit.28 mp 308-310
°C); 1H NMR (CDCl3, CD3OD) δ4.14 (s, CH2N), 4.62-4.78 (br s, NH3), 7.32-7.41 (m,
ArH), 7.42-7.48 (m, 2 ArH), 7.49 (d, J = 8.4 Hz, 2 ArH), 7.59 (d, J = 8.8 Hz, 2 ArH), 7.68
(d, J = 8.4 Hz, 2 ArH); 13C NMR (CDCl3, CD3OD) δ42.7 (CH2N), 126.5, 127.3, 127.4,
128.5, 128.9, 131.3, 139.7, 141.9 (8 ArC); LRMS (ES+) 184.00 [M - Cl]+ (calcd for
C13H14N+ 184.11). Anal. Calcd. for C13H14ClN: C, 71.07; H, 6.42; Cl, 16.14; N, 6.38.
Found: C, 70.95; H, 6.44; Cl, 16.24; N, 6.34.
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(3′-Fluorobiphenyl-4-yl)methylammonium Chloride (3)
To a solution of 12 (1.21 g, 6.50 mmol) in acetonitrile (65 mL) was added 3-
fluorophenylboronic acid (13) (1.00 g, 7.15 mmol),
tetrakis(triphenylphosphine)palladium(0) (0.38 g, 0.32 mmol), and aqueous 2 N K2CO3
(16.2 mL). The resulting mixture was sparged with Ar with stirring (30 min) and then stirred
again at 90 °C under Ar (16 h). The reaction mixture was filtered and evaporated in vacuo.
The resulting residue was diluted with EtOAc (50 mL) and washed with H2O (2 × 50 mL)
and with saturated aqueous brine solution (2 × 50 mL). The organic layer was dried
(Na2SO4) and concentrated in vacuo to give the amine as a yellow oil. To a solution of the
amine in ethyl acetate was added aqueous concentrated HCl (0.8 mL) with stirring at room
temperature (1 h) to give a precipitate. To the resulting mixture, H2O was added and then
the aqueous layer separated. The aqueous layer was basified with aqueous 4 N NaOH and
extracted with CH2Cl2 (2×), and the combined CH2Cl2 layers dried (Na2SO4) and
evaporated in vacuo. The resulting oil was diluted in CH2Cl2 and then 4 N HCl in dioxane
added. The resulting precipitate was filtered and washed with hexanes to give 3 (1.20 g,
overall yield 77%) as a white solid: Rf = 0.00 (EtOAc/hexanes 1/1); mp 301-304 °C; 1H
NMR (CD3OD) δ4.18 (s, CH2N), 7.06-7.20 (m, ArH), 7.30-7.39 (m, ArH), 7.43-7.48 (m, 2
ArH), 7.58 (d, J = 8.2 Hz, 2 ArH), 7.71 (d, J = 8.2 Hz, 2 ArH); 13C NMR (CD3OD) δ44.5
(CH2N), 115.1 (d, J = 20.2 Hz), 115.9 (d, J = 20.2 Hz), 124.4, 129.2, 131.2, 132.3 (d, J =
8.8 Hz), 134.6, 142.4 (d, J = 7.6 Hz), 144.4 (d, J = 7.6 Hz), 165.2 (d, J = 243.0 Hz) (10
ArC); LRMS (ES+) 201.95 [M -Cl]+ (calcd for C13H13FN+ 202.10). Anal. Calcd. for
C13H13ClFN: C, 65.69; H, 5.51; Cl, 14.91; F, 7.99; N, 5.89. Found: C, 65.68; H, 5.45; Cl,
14.77; F, 7.81; N, 5.74.

(4′-Fluorobiphenyl-4-yl)methylammonium Chloride (4)
Employing the procedure for 3 and using 12 (5.00 g, 26.9 mmol), acetonitrile (100 mL), 4-
fluorophenylboronic acid (14) (3.77 g, 26.9 mmol),
tetrakis(triphenylphosphine)palladium(0) (1.55 g, 1.35 mmol), and aqueous 2 N K2CO3
(53.8 mL) gave the free amine29 as a yellow oil. The amine was treated with aqueous
concentrated HCl (2.5 mL) and then purified to give 4 (4.99 g, overall yield 78%) as a white
solid: Rf = 0.00 (EtOAc/hexanes 1/1); mp 302-303 °C; 1H NMR (DMSO-d6) δ4.06 (s,
CH2N), 7.28-7.34 (m, 2 ArH), 7.61-7.75 (m, 6 ArH), 8.70 (s, NH3); 13C NMR (DMSO-d6)
δ41.7 (CH2N), 115.8 (d, J = 21.3 Hz, C3′, C5′), 126.7 (ArC), 128.7 (d, J = 8.0 Hz, C2′, C6′),
129.6, 133.3 (2 ArC), 136.0 (d, J = 3.7 Hz, C1′), 139.1 (ArC), 162.0 (d, J = 243.2 Hz, C4′);
HRMS (ESI+) 202.1022 [M - Cl]+ (calcd for C13H13FN+ 202.1022). Anal. Calcd. for
C13H13ClFN: C, 65.69; H, 5.51; Cl, 14.91; F, 7.99; N, 5.89. Found: C, 65.55; H, 5.54; Cl,
14.79; F, 7.82; N, 5.88.

(3′-Chlorobiphenyl-4-yl)methylammonium Chloride (5)
Employing the procedure for 3 and using 12 (2.16 g, 11.63 mmol), acetonitrile (116 mL), 3-
chlorophenylboronic acid (15) (4.21 g, 26.9 mmol),
tetrakis(triphenylphosphine)palladium(0) (1.55 g, 1.35 mmol), and aqueous 2 N K2CO3
(53.8 mL) gave the free amine30 as a yellow oil. The amine was treated with aqueous
concentrated HCl (2.5 mL) and then purified to give 5 (4.37 g, overall yield 64%) as a white
solid: Rf = 0.00 (EtOAc/hexanes 1/1); mp 264-265 °C; 1H NMR (DMSO-d6) δ 4.07 (s,
CH2N), 7.43-7.76 (m, 8 ArH), 8.75 (s, NH3Cl); 13C NMR (DMSO-d6) δ 40.5 (CH2N),
125.4, 126.3, 126.9, 127.4, 129.7, 130.8, 133.8, 134.0, 138.5, 141.6 (10 ArC); LRMS (ES+)
218.0 [M - Cl]+ (calcd for C13H13ClN+ 218.1). Anal. Calcd. for C13H13Cl2N·0.18 H2O: C,
60.66; H, 5.23; Cl, 27.55; N, 5.44. Found: C, 60.30; H, 5.12; Cl, 27.16; N, 5.49.
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(4′-Chlorobiphenyl-4-yl)methylammonium Chloride (6)
Employing the procedure for 3 and using 12 (2.16 g, 11.63 mmol), acetonitrile (116 mL), 4-
chlorophenylboronic acid (16) (2.00 g, 12.79 mmol),
tetrakis(triphenylphosphine)palladium(0) (0.68 g, 0.58 mmol), and aqueous 2 N K2CO3
(29.1 mL) gave the free amine as a yellow oil. The amine was treated with aqueous
concentrated HCl (0.5 mL) and then purified to give 6 (1.00 g, overall yield 100%) as a
white solid: Rf = 0.00 (EtOAc/hexanes 1/1); mp 298-302 °C; 1H NMR (CD3OD) δ 4.19 (s,
CH2N), 7.42-7.46 (m, 2 ArH), 7.56-7.63 (m, 4 ArH), 7.67-7.71 (m, 2 ArH); 13C NMR
(CD3OD) δ 40.5 (CH2N), 125.1, 126.1, 126.6, 127.3, 130.4, 131.4, 136.6, 138.4 (8 ArC);
HRMS (ESI+) 218.0764 [M - Cl]+ (calcd for C13H13ClN+ 218.0736).

(2′-Trifluoromethoxybiphenyl-4-yl)methylammonium Chloride31 (7)
Employing the procedure for 3 and using 12 (1.65 g, 8.9 mmol), acetonitrile (100 mL), 2-
trifluoromethoxyphenylboronic acid (17) (2.00 g, 9.8 mmol),
tetrakis(triphenylphosphine)palladium(0) (0.51 g, 0.44 mmol), and aqueous 2 N K2CO3
(17.7 mL) gave the free amine as a yellow oil. The amine was treated with aqueous
concentrated HCl (2.3 mL) and then purified to give 7 (1.70 g, overall yield 57%) as a white
solid: Rf = 0.00 (hexanes/EtOAc 1/1); mp 175-179 °C; 1H NMR (CDCl3, CD3OD) δ 4.15 (s,
CH2N), 4.23-4.40 (br s, NH3), 7.35-7.46 (m, 5 ArH), 7.53-7.57 (br s, 3 ArH); 13C NMR
(CDCl3, CD3OD) δ 43.0 (CH2N), 121.4, 127.2, 128.7, 129.1, 129.9, 131.2, 132.0, 134.3,
137.9, 146.0 (10 ArC), the OCF3 resonance was not detected and was believed to overlap
with nearby peaks; LRMS (ES+) 268.01 [M - Cl]+ (calcd for C14H13F3NO+ 268.09). Anal.
Calcd. for C14H13ClF3NO: C, 55.37; H, 4.31; Cl, 11.67; F, 18.77; N, 4.61. Found: C, 55.48;
H, 4.39; Cl, 11.48; F, 18.51; N, 4.56.

(3′-Trifluoromethoxybiphenyl-4-yl)methylammonium Chloride (8)
Employing the procedure for 3 and using 12 (1.56 g, 8.4 mmol), acetonitrile (85 mL), 3-
trifluoromethoxyphenylboronic acid (18) (2.00 g, 8.4 mmol),
tetrakis(triphenylphosphine)palladium(0) (0.38 g, 0.4 mmol), and aqueous 1 N K2CO3 (30
mL) gave the free amine as a yellow oil. The amine was treated with aqueous concentrated
HCl (0.5 mL) and then purified to give 8 (1.00 g, overall yield 70%) as a white solid: Rf =
0.00 (EtOAc/hexanes 1/1); mp 218-219 °C; 1H NMR (CD3OD) δ 4.10 (s, CH2N), 7.38-7.40
(m, 1 ArH), 7.63-7.79 (m, 7 ArH), 8.81-8.85 (br s, NH3Cl); 13C NMR (CD3OD) δ 51.4
(CH2), 128.8, 129.5 (2 ArC), 129.8 (q, J = 254.9 Hz, OCF3), 135.5, 136.6, 139.4, 140.6,
143.9, 148.0, 151.6, 158.6 (8 ArC). Anal. Calcd. for C14H13ClF3NO: C, 55.37; H, 4.31; Cl,
11.67; F, 18.77; N, 4.61. Found: C, 55.36; H, 4.31; Cl, 11.55; F, 18.58; N, 4.55.

(4′-Trifluoromethoxybiphenyl-4-yl)methylammonium Chloride32 (9)
Employing the procedure for 3 and using 12 (1.65 g, 8.9 mmol), acetonitrile (100 mL), 4-
trifluoromethoxyphenylboronic acid (19) (2.00 g, 9.8 mmol),
tetrakis(triphenylphosphine)palladium(0) (0.51 g, 0.44 mmol), and aqueous 2 N K2CO3
(17.7 mL) gave the free amine as a yellow oil. The amine was treated with aqueous
concentrated HCl (2.3 mL) and then purified to give 9 (2.18 g, overall yield 74%) as a white
solid: Rf = 0.00 (hexanes/EtOAc 1/1); mp 281-288 °C; 1H NMR (CDCl3, CD3OD) δ 4.14 (s,
CH2N), 4.24 (s, NH3), 7.31 (d, J = 8.8 Hz, 2 ArH), 7.55 (d, J = 8.4 Hz, 2 ArH), 7.60-7.68
(m, 4 ArH); 13C NMR (CDCl3, CD3OD) δ 42.9 (CH2N), 121.2, 127.6, 128.4, 129.4, 131.9,
138.8, 146.0, 148.9 (8 ArC), the OCF3 resonance was not detected and was believed to
overlap with nearby peaks; HRMS (ESI+) 290.0763 [M-HCl+Na]+ (calcd for C14H13F3NO+

290.0769). Anal. Calcd. for C14H13ClF3NO·0.08C6H14: C, 55.99; H, 4.58; Cl, 11.41; F,
18.35; N, 4.51. Found: C, 56.03; H, 4.22; Cl, 11.03; F, 18.52; N, 4.50.
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(3′-Methoxybiphenyl-4-yl)methylammonium Chloride (10)
Employing the procedure for 3 and using 12 (1.12 g, 6.0 mmol), acetonitrile (60 mL), 3-
methoxyphenylboronic acid (20) (1.00 g, 6.6 mmol),
tetrakis(triphenylphosphine)palladium(0) (0.35 g, 0.3 mmol), and aqueous 2 N K2CO3 (15.0
mL) gave the free amine as a yellow oil. The amine30 was treated with aqueous concentrated
HCl (1.6 mL) and then purified to give 10 (0.80 g, overall yield 54%) as a white solid: Rf =
0.00 (hexanes/EtOAc 1/1); mp 231-234 °C; 1H NMR (DMSO-d6) δ 3.83 (OCH3), 4.05
(CH2N), 6.95 (dd, J = 2.2, 8.3 Hz, ArH), 7.20 (s, ArH), 7.25 (d, J = 8.4 Hz, ArH), 7.39 (t, J
= 7.8 Hz, ArH), 7.50 (d, J = 8.0 Hz, 2 ArH), 7.72 (d, J = 8.0 Hz, 2 ArH), 8.40-8.58 (br s,
NH3); 13C NMR (DMSO-d6) δ 42.3 (CH2N), 55.6 (OCH3), 112.7, 113.7, 119.4, 127.3,
129.9, 130.4, 133.9, 140.5, 141.5, 160.2 (10 ArC); LRMS (ES+) 214.09 [M - Cl]+ (calcd for
C14H16NO+ 214.12). Anal. Calcd. for C13H13Cl2N: C, 67.33; H, 6.46; Cl, 14.20; N, 5.61.
Found: C, 67.05; H, 6.44; Cl, 13.94; N, 5.58.

(3′-Methoxycarbonylbiphenyl-4-yl)methylammonium Chloride32 (11)
Employing the procedure for 3 and using 12 (0.86 g, 4.6 mmol), acetonitrile (40 mL), 3-
methoxycarbonylphenylboronic acid (21) (1.00 g, 5.6 mmol),
tetrakis(triphenylphosphine)palladium(0) (0.27 g, 0.2 mmol), and aqueous 2 N K2CO3 (5
mL) gave the free amine as a yellow oil. The amine was treated with aqueous concentrated
HCl (1.2 mL) and then purified to give 11 (0.71 g, overall yield 55%) as a white solid: Rf =
0.00 (hexanes/EtOAc 1/1); mp 215-218 °C; 1H NMR (CD3OD) δ 3.90 (OCH3), 4.08
(CH2N), 7.58-7.70 (m, 3 ArH), 7.77 (d, J = 8.0 Hz, 2 ArH), 7.98 (dd, J = 1.0, 8.0 Hz, 2
ArH), 8.21 (s, ArH), 8.40-8.60 (br s, NH3); 13C NMR (CD3OD) δ 41.8 (CH2N), 52.3
(OCH3), 127.0, 127.1, 128.3, 129.7, 129.8, 130.4, 131.6, 133.8, 139.1, 140.0 (10 ArC),
166.2 (C(O)); LRMS (ES+) 242.03 [M - Cl]+ (calcd for C15H16NO2

+ 242.12). Anal. Calcd.
for C15H16ClNO2·0.2H2O: C, 64.03; H, 5.88; Cl, 12.06; N, 4.98. Found: C, 63.65; H, 5.82;
Cl, 11.84; N, 4.79.

Pharmacology
Compounds were screened under the auspices of the National Institutes of Health's ASP.
Experiments were performed in male rodents (albino Carworth Farms No. 1 mice (ip),
albino Sprague-Dawley rats (ip, po)). Housing, handling, and feeding were in accordance
with recommendations contained in the Guide for the Care and Use of Laboratory Animals.
Anticonvulsant activity was established using the MES test,10 6 Hz,15 and the scMet test,16

according to previously reported methods.1

Catecholamine A–Differentiated (CAD) Cells
CAD cells were grown at 37 °C and in 5% CO2 (Sarstedt, Newton, NC) in Ham's F12/
EMEM (GIBCO, Grand Island, NY), supplemented with 8% fetal bovine serum (Sigma, St.
Louis, MO) and 1% penicillin/streptomycin (100% stocks, 10,000U/mL penicillin G sodium
and 10,000 μg/mL streptomycin sulfate).5,8 Cells were passaged every 6–7 days at a 1:25
dilution.

Cortical Neurons
Rat cortical neuron cultures were prepared from cortices dissected from embryonic day 19
brains exactly as described.33,34

Electrophysiology
Whole-cell voltage clamp recordings were performed at room temperature on CAD cells and
cortical neurons using an EPC 10 Amplifier (HEKA Electronics, Lambrecht/Pfalz
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Germany). Electrodes were pulled from thin-walled borosilicate glass capillaries (Warner
Instruments, Hamden, CT) with a P-97 electrode puller (Sutter Instrument, Novato, CA)
such that final electrode resistances were 1–2 MΩ when filled with internal solutions. The
internal solution for recording Na+ currents contained (in mM): 110 CsCl, 5 MgSO4, 10
EGTA, 4 ATP Na2-ATP, 25 HEPES (pH 7.2, 290–310 mOsm/L). The external solution
contained (in mM): 100 NaCl, 10 tetraethylammonium chloride (TEA-Cl), 1 CaCl2, 1
CdCl2, 1 MgCl2, 10 D-glucose, 4 4-AP, 0.1 NiCl2, 10 HEPES (pH 7.3, 310-315 mOsm/L).
Whole-cell capacitance and series resistance were compensated with the amplifier. Series
resistance error was always compensated to be less than ± 3 mV. Cells were considered only
when the seal resistance was less than 3 MΩ;. Linear leak currents were digitally subtracted
by P/4.

Data Acquisition and Analysis
Signals were filtered at 10 kHz and digitized at 10–20 kHz. Analysis was performed using
Fitmaster and origin8.1 (OriginLab Corporation, MA, USA). For activation curves,
conductance (G) through Na+ channels was calculated using the equation G= I/(Vm -Vrev),
where Vrev is the reversal potential, Vm is the membrane potential at which the current was
recorded and I is the peak current. Activation and inactivation curves were fitted to a single-
phase Boltzmann function G/Gmax = 1/{1+exp[(V–V50)/k]}, where G is the peak
conductance, Gmax is the fitted maximal G, V50 is the half-activation voltage, and k is the
slope factor. Additional details of specific pulse protocols are described in the results text or
figure legends.

Statistical Analyses
Differences between means were compared by either paired or unpaired, two-tailed
Student's t-tests or an analysis of variance (ANOVA), when comparing multiple groups
(repeated measures whenever possible). If a significant difference was determined by
ANOVA, then a Dunnett's or Tukey's post-hoc test was performed. Data are expressed as
mean ± SEM, with p<0.05 considered as the level of significance.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

AED antiepileptic drug

ASP Anticonvulsant Screening Program

CAD catecholamine A-differentiated

CF3O trifluoromethoxy

ED50 effective dose (50%)

IC50 concentration at which half of the channels have transitioned to a slow-
inactivated state

ip intraperitoneally
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MES maximal electroshock seizure

NINDS National Institutes of Neurological Disorders and Stroke

PI protective index

po orally

scMet scMetrazol

TD50 neurological impairment (toxicity, 50%)

TEA-Cl tetraethylammonium chloride

V1/2 voltage of half-maximal activation
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Figure 1.
Key structural units in compound class A that affect Na+ channel slow inactivation.
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Figure 2. Effect on steady-state slow inactivation state of Na+currents in mouse CAD cells by 8
A. Currents were evoked by 5 s prepulses between −120 mV and −20 mV and then fast-
inactivated channels were allowed to recover for 150 ms at a hyperpolarized pulse to −120
mV. The fraction of channels available at 0 mV was analyzed. B. Representative current
traces from CAD cells in the absence (control, 0.1% DMSO) or presence of 100 μM of
compounds as indicated. The blue (control) and red (8) traces represent the current at −50
mV. C. Summary of steady-state slow activation curves for CAD cells treated with DMSO
(control) or 10 μM of 8. D. Summary of the fraction of current available at −50 mV for CAD
cells treated with DMSO (control) or 10 μM of 8. Asterisks (*) indicate statistically
significant differences in fraction of current available between control and the indicated
concentrations of 8 (p < 0. 05, Student's t-test). Data are from 4-7 cells per condition.
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Figure 3. Effects of 8 on activation and inactivation properties of Na+currents in mouse CAD
cells
Values for V1/2, the voltage of half-maximal activation and steady-state fast inactivation and
the slope factors (k) were derived from Boltzmann distribution fits to the individual
recordings and averaged to determine the mean (± SEM) voltage dependence of activation
and fast inactivation. The voltage protocol used to evoke current responses for each protocol
is shown above the fits. Representative Boltzmann fits for activation and steady-state
inactivation for CAD cells treated with 0.1% DMSO (control) and indicated concentrations
of 8 are shown.

Lee et al. Page 15

J Med Chem. Author manuscript; available in PMC 2014 July 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4. Lack of effect on frequency-dependent block by 8 of Na+currents in mouse CAD cells
The frequency dependence of block was examined by holding cells at the hyperpolarized
potential of −80 mV and evoking currents at 10 Hz by 20-ms test pulses to −10 mV (Inset
middle). Representative overlaid traces are illustrated by pulses 1, 10, 20, and 30 for control
(predrug) and in the presence of 8 (1 μM). Summary of average frequency-dependent
decrease in current amplitude (± SEM) produced by control (Pre-drug) or by the presence of
8 (1 μM) (p > 0.05, one-way ANOVA with Dunnett's post-hoc test). Data are from 5–7 cells
per condition.
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Figure 5. Evaluation of 8 on biophysical properties of Na+currents in rat embryonic cortical
neurons
A. Currents were evoked by 5 s prepulses between −100 mV and +20 mV and then fast-
inactivated channels were allowed to recover for 1000 ms at a hyperpolarized pulse to -100
mV. The fraction of channels available at 0 mV was analyzed. B. Representative current
traces from cortical neurons in the absence (control, 0.1% DMSO) or presence of 20 μM8.
The black and red traces represent the current at −50 mV. C. Summary of the fraction of
current available at −50 mV for cortical neurons treated with DMSO (control) or 20 μM of
8. Values for V1/2, the voltage of half-maximal activation (D-F) and steady-state fast
inactivation (G-I) and the slope factors (k) were derived from Boltzmann distribution fits to
the individual recordings and averaged to determine the mean (± SEM) voltage dependence
of activation and fast inactivation. The voltage protocol used to evoke current responses for
each protocol is shown above the fits. Representative Boltzmann fits for activation and
steady-state inactivation for cortical neurons treated with 0.1% DMSO (control) and 20 μM
of 8 are shown. Fast-inactivation was significantly affected by 20 μM of 8. J-L. Use-
dependence was not affected by 20 μM of 8. Details are similar to those in legend to Figure
4. Five to seven cells were tested in these experiments.
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Scheme 1. Synthesis of (Biphenyl-4-yl)methylammonium Chlorides (B)
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