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Abstract
SAR exploration of the 2,4-diamino-6,7-dimethoxyquinazoline template led to the discovery of 8
(UNC0224) as a potent and selective G9a inhibitor. A high resolution X-ray crystal structure of the
G9a-8 complex, the first co-crystal structure of G9a with a small molecule inhibitor, was obtained.
The co-crystal structure validated our binding hypothesis and will enable structure-based design of
novel inhibitors. 8 is a useful tool for investigating the biology of G9a and its roles in chromatin
remodeling.

Multicellular organisms have evolved elaborate mechanisms to enable differential and cell-
type specific expression of genes. Epigenetics refers to these heritable changes in how the
genome is accessed in different cell-types and during development and differentiation. This
capability permits specialization of function between cells even though each cell contains the
same genome. Over the last decade, the cellular machinery that creates these heritable changes
has been the subject of intense scientific investigation as there is no area of biology or for that
matter no area of human health, where epigenetics may not play a fundamental role.1

The template upon which the epigenome is written is chromatin – the complex of histone
proteins, RNA and DNA that efficiently package the genome in an appropriately accessible
state within each cell. The state of chromatin, and therefore access to the genetic code, is mainly
regulated by covalent and reversible PTMs to histone proteins and DNA, and the recognition
of these marks by other proteins and protein complexes. The PTMs of histones and DNA
include: histone lysine methylation, arginine methylation, lysine acetylation, sumoylation,

†The coordinates and structure factors of UNC0224 co-crystallized with G9a have been deposited in the Protein Data Bank
(www.pdb.org, PDB code 3K5K).
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ADP-ribosylation, ubiquitination, glycosylation and phosphorylation, and DNA methylation.
2 Given the wide-spread importance of chromatin regulation to cell biology, the enzymes that
produce these modifications (the ‘writers’), the proteins that recognize them (the ‘readers’),
and the enzymes that remove them (the ‘erasers’) are critical targets for manipulation in order
to further understand the histone code3,4 and its role in human disease. Indeed, small molecule
histone de-acetylase inhibitors5 and DNA methyltransferase inhibitors6 have already proven
useful in the treatment of cancer.

Histone lysine methylation refers to covalent methylation of histone lysine tails to produce
mono-,di-, or trimethylated states. Among a myriad of PTMs, histone lysine methylation
catalyzed by histone lysine methyltransferases (HMTs) has received great attention because
of its essential function in many biological processes including gene expression and
transcriptional regulation, heterochromatin formation, and X-chromosome inactivation.7 It is
therefore considered to be one of the most significant PTMs of histones. Since the first HMT
was characterized in 20008, more than 50 human histone methyltransferases have been
identified.9 Growing evidence suggests that HMTs play important roles in the development of
various human diseases including cancer.10,11 For example, G9a, a H3K9 methyltransferase
also known as EHMT2, is overexpressed in human cancers and knockdown of G9a inhibits
cancer cell growth.12,13

Despite the tremendous progress made in identifying new HMTs, only two small molecule
HMT inhibitors14–16, which are not SAM-related analogs, have been reported since the first
HMT was characterized in 2000.8 Therefore, creating multiple, high quality small molecule
HMT inhibitors as research tools for studying the biological function of HMTs is urgently
needed.

In this letter, we report the design and synthesis of novel compounds to explore the 2,4-
diamino-6,7-dimethoxyquinazoline template, and biological evaluation of these compounds
that led to the discovery of 8 (UNC0224) as a potent and selective G9a inhibitor. In addition,
we disclose a high resolution (1.7 Ǻ) X-ray crystal structure of the G9a-8 complex, the first
co-crystal structure of G9a with a small molecule inhibitor.

The only previously reported small molecule inhibitor of G9a in the literature is 2,4-
diamino-6,7-dimethoxy quinazoline 2a (BIX-01294)15,17 (Fig. 1), which also inhibited GLP
(also known as EHMT1). GLP is another H3K9 methyltransferase that shares 80% sequence
identity with G9a in their respective SET domains. Because no SAR has been reported for this
quinazoline scaffold, we decided to explore multiple regions of this template to elucidate the
SAR and improve potency and selectivity as part of our efforts to create multiple chemical
probes for epigenetic targets and make these probes available to the research community
without restrictions on their use.

An efficient two-step synthetic sequence was developed to explore the 4-amino and 2-amino
regions of the quinazoline scaffold (Scheme 1). Displacing the 4-chloro of commercially
available 2,4-dichloro-6,7-dimethoxyquinazoline (1) with the first set of amines at room
temperature, followed by displacement of the 2-chloro with the second set of amines under
microwave heating conditions, yielded the desired 2,4-diamino-6,7-dimethoxyquinazolines 2
in good yields. Using this efficient synthesis, we rapidly prepared the compounds listed in
Table 1 and Table 2. These compounds were evaluated in two orthogonal and complementary
biochemical assays18: (1) Thioglo-based G9a inhibitory assay for monitoring the conversion
of SAM to SAH;19 and (2) G9a AlphaScreen for the detection of methylated histone peptides.
20

The 4-amino moiety of the quinazoline scaffold was first explored (Table 1). Replacing the 1-
benzyl piperidin-4-yl-amino group (2a) with 1-methyl piperidin-4-yl-amino (2b) resulted in
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no potency loss. This result is consistent with the X-ray crystal structure of the GLP-2a complex
as the benzyl group of 2a was outside the peptide binding groove and did not make any
interactions.17 This key SAR finding allowed us to reduce the molecular weight and
lipophilicity of this chemical series. On the other hand, replacing the 1-methyl piperidin-4-yl-
amino (2b) with piperidin-4-yl-amino (2c), tetrahydropyran-4-yl-amino (2d), or
cyclohexylamino (2e) led to significant potency loss – indicating that an alkylated nitrogen is
important for inhibitory activity. Analogs containing a smaller amino group such as
cyclopropylamino (2f) and isopropylamino (2g) were also significantly less potent compared
to 2a and 2b. In general, assay results from the Thioglo-based assay and AlphaScreen are
consistent. However, the AlphaScreen appears to be more sensitive for weakly active
compounds. The sensitivity of AlphaScreen for weakly active compounds is likely due to the
assay detecting amplified signal and to the use of a lower concentration of peptide substrate.

The 2-amino moiety of the quinazoline scaffold was investigated next. In general,
modifications to the 2-amino region were well tolerated (Table 2). The methyl homopiperazine
(2b) could be replaced with the methyl piperazine (2h) and piperidine (2i) without significant
potency loss. Analogs containing morpholine (2j), diethylamine (2k), or dimethylamine (2l)
had moderate potency. The 2-choloro analog 2m had poor potency in both assays.

Having established initial SAR for the 2- and 4- amino regions, we next explored the 7-methoxy
moiety. The X-ray crystal structure of the GLP-2a complex revealed that 2a occupied the
histone peptide binding site and did not interact with the narrow lysine binding channel.17 We
hypothesized that adding a 7-aminoalkoxy side chain to the quinazoline scaffold would make
new interactions with the lysine binding channel while the rest of molecule maintained
interactions with the peptide binding grove. Thus, we designed compound 8, which possesses
a 7-dimethylaminopropoxy chain and also combines the best 2- and 4-amino moieties identified
previously. Synthesis of 8 is outlined in Scheme 2. Benzyl protection of commercially available
2-methoxy-4-cyanophenol (3), followed by nitration, and subsequent reduction of the nitro
group, produced aniline 4. Aniline 4 was then converted to quinazolinedione 5 via formation
of methyl carbamate and subsequent saponification of the cyano group and ring closure.
POCl3 treatment of intermediate 5 resulted in 2,4-dichloro quinazoline 6, which underwent
two consecutive chloro displacement reactions to yield 2,4-diamino quinazoline 7.
Debenzylation of intermediate 7, followed by Mitsunobu reaction with 3-(dimethylamino)
propan-1-ol, produced the desired compound 8.

We were pleased to find that 8 was a potent G9a inhibitor with an IC50 of 15 nM, 7 times more
potent compared to 2a (IC50 = 106 nM), in the G9a Thioglo assay (Figure 2). Although 8
(IC50 = 289 nM) had similar potency compared to 2a (IC50 = 290 nM) in the G9a AlphaScreen
(likely due to 8 reaching the IC50 limit of the G9a AlphaScreen), the high potency of 8 was
confirmed in several secondary assays. In ITC experiments that measure the binding affinity
of a small molecule to the G9a protein21, 8 (Kd = 23 ± 8 nM (n = 2)) has about 5-fold higher
binding affinity compared to 2a (Kd = 130 ± 18 nM (n = 2)) (Figure 3). 8 also displaced
fluorescein labeled 15-mer H3 peptide (1–15) better than 2a in a G9a FP assay (Figure 4). In
addition, 8 stabilized G9a better compared to 2a in DSF experiments.22 These results together
strongly suggest that 8 is a significantly more potent G9a inhibitor compared to 2a.

Although 8 also potently inhibited GLP with an IC50 of 20 nM and 58 nM in the Thioglo assay
and AlphaScreen, respectively, 8 was more than 1000-fold selective for G9a over SET7/9 (a
H3K4 HMT) and SET8/PreSET7 (a H4K20 HMT) in Thioglo-based biochemical assays. In
addition, 8 was clean (less than 20% inhibitions at 1 µM) against a broad range of G-protein
coupled receptors, ion channels, and transporters in a 30-target selectivity panel (tested by
MDS Pharma Services) except hitting muscarinic M2 receptor at 82% inhibition at 1 µM and
histamine H1 receptor at 31% inhibition at 1 µM.
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A high resolution (1.7 Ǻ) X-ray crystal structure of the G9a-8 complex, the first crystal structure
of a G9a-small molecule inhibitor complex, was obtained. As shown in Figure 5, we were
pleased to find that the 7-dimethylamino propoxy side chain of 8 indeed occupied the lysine
binding channel of G9a nicely, thus validating our binding hypothesis. The higher potency of
8 compared to 2a can be explained by these additional interactions between the 7-
dimethylamino propoxy side chain and the lysine binding channel and these interactions were
absent in the GLP-2a complex. Other key features include: (1) the distal nitrogen of the
homopiperazine interacts with Asp1074; (2) 4-amino group interacts with Asp1083; and (3)
the bulk of 8 occupies the histone peptide binding site. The inhibitor-enzyme interactions
revealed by this high resolution co-crystal structure will enable future structure-based design
of novel HMT inhibitors.

In conclusion, compound 8, a potent and selective inhibitor of histone lysine methyltransferase
G9a, was discovered via SAR exploration and structure-based design. The first X-ray crystal
structure of G9a with a small molecule inhibitor was obtained. This high resolution co-crystal
structure of the G9a-8 complex validated our binding hypothesis and will enable structure-
based design of novel inhibitors. 8 is a potentially valuable small molecule tool for the research
community to investigate the biology of G9a and its roles in chromatin regulation.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Abbreviations

PTMs post-translational modifications

HMT histone lysine methyltransferase

EHMT2 euchromatic histone lysine methyltransferase 2

H3K9 histone 3 lysine 9

SAM S-adenosyl-L-methionine

SAR structure activity relationships

GLP G9a like protein

EHMT1 euchromatic histone lysine methyltransferase 1

SET suppressor of variegation 3–9, enhancer of zeste, and trithorax

SAH S-adenosyl-L-homocysteine

AlphaScreen amplified luminescence proximity homogeneous assay

ITC isothermal titration calorimetry

FP fluorescence polarization

DSF differential scanning fluorimetry
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Figure 1.
Structure and reported IC50 of 2a against G9a and GLP.15,17
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Figure 2.
Full concentration response curves of 8 (○) (IC50 = 15 ± 10 nM) and 2a (●) (IC50 = 106 ± 20
nM) in the G9a Thioglo assay.
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Figure 3.
8 showed higher binding affinity to G9a compared to 2a in an ITC experiment.
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Figure 4.
8 (●) displaced fluorescein labeled 15-mer H3 peptide (1–15) better than 2a (○) (unlabeled 25-
mer H3 peptide (1–25) (▼) used as a positive control).
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Figure 5.
X-ray crystal structure of the G9a-8 complex (PDB code 3K5K). Compound 8 is in light and
dark blue. The superposed histone backbone trace and the methylated lysine side chain are in
magenta.
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Scheme 1.
Synthesis of 2,4-diamino-6,7-dimethoxy quinazolines 2a
a (a) R’ amines, DMF, DIEA, rt; (b) R” amines, i-PrOH, 4 M HCl/dioxane, microwave, 160 °
C.
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Scheme 2.
Synthesis of compound 8a
a (a) BnBr, K2CO3, DMF, rt; (b) HNO3, Ac2O, 0 °C to rt; (c) Fe dust, NH4Cl, i-PrOH-H2O,
reflux, 67% over 3 steps; d) methyl chloroformate, DIEA, DMF-DCM, 0 °C to rt; (e) NaOH,
H2O2, EtOH, reflux, 70% over 2 steps; (f) N,N-diethylaniline, POCl3, reflux, 59%; (g) 4-
amino-1-methylpiperidine, DIEA, THF, rt; (h) 1-methylhomopiperazine, HCl, i-PrOH, 160 °
C, microwave, 82% over 2 steps; (i) Pd/C, H2, EtOH, rt; (j) 3-(dimethylamino)propan-1-ol,
PPh3, DIAD, THF, 0 °C to rt, 46% over 2 steps.
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Table 1

SAR of 4-amino moiety.

Compound ID R’

G9a IC50 (µM)

Thioglo
Assay

Alpha-
Screen

2a
(BIX-01294)

0.11 0.29

2b 0.33 0.23

2c < 30%
inhibition
at 1 µM

> 10

2d < 30%
inhibition
at 1 µM

> 10
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Compound ID R’

G9a IC50 (µM)

Thioglo
Assay

Alpha-
Screen

2e < 30%
inhibition
at 1 µM

> 10

2f < 30%
inhibition
at 1 µM

5.1
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Compound ID R’

G9a IC50 (µM)

Thioglo
Assay

Alpha-
Screen

2g < 30%
inhibition
at 1 µM

5.8
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Table 2
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SAR of 2-amino moiety.

Compound ID R”

G9a IC50 (µM)

Thioglo
Assay

Alpha-
Screen

2b 0.33 0.23
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Compound ID R”

G9a IC50 (µM)

Thioglo
Assay

Alpha-
Screen

2h 0.68 0.20
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Compound ID R”

G9a IC50 (µM)

Thioglo
Assay

Alpha-
Screen

2i 0.55 0.51
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Compound ID R”

G9a IC50 (µM)

Thioglo
Assay

Alpha-
Screen

2j 1.6 0.81
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Compound ID R”

G9a IC50 (µM)

Thioglo
Assay

Alpha-
Screen

2k 0.91 6.5

2l 1.1 0.90

2m < 30%
inhibition
at 1 µM

9.1
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