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Abstract
Of great interest in recent years has been computationally predicting the novel polypharmacology
of drug molecules. Here, we applied an “induced-fit” protocol to improve the homology models of
5-HT2A receptor, and we assessed the quality of these models in retrospective virtual screening.
Subsequently, we computationally screened the FDA approved drug molecules against the best
induced-fit 5-HT2A models, and chose six top scoring hits for experimental assays. Surprisingly,
one well-known kinase inhibitor, sorafenib has shown unexpected promiscuous 5-HTRs binding
affinities, Ki = 1959, 56 and 417 nM against 5-HT2A, 5-HT2B and 5-HT2C, respectively. Our
preliminary SAR exploration supports the predicted binding mode, and further suggests sorafenib
to be a novel lead compound for 5HTR ligand discovery. Although it has been well known that
sorafenib produces anticancer effects through targeting multiple kinases, carefully designed
experimental studies are desirable to fully understand whether its “off-target” 5-HTR binding
activities contribute to its therapeutic efficacy or otherwise undesirable side effects.
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1. INTRODUCTION
Currently, target-based drug discovery is typically defined as “one compound - one target -
one disease” with the idea that deliberately designed single-target drugs may hold the
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promise to specifically bind their target with reduced side effects due to off-target actions.
However, single-target drugs often turn out to be less effective in treating complicated
diseases such as cancers, metabolic disorders and central nervous system (CNS) diseases.1, 2

Furthermore, many compounds designated as target-specific drugs are in fact not that
selective, and subsequently have been discovered to bind to other targets with similar
binding affinities.3–5 To better and more efficiently identify effective compounds that work
through either known or undiscovered mechanisms, of great interest in recent years has been
the development of computational methods to predict the promiscuous binding propensities
of drug molecules.6–9

G protein-coupled receptors (GPCRs) and kinases are two of the most important drug target
families. Many of their ligands are well known to have promiscuous binding propensities
within their own protein families. For example, as one of the most efficacious atypical
antipsychotic drugs discovered half a century ago, clozapine binds to dozens of GPCRs with
nM affinity10 and its clinical efficacy is certainly associated with its broad target binding
profile.1, 10 Similarly, the first “magic bullet” approved by the FDA for the treatment of
chronic myeloid leukemia, gleevec, was initially developed to specifically inhibit the
abnormal tyrosine kinase BCR-ABL. However, it was shown subsequently to target several
other kinases simultaneously, including c-KIT and PDGFR.4, 5 Historically, GPCR ligands
and kinase inhibitors have been developed in quite distinct chemical spaces,11 and the
selectivity panel screening campaign has generally been limited to within the same protein
family members. Thus, as far as we are aware, the ligand cross-reactivity between GPCR
orthosteric ligands and kinase inhibitors has not been previously reported.

The 5-hydroxytryptamine receptors (5-HTRs) are comprised of 14 GPCRs in 5 families (5-
HT1, 2, 4, 5, 6 and 7) and one ligand-gated ion channel (5-HT3). Among 5-HTRs, the 5-
HT2A receptor is one of the most studied serotonergic receptors, and its inhibition is
generally associated with antipsychotic and antidepressive effects.12 In addition, the 5-HT2A
receptor also plays a role in thermoregulation, sleep, cardiovascular function and muscle
contraction.13–17 A typical 5-HT2A antagonist consists of two aryl rings and a positively
charged nitrogen atom (Figure 1), and generally can be divided into class I antagonists
characterized by a basic nitrogen atom in the center of the molecule and in linear disposition
with the aryl rings (e.g. ketanserin), or class II antagonists with a triangular arrangement of
aryl rings and a basic nitrogen (e.g. cyproheptadine).18 Currently, very few 5-HTR ligands
are subtype-selective, and the development of novel 5-HT antagonists with better specificity
is highly desirable. However, this has been compromised by the lack of experimental
structures of 5-HTRs.

High resolution crystal structures of GPCRs have been published in recent years,19 in
addition to the pioneering structures of rhodopsin,20 which greatly facilitates the GPCR
structure-function study and drug discovery.19, 21 Much research is now engaged in using
the available structural information for homology modeling the 3D structures of GPCRs, and
subsequently for docking screening and lead compound optimization purposes.22–27, 28, 29

Here we combine homology modeling, molecular docking and molecular dynamics
simulation methods to predict the potential 5-HT2A off-target activity of FDA approved
drugs, which has not been investigated previously. We employed an “induced-fit” protocol
to simulate the receptor conformational changes upon binding with two representative 5-
HT2A antagonists. We asked whether such induced-fit models can be used to enrich known
ligands from decoy molecules in retrospective virtual screening. We then asked whether we
could discover potential novel polypharmacology in a prospective docking screening of
FDA drug molecules.
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2. METHODS
5-HT2A Comparative Modeling

The crystal structure (PDB code: 3D4S)30 of the inverse agonist bound β2-adrenoceptor
(β2-AR) was chosen as template to model the inactive 5-HT2A structure using the
comparative modeling program MODELLER (version 9v7).31 The β2 receptor has higher
homology with the 5-HT2A receptor than with rhodopsin and has been suggested as a better
template for homology modeling.25 The sequence alignment was retrieved from GPCRDB32

and CDD database33 with the extracellular loop 2 (ECL2) included and the conserved
disulfide bond patched, while four residues at the N terminal and five residues at the C
terminal of the third intracellular loop were treated as gaps in sequence alignment to avoid
the generation of linkage between transmembrane helix (TM) 5 and TM6 during structure
prediction (Figure S1 in Supplementary Material). The best quality model was identified
with most residues located in the favored regions assessed by Ramachandran plot using
Maestro (Schrödinger LLC, New York NY). The ECL2 loop and the third intracellular loop
were deleted after the generation of the homology model to avoid interference from the less
accurately modeled loops to the subsequent molecular docking and MD simulation. The
same strategy has been applied in other GPCR modeling projects.34, 35

Binding-site Refinement
Instead of docking to the comparative model directly, we deliberately modified the receptor
structure to incorporate knowledge of “induced-fit” effects associated with varying 5-HT2A
antagonists’ scaffolds.36, 37 Although 5-HT2A ligands are structurally quite diverse, the
majority of 5-HT2A antagonists belong to class I and class II antagonists. Specifically, we
chose ketanserin as the representative ligand of class I antagonist and cyproheptadine as
class II antagonist, and we applied an induced-fit protocol (Figure 2) to sample the receptor
conformational changes upon binding ketanserin and cyproheptadine, respectively.

The ligand was docked into the modeled 5-HT2A binding-site using the DOCK 3.5.54
program, a flexible-ligand method that uses a force-field-based scoring function.38, 39 The
ligand binding-site residues were defined as in a consensus aminergic binding-site residue
set, which includes 12 residues on TM3 (3.32, 3.33, 3.37 and 3.40), TM5 (5.42, 5.43, 5.46
and 5.47), TM6 (6.51 and 6.52), and TM7 (7.42 and 7.43).40 We adopted the default
parameter settings from an automated docking platform as described previously41–43, in
which all tasks including sphere generation, scoring grid and docking calculations are driven
automatically, and the same docking protocol was used in the subsequent docking
screenings. At this step, we saved all the docking poses for further structural analysis.

Docking poses of ketanserin and cyproheptadine were filtered by the 5 Å distance criteria
between the positively charged nitrogen atom of the ligand and negatively charged
carboxylate oxygen atom of D3.32. The resulting poses were clustered into dissimilar
structural groups using the DBSCAN algorithm44 where the minimum spanning number was
set to 5 or 10 points and a RMSD cutoff value of 1.5 or 2 Å for cyproheptadine and
ketanserin, was applied individually. One single representative docking pose was identified
from each structural cluster by choosing the most highly ranked pose that exhibits a
reasonable binding mode in the binding-site. Finally, twelve diverse docking poses were
selected for ketanserin, and four for cyproheptadine.

We submitted the selected dissimilar docking poses to a MM-GB/SA refinement and
rescoring procedure45–50, where the side chain of binding-site residues were sampled along
with the docked ligand using Protein Local Optimization Program (PLOP).51–53 Note that in
our previously published works, the protein was kept rigid during minimization of the
ligand-protein complex; here, we attempted to sample the side chain conformational changes
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with the presence of the docked ligand.28, 36, 50 The docked complex structure was
minimized first, followed by the side chain prediction of the binding-site residues within 5 Å
of the ligand, and then the ligand was minimized with the fixed protein structure. The
binding-site “induced-fit” complex structure was utilized as the starting point for further
global structure refinement via molecular dynamics (MD) simulation including explicit lipid
membrane and water environment.

Global “Induced-fit” via MD Simulation
All molecular dynamic simulations were performed using the Desmond software package54

and the OPLS-AA 2005 force field.55 Using the default Schrödinger protein membrane
building protocol, a 10 Å buffered orthorhombic boundary system was built with a POPC
lipid membrane and SPC water and then neutralized by ions. The default Schrödinger
protein membrane equilibration protocol was applied before production run. Briefly, each
system was minimized using 2000 steps of steepest descent algorithm, followed by L-BGFS
algorithm. Temperature was gradually increased from 0 K to 300 K, while 50 kcal·mol−1

·Å −2 harmonic position restraints were applied to all heavy atoms of the protein and ligand
during system equilibration. The restraints were gradually removed and the production run
was performed in MTK-NPT (1 bar, 300 K) ensemble for 20 ns. The M-SHAKE
algorithm56 was applied to constrain all bonds involving hydrogen atoms with a time step of
2 fs. The short-range electrostatic and Lennard-Jones interactions were cut off at 9 Å. Long-
range electrostatic interactions were computed by the Particle Mesh Ewald (PME) method57

using 64×64× 64 grid with σ equal to 2.18 Å. Analysis of the MD simulations focused on
structural and energetic properties averaged over the 10 ns production simulation. Structural
analysis was performed using the UCSF Chimera58 and VMD59 programs, including
standard root-mean-square differences (RMSDs), atom contacts and hydrogen bonding
analysis.

Model Assessment by Retrospective Docking Screening
We next investigated the ability of our induced-fit models to enrich known ligands of the 5-
HT2A receptor. Forty-three structurally diverse 5-HT2A antagonists were collected from
references, and molecules were prepared for docking using the latest version of the ZINC
protocol.60 Twenty decoy compounds were selected for each ligand from an in-house
screening compound library (170,000 compounds) based on the DUD protocol,41 leading to
a total of 774 non-redundant decoys that were physically similar but topologically dissimilar
to the 43 annotated ligands (both ligands and decoy molecules are available at
http://www.huanglab.org.cn/5-HT2A). Our automatic docking screening protocol was
applied in default setting for each modeled receptor structure. Enrichment performance
represents the prioritization of ligands among the top ranks of a docking-ordered library. We
assessed the quality of the twenty induced-fit models by the early enrichment of annotated
ligands from a background of decoy molecules..

Prospective Virtual Screening of FDA Drugs
We compiled a FDA drug library by merging the drug molecules from DrugBank (version
2.0)61 and ZINC FDA drug subset (version 2005)60 with excluding the molecules with
molecular weight larger than 600 or smaller than 100 dalton. A total of 1430 unique
molecules were screened against two receptor models by applying our automatic docking
and MM-GB/SA rescoring protocol, individually.47–49 Note that only a single docking pose
with the best total docking energy score was rescored for each molecule entry to reduce the
computation cost, ultimately, we will test the docking screening capacity to rescore multiple
docking poses by including the receptor binding-site flexibility. We saved the top 200 hits
from MM-GB/SA scoring method for further structural analysis and visual check.
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To simulate the stringent scenario with which to discover potential novel polypharmacology,
we excluded the top scoring molecules with any potential GPCR-related activities, such as
ligands of mono-amine GPCRs, mono-amine transporters and opioid receptors. All the
activity data was retrieved from publicly available resources, including ChEMBL database62

and DrugBank.61 In addition, we also submitted identified hits to the Similarity Ensemble
Approach (SEA, http://sea.bkslab.org/) server to avoid the selection of structurally similar
compounds of known GPCR ligands.7, 63 SEA makes use of the chemical fingerprints of
annotated ligands, calculates the similarity score between each set of ligands, and ranks the
significance of the similarity scores using a rigorous statistical model.

Experimental Assays
The detailed description of experimental assays is included in the Supplementary Materials.
Briefly, the experimental binding assays were performed by the National Institute of Mental
Health’s Psychoactive Drug Screening Program (PDSP) following the standard protocol.
The radio-labeled reference compounds ([3H]8-OH-DPAT for 5-HT1A; [3H]GR127543 for
5-HT1B and 5-HT1D; [3H]5-HT for 5-HT1E; [3H]Ketanserin for 5-HT2A; [3H]LSD for 5-
HT2B and 5-HT2C, 5-HT5a, 5-HT6 and 5-HT7; [3H]LY278584 for 5-HT3) are used in Ki
determination. The PDSP on-line data entry and analysis system calculates the variance of
the quadruplicate determinations (for the total, non-specific, and test compound binding
values) and variances greater than 20% are flagged for further inspection and assays are
repeated if necessary.

3. RESULTS AND DISCUSSION
5-HT2A Induced-fit Models upon Binding with Ketanserin and Cyproheptadine

Previous computational studies have demonstrated that incorporating ligand information,
binding-site residue mutation data and molecular dynamics simulations improves the quality
of GPCR structure prediction and ligand docking.26 It is likely that the receptor undergoes
conformational changes to accommodate different ligands, and rigid docking against one
particular receptor conformation may be of limited utility in identifying a diverse set of
ligands. The majority of 5-HT2A antagonists belong to class I and class II antagonists,
therefore, we choose ketanserin and cyproheptadine to represent the typical 5-HT2A
antagonists. We systematically improved the homology model in the context of these two
ligands, and we assessed the extent of such ligand-induced conformational differences and
revealed further details of ligand binding. We expect that the binding modes of class I and
class II antagonists are similar to ketanserin and cyproheptadine, respectively.

Although the position of the orthosteric ligand binding-site is conserved in the aminergic
GPCRs, the detailed atomic interactions with binding-site residues vary quite
considerably.40 It has been suggested that 5-HT2A ligands may bind into two different
sites.64, 65 Site 1 is bordered by TM3, 4, 5 and 6, and site 2 is flanked by TM1, 2, 3 and 7.
The shared region between site 1 and site 2 includes residues D3.32 and S3.36 on TM3, and
W6.48 and F6.51 on TM6.65 In aminergic GPCRs, the conserved D3.32 forms a salt-bridge
with the tertiary amine of the ligand, which is critical for ligand binding66. Therefore, we
generated a wide range of docking poses at the initial docking stage, followed by eliminating
the misdocked poses using the conserved salt-bridge interaction as a criterion. Further
structural clustering significantly reduced the redundant docking poses, and eventually led to
twelve dissimilar poses for ketanserin and four poses for cyproheptadine. Consistent with
previous suggestions, our docking results indicate that ketanserin adopts extended
conformations that allow binding in both sites, while cyproheptadine mainly binds in site 1
(Figure 3). The binding-site refinement procedure didn’t introduce large structural
perturbation; however, the sidechain prediction within the binding pocket along with the
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docked ligand is an effective approach to maximize the interactions between binding-site
residues and docked ligand, and thus provides a physically reasonable complex structure for
subsequent molecular dynamics simulation.

Based on docking and refinement results alone, it is difficult to determine the correct
binding orientation for ketanserin. The anchoring interaction is the salt bridge between the
piperidine basic nitrogen of the ligand with carboxylate group of D3.32; however, it appears
reasonable that either the p-fluorobenzoyl ring or quinazolinedione moiety binds in site 1
(Figure 3). Therefore, this limitation stimulated the development of the improved protein-
ligand complex models in a more realistic treatment using the unbiased molecular dynamics
simulation approach. We expect that multiple independent simulations can significantly
increase the sampling of the complex structure, and the near-native system will be the stable
system with favorable interactions between ligand and receptor, and satisfies the
experimental evidences like site-directed mutagenesis data.

In addition to the critical residue D3.32, the binding-site residues important for ketanserin
binding have been extensively studied by mutagenesis experiments. The F6.51L mutant
decreases ketanserin binding by at least 800-fold and the W6.48A mutant decreases only 7-
fold, while S3.36A/C and F6.52L mutations were found to have almost no effect on ketanserin
binding affinity.67–70 Structure-activity relationship (SAR) studies on ketanserin analogues
have been shown that the hydrogen bonding capability of the quinazolinedione ring has only
minor contributes to the binding affinity.71 Furthermore, it is suggested that an ionic lock
(R3.50 And E6.30) forms in aminergic GPCRs to stabilize the receptor in an inactive
conformation.20 Also, conserved residue Y7.43 forms a stable hydrogen bond with D3.32 in
all known GPCR crystal structures. Therefore, we defined six structural descriptors to assess
the simulation quality of each ketanserin system during the last 10 ns simulation, including
the formation of salt bridge interaction between ternary amine of ligand and conserved
residue D3.32, the absence of hydrogen bond between ligand and hydroxyl of residue S3.36,
larger ratio of vdw contacts between ligand and Phe6.51 in comparison to Trp6.48 and
Phe6.52, the formation of conserved ionic lock between R3.50 and E6.30 residues and the
presence of a stable hydrogen bond between Y7.43 and D3.32. We also compared the average
MM-GBSA binding energies of different systems. A single simulation system (designated as
Ket-6) was eventually chosen on the basis of satisfying all these available experimental
evidences and energetic calculation results while the rest of systems do not agree with at
least one of the descriptors (Figure 4), the detailed analysis are also summarized in the
Supplementary Materials (Table S1).

In the Ket-6 system (Figure 5A), the p-fluorobenzoyl moiety binds in site 1, forming
favorable hydrophobic interaction with F6.51, but relatively fewer contacts with W6.48 and
F6.52. The quinazolinedione group binds in site 2, establishing aromatic stacking interaction
with W3.28 without forming any stable hydrogen bonds in the binding-site; the positively
charged piperidine nitrogen forms strong salt bridge interaction with D3.32 throughout the
entire simulation, and S3.36 only interacts transiently with the carbonyl group of the p-
fluorobenzoyl ring. Nevertheless, the last 10 ns simulation trajectory in the Ket-6 simulation
was clustered, a representative structure from each of the 10 largest conformational
ensembles was selected, and resulted total of 10 representative model structures for docking
evaluation.

Because of its relatively rigid structure, determination of the binding mode of
cyproheptadine is less uncertain. We still assess the simulation quality using the conserved
salt bridge interaction between the positively charged nitrogen of the ligand and D3.32, as
well as the ionic lock between R3.50 and E6.30 and the hydrogen bond between D3.32 and
Y7.43. Only one simulation system (designated as Cyp-4) satisfies the structural
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requirements (data not shown), and additionally exhibits more favorable hydrophobic
interaction between the bound ligand and binding-site residues (Figure 5B). Cyproheptadine
mainly binds in site 1 deeply; forming strong hydrophobic interaction with V3.33, F5.38,
W6.48, F6.51 and F6.52, while maintaining its critical ionic interaction with D3.32. Similarly,
we clustered the last 10 ns simulation trajectory in the Cyp-4 simulation, and selected a
representative structure from each of the 10 largest clusters for docking evaluation.

Assessing Induced-fit Models by Retrospective Docking Screening
We next investigate the docking enrichment performance of a total of twenty 5-HT2A
induced-fit models. The early enrichment results are presented using EF1 (enrichment factor
at 1% of the ranked database) and EF5 (enrichment factor at 5% of the ranked database)
(Table 1). The best early enrichment performances are achieved for the 7th representative
structure from the Ket-6 simulation (designated as Ket-6-7) with EF1 of 4.6 and EF5 of 2.3,
and for the 4th representative structure from the Cyp-4 simulation (designated as Cyp-4-4)
with EF1 of 4.6 and EF5 of 3.3, respectively. During the docking screening, it was frequently
observed that one class of ligand was favored over others, indicating that different receptor
conformations may be required for extensive virtual screening studies, which is exactly the
case in our study. Thus, we further extracted two subsets of antagonists as ketanserin-like set
and cyproheptadine-like set on the basis of structural similarity (Table S2 in Supplementary
Materials), and we expected that the ketanserin-like ligands should be better enriched by the
corresponding ketanserin induced-fit models, and similarly in cyproheptadine cases. Indeed,
the early enrichment was significantly improved for the same group of ligands against the
corresponding induced-fit models (Figure 6). Thus, 16.7% and 25% of the ketanserin-like
ligands can be found in the top 1% and 5% of the ranked database by docking against
Ket-6-7 model, respectively, corresponding to enrichment factors of 16.7 and 5. A
significantly better enrichment occurs when docking against Cyp-4-4 model, as 25% and
58.3% of the cyproheptadine-like ligands are found in the top 1% and 5% of the docking
ranked database, corresponding to enrichment factors of 25 and 11.7.

We were also interested in comparing the docking enrichment performance of two induced-
fit models to the initial comparative model and to a previously published 5-HT2A induced-fit
model structure.28 Clearly, enrichments are much better in docking screening against our
induced-fit models than the original homology model and one published model using
exactly the same group of ligands and decoy molecules (Figure 6). In addition, we visually
checked the docking poses of these ligands based on the assumption that the binding modes
of class I and class II antagonists shall be similar to ketanserin and cyproheptadine,
respectively. Our results (Table S2) demonstrate that the ligand docked to its corresponding
induced-fit model typically superimposes well with its reference molecule (91% success rate
for cyproheptadine-like ligands and 73% for ketanserin-like ligands), while the binding
orientation by docking to the initial homology model is frequently incorrect (only 45% and
36% of success rate, correspondingly). It was encouraging that our induced-fit models are
reliable for typical 5-HT2A antagonist binding geometry prediction and enrichment studies,
and we are confident that the same induced-fit protocol can be applied to model 5-HT2A
atypical antagonist bound conformations. Nevertheless, the Ket-6-7 and Cyp-4-4 models,
each corresponding to one class of 5-HT2A ligands, were chosen for subsequent docking
screening of FDA drug molecules. The structural coordinates of both induced-fit models are
freely available online (http://www.huanglab.org.cn/5-HT2A).

Prospective Virtual Screening of FDA Drugs and Experimental Validation
We then docked FDA drug molecules against both modeled 5-HT2A structures and checked
the top 200 compounds based on MM-GB/SA energy scores. For the present study, we
mainly focused on analyzing and testing the docking results from Cyp-4-4 model due to its
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better enrichment performance and pose fidelity prediction in our retrospective virtual
screening. Firstly, we filtered out compounds without forming favorable hydrogen bonding
interaction with residue Asp3.32, resulting in 99 remaining molecules. Unsurprisingly, 73
molecules among these 99 compounds belong to annotated ligands of monoaminergic
GPCRs, opioid GPCRs or their corresponding membrane transporters (Table S3), such as
phentolamine (ranking 10, α adrenergic receptor blocker), mesoridazine (ranking 14, 5-
HT2A and D2 receptor antagonist) and epinastine (ranking 27, histamine receptor
antagonist). The aminergic GPCRs share the same or similar cognate ligands such as
serotonin, dopamine and epinephrine, and drugs targeting these receptors display broad
cross-reactivity. Therefore, we eliminated all these 73 monoamine drugs related to GPCR
receptors, and we were interested in discovering unexpected cross-reactivity between
completely unrelated protein targets regarding the sequence, functional and structural
similarity. Finally, six drugs (Table S4) were selected based on commercial availability and
submitted to radio-label competitive binding assay. Among them, one kinase drug, sorafenib
(Figure 1), ranks 85 in the original score list, 37 after structural filtering and 9 after activity
annotation check.

Sorafenib was purchased from LC Laboratories (Woburn, MA), and the remaining five drug
compounds were purchased from Sigma-Aldrich (Table S4). The vendors had verified the
compound purity > 95% by liquid chromatography-mass spectrometry (LC-MS) or nuclear
magnetic resonance (NMR) experiments. The 1H-NMR spectrum and LC-MS data for
sorafenib are included in Supplementary Materials (Figure S2) to further validate its
structure and purity. The primary screening results indicate that two compounds are shown
radio-labeled ligand replacement ratio larger than 20% at 10μM concentration and sorafenib
exhibits 88% inhibition. Subsequent secondary dose-response experiments indicate that
sorafenib binds to 5-HT2A with Ki value of 1959 nM (Figure 7). The cellular functional
assay validated sorafenib as a 5-HT2A antagonist with 93.3+/−1.4% of inhibition activity at
50 μM concentration. Remarkably, further 5-HTR profiling results suggest that sorafenib is
a promiscuous 5-HTR ligand (Table 2), strongly binds to 5-HT2B and 5-HT2C with Ki
values of 56 and 417 nM (Figure 7), and weakly binds to other five 5-HTRs including 5-
HT1A, 5-HT2A, 5-HT5a, 5-HT6 and 5-HT7, while it doesn’t bind to 5-HT1B, 5-HT1E, 5-HF1F
and 5-HT3. Although at the current stage, it is not clearly whether sorafenib binds to other
monoaminergic GPCRs, but it is highly likely to do so considering the ligand promiscuity
among the monoaminergic GPCR family.

5-HT2A–Sorafenib Binding Mode
Here we examine in more depth the docked complex structure of sorafenib focusing on its
chemical composition and binding mode (Figure 8A). Compared to the predicted ketanserin
and cyproheptadine binding modes, sorafenib has very different binding characteristics
regarding its numerous polar interactions with binding-site residues. Its hydrophobic
trifluoromethylphenyl unit is buried in the hydrophobic site 1, and might contribute largely
to ligand binding. Remarkably, it doesn’t contain a positively charged nitrogen atom;
instead, it forms strong hydrogen bonds between amide nitrogen atoms of its urea moiety to
the carboxylate group of D3.32. Other polar interactions include hydrogen bonds between its
methyl amide oxygen atom to the hydroxyl group of T2.64 and amide nitrogen atom of
Asn7.36, also its methyl amide nitrogen donates a hydrogen bond to the main chain carbonyl
of L7.35. It is interesting that the amide nitrogen atoms of the urea moiety form exactly the
same interaction with the carboxylate group of the residue E500 in sorafenib-kinase crystal
complex structures.72 The binding details of sorafenib with BRAF kinase (PDB code:
1UWH) are illustrated in Figure 8B. It is not likely that the lack of a positively charged
group largely reduces the binding affinity between sorafenib and 5-HT2A, as its binding to
5-HT2B is at low nanomolar range, where this selectivity may be caused by the other
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variable binding-site residues like the 5.46 position residue (a serine in 5-HT2A, while an
alanine in 5-HT2B and 5-HT2C) just as the ergoline compounds70. This is consistent with a
recent report where Ladduwahetty and coworkers discovered novel 5-HT2A receptor
antagonists without containing any positively charged groups73. Nevertheless, it is likely
that sorafenib can be used as a novel 5-HT2A lead compound for further structural
optimization with maintaining the bi-aryl urea structural moiety. As the ligand similarity-
based SEA method has been successfully applied in identifying GPCR related off-targets,
the receptor structure-based docking method may become a complementary approach for
GPCR drug off-target discovery when the receptor structure is available or can be reliably
modeled. Nevertheless, well designed experimental mutagenesis studies and the
development of more accurate 5-HT2A–sorafenib structure models are desirable for further
investigation of the binding details at the atomic level.

As a proof-of-concept study, we designed series of sorafenib analogues to assess the
predicted binding mode; two of them (Figure 9A) have been synthesized and evaluated
against 5-HT2B receptor (Figure 9B). The chemical synthesis route and analysis data are
reported in Supplementary Material. The replacement of aromatic nitrogen atom to carbon
atom in compound HN01, leads to slight improvement of binding, which indicates that the
aromatic nitro atom doesn’t form direct polar interaction with receptor. The addition of
methyl group on amide nitrogen atom in compound HN02 removes its potential hydrogen
bond to the main chain carbonyl of L7.35, leads to 8 folds loss of binding. Both
modifications strongly support the predicted binding mode of sorafenib. The complete SAR
exploration on sorafenib will be pursued and published at somewhere else.

New Clinical Implication of Sorafenib
Sorafenib is well known to produce anticancer effect through targeting multiple kinases.
Sorafenib was originally developed as a RAF-kinase inhibitor (52 nM), but subsequently has
been shown to be a multi-kinase inhibitor that also inhibits PDGFRβ (37 nM), VEGFR2 (59
nM), VEGFR3 (16 nM), c-Kit (31 nM) and FLT1 (31 nM).74 5-HT2B is highly expressed in
the liver, kidneys, stomach and gut.12 Considering that the 5-HT2B binding affinity of
sorafenib is in the same therapeutic window as its kinase inhibition activities, one may
hypothesize that the 5-HT2B inhibition might directly contribute to the anticancer effect of
sorafenib; in this regard we have previously suggested that 5-HT2B antagonists might be of
special benefit for carcinoid tumors and sorafenib might represent a novel treatment for this
disorder.75 Nevertheless, recent studies have suggested that 5-HT receptors may be involved
in the cell viability and cell cycle progression in certain cancers, especially for liver cancer
and carcinoid-like tumors.76–78 Sorafenib was approved to treat advanced renal cell
carcinoma (RCC) and hepatocellular carcinoma (HCC), and intriguingly, 5-HT was
suggested to promote cell survival and growth of HCC cells by activation of the 5-HT2B
receptor.78 However, we cannot exclude the possibility that the 5-HTR activities of
sorafenib might also cause side effects instead of bringing clinical benefits in certain
circumstances. Although, it is well beyond the scope of our current study, it is desirable to
dissect the contributions of kinase inhibitions and 5-HTR antagonist activities in sorafenib-
produced anticancer effect; as such information may facilitate clinical usage of sorafenib as
well as designing new drugs with better anticancer efficacy and fewer side effects.

4. CONCLUSION
Drug profiling campaigns have revealed novel polypharmacology of existing drugs. It is
critical to fully understand the target binding profile of a drug molecule, as its potential off-
target binding properties may lead to better clinical efficacy in certain circumstances, while
causing side effects in other cases. GPCRs and kinases are two of the most important drug
target families, and many of their ligands have been discovered to have promiscuous binding
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propensities within their own protein families. However, as far as we are aware, the ligand
cross-reactivity between GPCR orthosteric ligand and kinase inhibitor has not been
previously reported.

To predict novel polypharmacology, we computationally screened the FDA approved drug
molecules against the induced-fit models of the 5-HT2A receptor. We employed a
comprehensive “induced-fit” protocol to simulate the receptor conformational changes upon
binding with two representative 5-HT2A antagonists, where different computational
techniques were integrated systematically, including homology modeling, molecular
docking, sidechain prediction and molecular dynamics in explicit membrane and solvent
conditions. The multiple independent simulations with the presence of different ligand
docking poses lead to the best quality structural models which satisfy the available
experimental evidences, and achieve the best docking performance by enriching the known
ligands from decoy molecules in retrospective virtual screening. Such identified induced-fit
models were used in docking screening of FDA drug molecules, with a total of six drug
molecules chosen for experimental binding assay. Surprisingly, a well known multi-kinase
inhibitor, sorafenib has shown relatively strong binding affinity to 5-HT2A, and subsequent
5-HTR profiling results indicate its promiscuous 5-HTRs inhibition activities. Whether or
not the off-target inhibition of 5-HTRs by sorafenib has any clinical relevance has yet to be
determined. However, it is desirable to dissect the contributions of kinase inhibitions and 5-
HTR antagonist activities in sorafenib-produced anticancer effects. Ultimately, we can also
envision a strategy to virtual screening GPCR ligands against therapeutically relevant
kinases, and ask whether we could discover known GPCR ligands with unexpected kinase
activities.

Interestingly, the structural characteristics of sorafenib are distinct to classic 5-HT2A
antagonists, especially considering the lack of the tertiary amine to form the salt-bridge
interaction with the critical binding-site residue D3.32. Instead, sorafenib may form strong
hydrogen bonds between amide nitrogen atoms of its urea moiety to carboxylate group of
D3.32, and it may also form additional hydrogen bonds between its methyl amide with
binding-site residues. Nevertheless, the biaryl urea moiety may suggest new direction for
developing novel 5-HTR ligands.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

CNS central nervous system

GPCRs G protein-coupled receptors

5-HTRs 5-hydroxytryptamine receptors

β2-AR β2-adrenoceptor
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ECL2 extracellular loop 2

TM transmembrane helix

PLOP Protein Local Optimization Program

MD molecular dynamics

PME Particle Mesh Ewald

RMSDs root-mean-square differences

SEA Similarity Ensemble Approach

PDSP Psychoactive Drug Screening Program

SAR structure-activity relationship

EF enrichment factor

LC-MS liquid chromatography-mass spectrometry

NMR nuclear magnetic resonance

RCC advanced renal cell carcinoma

HCC hepatocellular carcinoma
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Figure 1.
Chemical structures of ketanserin, cyproheptadine and sorafenib with activity data of their
known primary targets.
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Figure 2.
Our step-by-step induced-fit protocol to improve the 5-HT2A homology model for bound
ligands.
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Figure 3.
Overlapped diverse representative docking poses of ketanserin and cyproheptadine in the
binding-site of the initial homology model of 5-HT2A. Cyproheptadine (carbon atoms
colored cyan) mainly binds in site 1, mainly bordered by TM3, 5 and 6, while ketanserin
(colored green) adopts extended conformations that allow binding both sites.
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Figure 4.
The structural descriptors used to assess the simulation quality of ketanserin complex
systems. Y axis is the measured probability of forming a specific interaction during 10 ns
production simulation. The formation of D3.32-ligand salt bridge interaction is defined as
the distance between carboxylate oxygen atom of D3.32 and the piperidine nitrogen atom of
ligand less than 3.5 Å, the hydrogen bond between ligand and hydroxyl of residue S3.36 is
defined by the distance of donor and acceptor less than 3.5 Å and angle greater than 120°
(same for D3.32-Y7.43 hydrogen bond), the ratio of F6.52-ligand contacts is defined by the
number of atom pairs within vdW contact distance between ligand and F6.52 divided by the
number of atom pairs between ligand and F6.51 (same for W6.48-ligand contacts), and the
R3.50-E6.30 ionic lock is defined by distance less than 4 Å between CZ atom of R3.50 and
CD atom of E6.30.
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Figure 5.
Conformational changes upon binding ligands ketanserin (A) and cyproheptadine (B).
Induced-fit model (stick, carbon atoms colored yellow) is superimposed on the initial
homology model (thin line, carbon atoms colored grey), highlighting the binding-site
conformational changes in molecular dynamics simulation. The transmembrane helixes in
the initial homology model are shown in ribbon representation and are omitted in the
induced-fit models for clarity purpose. Carbon atoms of ligands are colored in green. The
salt-bridge interaction between the tertiary amine of the ligand and the conserved D3.32 is
illustrated with orange line. Molecular images were generated with UCSF Chimera.
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Figure 6.
The enrichment profile of percentage of ligands found (y-axis) plotted as a function of the
percentage of the ranked docked database (x-axis in logarithmic scale).
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Figure 7.
Radioligand competition binding assays of sorafenib. Ki value is calculated as: Ki = IC50/
(1+L/Kd) (Cheng-Prusoff equation), in which [L] = the radioligand concentration used in
the binding assay and Kd is the affinity of radioligand at corresponding receptor. [3H]-
Ketanserin was used for 5-HT2A binding; [3H]-LSD for 5-HT2B and 5-HT2C binding. For 5-
HT2A, [L] = 3.54 nM and Kd = 2.2 nM; for 5-HT2B, [L] = 2 nM and Kd = 0.5 nM; for 5-
HT2C, [L]= 2 nM and Kd = 0.6 nM.
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Figure 8.
The binding mode of sorafenib in the modeled 5-HT2A-sorafenib complex structure and the
BRAF-sorafenib crystal complex structure. Carbon atoms of sorafenib are colored in yellow.
The hydrogen bond interactions between the urea group of the sorafenib and the conserved
D3.32 in 5-HT2A (A) or the catalytic residue E500 in BRAF (B) are illustrated with orange
line. Molecular images were generated with UCSF Chimera.
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Figure 9.
Chemical structures of designed sorafenib analogues (A), and their corresponding
radioligand competition binding assay results (B). Note that the measured Ki value of
sorafenib in this binding assay is 115.1 nM, different to our reported value of 56 nM. It is
due to a new batch of 5-HT2B pellets used in this new assay, where the Kd value of radio-
ligand [3H]-LSD is 0.97 nM, and 0.5 nM for the previously used batch. Thus, the measured
sorafenib binding affinity values are consistent in both experiments.
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